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     Calculation of electromagnetic field energy in a medium with temporal and spatial dispersion outside the 
transparency domain is discussed. It is shown that charged particle contribution to the energy of electromagnetic 
perturbations in the general case can be described in terms of a bilinear combination of the dielectric polarizability 
of the medium. The explicit form of such contribution is found. The relations obtained are used to generalize the 
Planck law and Kirchhoff law to the case of an absorptive medium with spatial dispersion. 
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INTRODUCTION 
     It is well known that the energy density of an 
electromagnetic wave in a medium with spatial and 
temporal dispersion can be consistently defined only in 
the transparency domain [1-5]. This problem has been 
discussed in the literature during decades. After the 
pioneer Brillouin result for the electromagnetic wave 
energy in dispersive transparent media [6, 7] a lot of 
papers has been published on this subject and many 
attempts to generalize the Brillouin's approach have 
been made to consider absorptive properties of medium. 
Nevertheless, the results known from the literature do 
not concern the general solution of the problem, but 
only various particular cases.  
     As is known, the energy of an electromagnetic 
perturbation in a matter contains the “pure”' 
electromagnetic energy and the kinetic energy of charge 
carriers obtained due to their motion in the 
electromagnetic field [2, 3, 8-10]. If neutral particles 
(i.e. atoms or molecules) are present, the additional 
potential energy acquired by bound electrons in such 
field also should be added [10-16]. Beside that in the 
case of absorptive medium some part of electromagnetic 
energy is converted into a heat [10, 12, 16]. Thus, the 
problem arises to describe consistently all these 
quantities. This introduces the principal difficulties to 
generalize the Brillouin formula to the case of 
dispersive absorptive medium since in such a case the 
macroscopic Maxwell equations generate a Pointing-
like equation that does not provide the possibility to 
identify explicitly the contribution of the 
electromagnetic perturbation energy and the heat 
production to the total energy transferred to the medium 
by the electromagnetic field, in contrast to the case of an 
transparent medium for which  the total energy of the 
field is well defined and the heat production is absent. 
     In order to avoid the above-mentioned difficulties, it 
is possible to calculate all constituents of the 
electromagnetic field energy directly and express them 
in terms of dielectric susceptibilities as it was done for 

the case of dissipative medium without spatial 
dispersion [2, 10]. This approach can be justified using 
the energy balance equation which follows from the 
combination of the Maxwell equations and the kinetic 
equation for charge carriers. Such energy balance 
equation for the first time was formulated by 
V. Ginzburg for a plasma medium [8, 9]. In spite of the
fact that the general ideas of electromagnetic field
energy description were formulated many years ago it
was not yet applied to the case of absorptive medium
with spatial dispersion.

 The purpose of the present contribution is to derive a 
general relation for the energy of electromagnetic 
perturbation in the medium with temporal and spatial 
dispersion outside the transparency domain. 

1. BASIC SET OF EQUATIONS AND
STATEMENT OF THE PROBLEM

     We start from the Maxwell equations for the 
electromagnetic field in a medium in the form that is 
often used in the plasma theory [3, 4, 20, 21]  
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where ( , )iJ tr  is the total induced current that includes 

all kinds of responses and can be expressed in terms of 

the conductivity tensor ( , ; )ij t tσ ′ ′−r r  [21] 
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     We need also equations describing the interaction of 
electromagnetic fields with the medium. In what follows 
we illustrate the possibility to calculate the energy of 
electromagnetic perturbation using a plasma-like 
medium. So, we supplement Eqs. (1), (2) with the 
kinetic equation for plasma particles 
 

{ }ext
( , ) ( , ) ·

e e
t t

t m m c

α α

α α

∂ ∂ ∂
+ + + + ×

∂ ∂ ∂

 
  

v
v F E r B r

r v
 

· ( , , ) I , f tα α=r v (4) 

where ( , , )f tα r v  is the distribution function of particles 

of α  species, Iα  is the collision term, extF  is the 

external force field, if present, other notation is 
traditional. 

Eq. (4) is valid in the case of classical plasma-like 
medium. The appropriate calculations for the case of a 
combined plasma-molecular medium can be performed 
using the model of bound particles (see, for instance, 
Refs. [10, 11, 16-18]). Quantum description of both 
plasma and plasma-molecular systems is also possible 
[17, 19]. However, since the formulation of the general 
approach does not require the explicit form of the 
response function (except for the calculation of specific 
examples) as is shown below we need to know only the 
general relation between the induced macroscopic 
currents ( , )tJ r  and the self-consistent electric field 

( , )tE r  given by Eq. (2). 

