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Abstract. We introduce noncommutative phase spaces by minimal couplings (usual one,
dual one and their mixing). We then realize some of them as coadjoint orbits of the aniso-
tropic Newton–Hooke groups in two- and three-dimensional spaces. Through these con-
structions the positions and the momenta of the phase spaces do not commute due to the
presence of a magnetic field and a dual magnetic field.
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1 Introduction

Noncommutative phase spaces provide mathematical backgrounds for the study of magnetic
fields in physics. Noncommutativity appeared in nonrelativistic mechanics first in the work of
Peierls [14] on the diamagnetism of conduction electrons. In relativistic quantum mechanics,
noncommutativity was first examined in 1947 by Snyder [16]. During the last 15 years, non-
commutative mechanics has been an important subject which attracted quite a lot of attention
(see, e.g., [3, 4, 5, 6, 9, 19]).

Noncommutative phase space is defined as a space on which coordinates satisfy the commu-
tation relations:

{qi, qj} = Gij , {qi, pj} = δij , {pi, pj} = Fij ,

where δij is a unit matrix, whereas Gij and Fij are functions of positions and momenta. The

physical dimensions of Gij and Fij are respectively M−1T and MT−1, where M represents
a mass while T represents a time.

The aim of this paper is to introduce the construction of noncommutative spaces by using
different minimal couplings and the realization of some of them as coadjoint orbits [10, 11, 17].
The maximal coadjoint orbits of the anisotropic Newton–Hooke groups in two dimensions and
in three dimensions are shown to be models of noncommutative spaces.

The paper is organized as follows. In Section 2 noncommutative phase spaces are introduced
by generalizing the usual Hamiltonian equations to the cases where a magnetic field and a dual
magnetic field are present. Section 3 is devoted to the study of planar mechanics in the following
three situations:

• when a massive charged particle is in an electromagnetic field,
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• when a massless spring is in a dual magnetic field,

• when a pendulum is in an electromagnetic field and in a dual one.

It is shown in this paper that under the presence of these fields

• the massive charged particle acquires an oscillatory motion with a certain frequency,

• the massless spring acquires a mass,

• the pendulum appears like two synchronized oscillators.

The second and third results mentioned above are quite new. In Section 4 we construct, for the
first time, the coadjoint orbits of the anisotropic Newton–Hooke groups in dimension two and
dimension three. Then, we obtain noncommutative phase spaces in presence of a magnetic field
and a dual magnetic field.

2 Noncommutative phase spaces

In this paragraph we recall Hamiltonian mechanics in both Darboux’s coordinates (Section 2.1)
and noncommutative coordinates (Section 2.2), the noncommutativity coming from the presen-
ce of two fields Fij and Gij . We will distinguish three cases of noncommutative coordinates
corresponding to the presence of the magnetic field only, of the dual magnetic field only and of
the both fields simultaneously.

2.1 Commutative coordinates

It is known that a symplectic manifold is a 2n-dimensional manifold equipped with a closed
nondegenerate 2-form σ. If σab are the matrix elements of the matrix representing the symplectic
form σ and if σab are solutions of σbcσ

ca = δab , then a Poisson bracket of two functions f and g
belonging to C∞(V,R) is given by

{f, g} = σab
∂f

∂za
∂g

∂zb
. (1)

The space C∞(V,R) endowed with the Poisson bracket given by (1) is an infinite Lie algebra [1].
If za = (pi, q

i) are the canonical coordinates (Darboux’s coordinates) on V , the symplectic
form on V is σ = dpi ∧ dqi, that means there is no coupling to a gauge field, and the Poisson
bracket (1) becomes

{f, g} =
∂f

∂pi

∂g

∂qi
− ∂f

∂qi
∂g

∂pi
.

It follows that

{pk, pi} = 0, {pk, qi} = δik, {qk, qi} = 0.

That means the momenta pi as well as the positions qi are commutative.
It is also known that if Xf is the Hamiltonian vector field associated to f , then Xf (g) = {f, g}

and the evolution equations under the flow Φexp(sXf ) on V generated by Xf are

dza

ds
= Xf (za),

which are exactly the usual Hamiltonian equations when f is the energy.
Let us now introduce noncommutative coordinates by coupling the momentum pi with a mag-

netic potential Ai and the position qi with a potential A∗i.
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2.2 Noncommutative coordinates

Let us consider the change of coordinates

πi = pi −
1

2
Fikq

k, xi = qi − 1

2
pkG

ki. (2)

The matrix form of (2) is(
πi
xi

)
=

(
δki −1

2Fik

−1
2G

ik δik

)(
pk
qk

)
.

As (
δki −1

2Fik

−1
2G

ik δik

)
=

(
δji −1

2Fij

0ij δij

)(
δsj − 1

4FjmG
ms 0js

0js δjs

)(
δks 0sk

−1
2G

sk δsk

)
,

the transformation (2) is a change of coordinates if det
(
δsj − 1

4FjmG
ms
)
6= 0. It follows that [20,

equation (5)]

{πi, πk} = Fik, {πi, xk} = δki , {xi, xk} = Gik, (3)

i.e. the new momenta as well as the new configuration coordinates are noncommutative. The
Jacobi identity implies that the Fij ’s depend only on positions, that the Gij ’s depend only on
momenta and that the two 2-forms σ1 = Fij(x)dxi ∧ dxj and σ2 = Gij(π)dπi ∧ dπj are closed.

Let the Poisson brackets of two functions f , g in the new coordinates be given by

{f, g}new =
∂f

∂πi

∂g

∂xi
− ∂f

∂xi
∂g

∂πi
= Yf (g).

It follows that

YH = XH +Gij
∂H

∂qi
∂

∂qj
+ Fij

∂H

∂pi

∂

∂pj
.

The derivative of any function f with respect to time t, in terms of F and G, is then given by

df

dt
= XH(f) +Gij

∂H

∂qi
∂f

∂qj
+ Fij

∂H

∂pi

∂f

∂pj
, (4)

and the equations of motion are then given by

dqk

dt
=
∂H

∂pk
+Gki

∂H

∂qi
,

dpk
dt

= −∂H
∂qk

+ Fik
∂H

∂pi
.

If for example

H =
δijpipj

2m
+ V

is the Hamiltonian with the potential energy V depending only on the configuration coordina-
tes qi, the equations of motion are then

dqk

dt
=
pk

m
+Gki

∂V

∂qi
,

dpk
dt

= − ∂V
∂qk

+ Fik
pi

m
.

They are equivalent to the modified Newton’s second law [5, 15, 20]

m
d2qk

dt2
= − ∂V

∂qk
+ Fik

pi

m
+mGki

d

dt

(
∂V

∂qi

)
.

This means that the noncommutativity of the momenta implies that the particle is accelerated
and is not free even if the potential V vanishes identically.
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3 Couplings in planar mechanics

In this section we construct explicitly these noncommutative phase spaces by introducing cou-
plings. We start with the usual coupling of momentum with a magnetic potential. Then, we
introduce the coupling of position with a dual potential and finish with a mixing model.

3.1 Coupling of momentum with a magnetic field

3.1.1 Commutative coordinates

Consider a four-dimensional phase space (a cotangent space to a plane) equipped with the Dar-
boux’s coordinates (pi, q

i). This means that the momenta as well as the positions commute.
Consider also an electron with mass m and an electric charge e, moving on a plane with the
electromagnetic potential Aµ =

(
Ai = −1

2Bεikq
k, φ = Eiq

i
)

where a symmetric gauge has been

chosen, ~E being an electric field while ~B is a magnetic field perpendicular to the plane. It is
known that the dynamics of the particle is governed by the Hamiltonian

H =
~p 2

2m
− eφ (5)

and that the equation of motion is

m
d2~q

dt2
= e ~E,

where the right hand side is the electric force.

3.1.2 Noncommutative coordinates

From the classical electromagnetism, it is known that the coupling of the momentum with the
magnetic potential is given by the relations

πi = pi +
eB

2
εikq

k, xi = qi. (6)

The coordinates πi and xi are such that

{xi, xk} = 0, {πi, xk} = δki , {πi, πk} = −eBεik.