Using Eqs. (1) we obtain the well-known equation 
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that reduces to the Pointing equation in the case of a 
nondispersive medium. It can be also used to calculate 
the energy Wω  of the quasi-monochromatic field in the 

case of a weakly absorbing homogeneous medium [3, 
10, 13], to recover the well-known Brillouin formula [1, 
6, 7]. 

In order to obtain the general relations we derive an 
equation for the energy balance that takes into account 
the particle energy explicitly [8-10]. To do this it is 
necessary to multiply the kinetic equation (4) by 

2 / 2n m vα α  ( nα  is the density of particles of α  species) 

and to integrate over the velocity v . The result is 
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and combine Eqs. (6), (7) with Eq. (5).  
Thus we obtain an equation for the energy balance [8-
10] 
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where the terms responsible for the particle energy and 
energy flux are present in the explicit form. We see that 
there is no need to extract the particle energy term from 
the quantity )( / t∂ ∂E D  as it is done in the case of a 

weakly absorptive medium [3, 10]. 

2. ENERGY DENSITY OF THE 
ELECTROMAGNETIC FIELD 

PERTURBATION WITH REGARD TO THE 
PARTICLE ENERGY ACQUIRED UNDER 

THE ACTION OF THE FIELD 

     In the zero-order approximation on the gas-dynamic 
parameter ( / 1l L ≪ , where l is the mean free path, L is 
the size of the system) the solution of the kinetic 
equation (4) may be written in the form of the local 
Maxwellian distribution [17] 
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Within such an approximation we can present the full 
energy density as given by 

  ,F T KW W W W= + +  (11) 

where the field FW , thermal TW  and kinetic TW  

energies respectively are given by 
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Since TW  is the heat produced by the perturbation we 

can treat the energy associated with the electromagnetic 
field as the sum of FW  and KW . 

Restricting ourselves by the second order 
approximation in the perturbation, we can rewrite the 
part of energy KW  as 
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Here ( , )J tα r  is the partial contribution of the particle of 

α  species to the induced current ( , ) ( , )J t J tαα
=∑r r . 

It should be noted that Eq. (13) directly follows from 
the transparent physical reasoning: the kinetic energy 
acquired by particles under the action of the 
electromagnetic field can be directly expressed in terms 
of the averaged induced velocity. Namely this approach 
was used to estimate the energy density of particles in 
the case of cold plasmas [10, 13]. However, as is seen 
Eq. (13) does not require such restrictions. 

The generalization of the results obtained in [10, 12, 
13] can be achieved using the relation between the 
induced current and the electric field (2). In terms of the 
generalized dielectric polarizability 
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where 2 24 /p e n mα α α αω π= . 

This is the general relation for a plasma-like 
medium.  

It should be noted that Eq. (13) can be also used to 
estimate the kinetic energy of bound electrons in atoms 
and molecules. However, in this case the energy of 
electromagnetic perturbation contains along with the 
kinetic energy of electrons also the potential energy of 
bound electrons in the fields of ions with which they are 
bound. In the case of the classical model of the atom-
oscillator [10-15] such energy can be estimated as 
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terms of the induced current of the bound electrons.  
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where ( ) ( , )m
ijχ ωk  in the case of the classical model of 

an atom-oscillator is given by [18] 
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0 ( )mf v  is the distribution function of bound particles 

(atoms, or molecules), be  and bm  are the effective 

charge and the reduced mass of a bound electron. 
So, in the case of a plasma-molecular system the 

energy of a perturbation may be written as 
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This equation remains valid in the case of quantum 
description provided the polarizabilities 

( ) ( , )ij
αχ ωk ( , , )e i mα = ) are calculated appropriately 

(see, for example, Ref. [17,19,20,22]). 
 In the case of the monochromatic field 
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spatial dispersion is reduced to  
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Using (18), (19) it is easy to recover the results obtained 
in Refs. [10,11] for the electric field energy density 
outside the transparency domain. For example, in the 
case of a cold molecular system 
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In the case of a cold plasma 
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where eν  is the effective collision frequency, that gives 
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Eqs. (21) and (23) are in agreement with the well-
known Brillouin formulas only in the case of non-
dissipative systems ( 0γ =  and 0ν = ). 