In the presence of an electromagnetic field, the momenta are noncommutative while the positions
are commutative. Using the equation (3), we have

Fij = −eBεij , Gij = 0ij . (7)

Use of (5) and (7) into (4) gives rise the equations of motion

m
d2~q

dt2
= e

(
~E +

~p

m
× ~B

)
, (8)

where the right hand side represents the Lorentz force. Moreover, in noncommutative coordi-
nates, the Hamiltonian (5) becomes

H =
~π 2

2m
− e ~E · ~x+

mω2~x 2

2
+ ~ω · ~L,
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where ω is the cyclotron frequency, ~L = ~x× ~p is the orbital angular momentum and

~ω =
eB

2m
~n

with ~n the unit vector in the direction perpendicular to the plane. In the presence of a magnetic
field, the massive particle has become an oscillator with frequency ω given above and then the
equation of motion is

m
d2~x

dt2
= e

(
~E +

~π

m
× ~B

)
, (9)

where we recognize again the Lorentz force ~fLorentz = e ~E + e ~πm × ~B. Note that the relations (8)
and (9) have the same form. The Newton’s equations are then covariant under the coupling (6).

In the next two subsections, we present quite new theories associated with an unusual coupling
of position with a dual magnetic field.

3.2 Coupling of position with a dual field

3.2.1 Commutative coordinates

Consider a massless spring with k as a Hooke’s constant and a dual charge e∗ in a dual magnetic
field B∗. Suppose that the dynamics of the spring is governed by the Hamiltonian

H = k
~q 2

2
− e∗~p · ~E∗, (10)

where we have used the symmetric gauge. Moreover the analogue of the Newton’s second
equation is

1

k

d2~p

dt2
= e∗ ~E∗,

where d2~p
dt2

is a yank, i.e. the second derivatives of momentum with respect to the time variable t,

e∗ ~E∗ is a velocity while e ~E is a force as in the previous subsection.

3.2.2 Noncommutative coordinates

Let us consider the coupling of the position with the dual potential A∗i depending on the
momenta pi,

πi = pi, xi = qi +
e∗B∗

2
pkε

ki. (11)

In this case, the Poisson brackets become

{xi, xj} = −e∗B∗εij , {pk, xi} = δik, {pk, pi} = 0.

Therefore, in the presence of the dual field, positions do not commute while the momenta
commute. Then

Fij = oij , Gij = −e∗B∗εij . (12)

Use (10) and (12) into (4) gives rise to the Newton’s analogue equations are then

1

k

d2~p

dt2
= e∗ ~E∗ + e∗k~q × ~B∗, (13)
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the right hand side being a velocity. In noncommutative coordinates the Hamiltonian is

H =
k~x 2

2
− e∗~π · ~E∗ +

~π 2

2ms
− ~ω · ~L,

where the spring mass ms is defined by

1

ms
= k

e∗2B∗2

4
,

while the vector ~ω is given by

~ω = k
e∗B∗

2
~n.

The Hooke’s constant k can be written as

k = msω
2. (14)

In the presence of the dual field, the spring then acquires a mass ms and the equations of motion
are given by

1

k

d2~π

dt2
= e∗ ~E∗ + e∗k~x× ~B∗. (15)

The vector ~f∗ = e∗( ~E∗+k~x× ~B∗) can be considered as a dual Lorentz force with the dimension
of velocity. It represents for the spring what the Lorentz force represents for a charged particle.
Here also the coupling (11) preserves the covariance of the Newton’s analogue equations. Com-
paring (13) and (15) and using (14) into (15) we can conclude that e∗ω2( ~E∗+k~x× ~B∗) is a kind
of jerk [13].

3.2.3 Coupling with a magnetic field and with a dual f ield

Now consider the case of a massive pendulum with mass m and Hooke’s constant k under
the action of an electromagnetic potential Aµ = (Ai, φ) and a dual electromagnetic potential

A∗µ = (A∗i , φ
∗) with Ai = −1

2Bεikq
k, φ = Eiq

i, A∗i = −1
2B
∗pkεki and φ∗ = piE

∗
i , where ~E is an

electric field and ~E∗ its dual field while ~B is a magnetic field and ~B∗ its dual field.
The corresponding motion is governed by the Hamiltonian

H =
~p 2

2m
+
k~q 2

2
− eφ− e∗φ∗.

Let

xi = qi +
e∗B∗

2
pkε

ki, πi = pi +
eB

2
εikq

k

be the minimal coupling in the symmetric gauge; that is

Gij = −e∗B∗εij , Fij = −eBεij .

We assume that the cyclotron frequency acquired by the massive charged particle is equal to
the frequency of the massless spring:

eB

2
= mω,

e∗B∗

2
=

1

msω
,
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where ms is the acquired mass by the spring while

µ =
m ·ms

m+ms

is the reduced mass of the two synchronized massive oscillators. It follows that

{xi, xj} = −e∗B∗εij , {πk, xi} = γδik, {πk, πi} = −eBεki (16)

with γ = 1 + m
ms

and m = µγ.
In the presence of the two kind of field, the positions as well as the momenta do not commute.

The Hamiltonian in noncommutative coordinates is written as

H =
~π 2

2µ
+
Mω2~x 2

2
− eφ− e∗φ∗,

where M = m+ms is the total mass, φ = ~E · ~x+ ~n · ~E × ~π
msω

and φ∗ = ~π · ~E∗ + ~n ·mω~x× ~E∗.
Note that M = msγ.

The motion’s equations in noncommutative coordinates are then

d~x

dt
=
~π

µ
+ e∗

[
γ ~E∗ + k~x× ~B∗ − e ~B∗ × ~E

]
,

d~π

dt
= −kγ~x+ e

[
γ ~E +

~π

m
× ~B − e∗ ~B × ~E∗

]
,

where the Hooke’s constant k is given by (14).
If the mass m of the particle is very smaller than the mass ms acquired by the spring, i.e.

m� ms, then γ becomes 1 and µ = m�M = ms. In that limit, the brackets (16) become

{xi, xj} = −e∗B∗εij , {πk, xi} = δik, {πk, πi} = −eBεki,

the Hamiltonian becomes

H =
~π 2

2m
+
msω

2~x 2

2
− e

[
~E · ~x+ ~n · ~E × ~π

msω

]
− e∗

[
~π · ~E∗ + ~n ·mω~x× ~E∗

]
and the equations of motion are given by

d~x

dt
=
~π

m
+ e∗

[
~E∗ + k~x× ~B∗ − e ~B∗ × ~E

]
,

d~π

dt
= −k~x+ e

[
~E +

~π

m
× ~B − e∗ ~B × ~E∗

]
.

The velocity ee∗ ~B∗ × ~E and the force ee∗ ~E∗ × ~B result from the coexistence of the two fields.

4 Noncommutative phase spaces as coadjoint orbits
of anisotropic Newton–Hooke groups

It is well known that the dual of a Lie algebra has a natural Poisson structure whose symplectic
leaves are the coadjoint orbits. These orbits will provide naturally noncommutative phase spaces.

In this section, we use orbit construction to realize noncommutative phase spaces on the ani-
sotropic Newton–Hooke groups in two- and three-dimensional spaces, the anisotropic Newton–
Hooke groups ANH± being Newton–Hooke groups NH± without the rotation parameters [2].
Their Lie algebras have the structures

[Ki, E] = Pi, [Pi, E] = ±ω2Ki, i = 1, 2, . . . , n,
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where

~K =
∂

∂~v
, ~P =

∂

∂~x
, E =

∂

∂t
+ ~v · ∂

∂~x
± ω2~x · ∂

∂~v
.

Standard methods [8, 10, 11, 12] show that the structure of the central extensions of the Lie
algebras ANH± is

• in one-dimensional space

[K,E] = P, [P,E] = ±ω2K, [K,P ] = M,

• in two-dimensional spaces

[Ki,Kj ] =
1

c2
J3εij , [Ki, E] = Pi, [Ki, Pj ] = Mδij ,

[Pi, Pj ] = ± 1

r2
J3εij , [Pi, E] = ±ω2Ki,

• in three-dimensional spaces

[Ki,Kj ] =
1

c2
Jkε

k
ij , [Ki, E] = Pi, [Ki, Pj ] = Mδij ,

[Pi, Pj ] = ± 1

r2
Jkε

k
ij , [Pi, E] = ±ω2Ki,

where r is a constant with the dimension of length, c is a constant with the dimension of speed
while Jk is a rotation parameter around the kth axis.