3. ENERGY DENSITY OF THE 
ELECTROMAGNETIC FIELD 

FLUCTUATIONS  

    Within the context of the theory of electromagnetic 
fluctuations it is easy to show that Eq. (17) may be also 
applied to the description of the energy density of 
fluctuations. The statistical averaging of Eq. (17) yields 
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When deriving Eq. (24) we take into account that 
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 In the case of an equilibrium system i jE E ωδ δ〈 〉k  is 

given by the fluctuation dissipation theorem (see, for 
example, [3,4]) 
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Further simplification of (24) can be done in the case of 
an isotropic system for which 
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where T ( , )ε ωk  and L ( , )ε ωk  are the transverse and 

longitudinal parts of the dielectric permittivity tensor. 
 Substituting (25) into (24) yields 
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where for the general case of the non-transparent 
medium we have 
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that describes the contribution of both longitudinal and 
transverse electromagnetic fields. 

In the case of negligible dissipation we can use the 
approximation of the type 
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In the case of cold plasma for ω ν≫  we have 
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     This relation is in agreement with the well-known 
result for the energy density in the dispersive 
transparent medium [23] and reproduces the energy 
density for transparent plasmas [24]. 
 In the case of a molecular medium ( 0γ → ) 
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For 0ω ω≫  we come back to the equation of the type 

(27). 
 For 0ω ω≪  the frequency dispersion can be 

neglected, and we obtain the result for nondispersive 
transparent medium [23] 
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 In the general case Eq. (27) may be rewritten in the 
form of the Planck formula modified by the presence of 
the medium, i.e., 
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 It should be noted that Eq. (8) gives also an explicit 
presentation of the energy flux in terms of the 
contributions of electromagnetic field and particle 



 

78  ISSN 1562-6016. ВАНТ. 2018. №6(118) 

components. In particular, the field part of the flux will 
be described by the term 
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that in the case of an isotropic system leads to the 
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CONCLUSIONS  

Thus, in the present contribution we derive the general 
relations for the electromagnetic-field energy density in 
an absorptive medium with temporal and spatial 
dispersion. The treatment is based on the assumption 
that the energy density of an electromagnetic 
perturbation contains both the electromagnetic field 
energy and the particle energy acquired in the 
perturbation field. The results obtained provide a 
possibility to generalize the Planck law and the 
Kirchhoff law to the case of an absorptive dispersive 
medium. The detailed description of both effects in 
specific media will be a matter of further research. 
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ЭНЕРГИЯ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ И ИНТЕНСИВНОСТЬ ИЗЛУЧЕНИЯ В СРЕДЕ  
С ВРЕМЕННОЙ И ПРОСТРАНСТВЕННОЙ ДИСПЕРСИЯМИ ВНЕ ОБЛАСТИ ПРОЗРАЧНОСТИ 

С.А. Тригер, А.Г. Загородний 

     Рассчитаны энергии электромагнитного поля в среде с временной и пространственной дисперсиями вне 
области прозрачности. Показано, что в общем случае вклад энергии частиц среды в энергию электромагнитного 
возмущения описывается в терминах билинейных комбинаций диэлектрической поляризуемости среды. Найден 
явный вид такого вклада. Полученные результаты использованы для обобщения закона Планка и закона 
Кирхгофа для поглощающей среды с пространственной дисперсией. 

ЕНЕРГІЯ ЕЛЕКТРОМАГНІТНОГО ПОЛЯ ТА ІНТЕНСИВНІСТЬ ВИПРОМІНЮВАННЯ  
В СЕРЕДОВИЩІ З ЧАСОВОЮ І ПРОСТОРОВОЮ ДИСПЕРСІЯМИ ПОЗА ОБЛАСТЮ ПРОЗОРОСТІ 

С.О. Трігер, А.Г. Загородній 

     Розраховано енергію електромагнітного поля в середовищі з часовою та просторовою дисперсіями поза 
областю прозорості. Показано, що в загальному випадку внесок енергії частинок середовища в енергію 
електромагнітного збурення описується в термінах білінійних комбінацій діелектричної поляризованості  
середовища. Знайдено явний вигляд такого внеску. Отримані результати використано для узагальнення закону 
Планка і закону Кірхгофа для поглинального середовища з просторовою дисперсією.  