4.1 One-dimensional space case

In this case m is a trivial invariant. The other invariant, the solution of the Kirillov’s system, is

U = e− p2

2m
± mω2q2

2
,

where q = k
m . We denote the two-dimensional orbit by O(m,U). It is not interesting for our

study because there are one momentum and one position. Note that the symplectic realizations
of ANH− and ANH+ are respectively given by

L(v,x,t)(p, q) =
(
p cos(ωt)−mωq sin(ωt)−mv cos(ωt),

p

mω
sin(ωt) + (q + x) cos(ωt)− v

ω
sin(ωt)

)
and

L(v,x,t)(p, q) =
(
p cosh(ωt) +mωq sinh(ωt)−m(v cosh(ωt)− ωx sinh(ωt)),

p

mω
sinh(ωt) + (q + x) cosh(ωt)− v

ω
sinh(ωt)

)
.

Let (p(t), q(t)) = L(0,0,t)(p, q), it follows that

p(t) = p cos(ωt)−mωq sin(ωt), q(t) =
p

mω
sin(ωt) + q cos(ωt)
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for ANH− and

p(t) = p cosh(ωt) +mωq sinh(ωt), q(t) =
p

mω
sinh(ωt) + q cosh(ωt)

for ANH+. The equations of motion are then given by

dp

dt
= ±mω2q,

dq

dt
=

p

m

for ANH± or equivalently d2q
dt2

= ±ω2q; which is a second order differential equation whose
solutions are trigonometric functions for ANH− case and hyperbolic ones in ANH+ case. It is
for this reason that ANH− describes a universe in oscillation while ANH+ describes a universe
in expansion.

4.2 Two-dimensional spaces case

Let mM∗ + hJ∗3 + kiK
∗i + piP

∗i + eE∗ be the general element of the dual of the central
extended Lie algebra. Then m and h are trivial invariants under the coadjoint action of ANH±
in two-dimensional spaces. The other invariant, the solution of the Kirillov’s system, is explicitly
given by

U = e− ~p 2

2µe
± µeω

2~q 2

2

with

µe = m± h

ωr2
, ~q =

~k

µe
, (17)

where hω0 = mc2 denotes the wave-particle duality, µe is an effective mass. The restriction of
the Kirillov’s matrix on the orbit is given by

Ω =


0 h

c2
m 0

− h
c2

0 0 m

−m 0 0 ± h
r2

0 −m ∓ h
r2

0

 .

By using relations (17), the duality wave-particle and the equality c = ωr, we obtain that the
Poisson brackets of two functions defined on the orbit are given by

{H, f} =
∂H

∂pi

∂f

∂qi
− ∂H

∂qi
∂f

∂pi
+Gij

∂H

∂qi
∂f

∂qj
+ Fij

∂H

∂pi

∂f

∂pj
, i, j = 1, 2

with

Gij = − εij

mω0
, Fij = −(m− µe)ωεij .

It follows that the magnetic field B and its dual field B∗ are such that

e∗B∗ =
1

mω0
, eB = (m− µe)ω.

The effective mass is then given in terms of the magnetic field as

µe = m− eB

ω
.
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The Hamilton’s equations are then

dπi
dt

= −∂H
∂qi
± (m− µe)ωεik

∂H

∂pk
,

dxi

dt
=
∂H

∂pi
+

εik

2mω0

∂H

∂qk
.

The inverse of Ω is

Ω−1 =


0 ± ω

µe
− 1
µe

0

∓ ω
µe

0 0 − 1
µe

1
µe

0 0 1
µeω0

0 1
µe

− 1
µeω0

0

 ,

where we have used the wave-particle duality and (17). Finally the orbit is equipped with the
symplectic form

σ = dpi ∧ dqi +
1

µeω0
εijdpi ∧ dpj ± µeωεijdqi ∧ dqj .

We observe that with the anisotropic Newton–Hooke group in two-dimensional spaces, the ob-
tained phase spaces are completely noncommutative while the phase space obtained with the
Galilei group in [3] is only partially noncommutative. This is due to the difference in the struc-
ture of their extended Lie algebras. In the Newton–Hooke case space translations as well pure
Newton–Hooke transformations do not commute while only pure Galilei transformations do not
commute in the Galilei case. Note that the nontrivial Lie brackets of the extended Newton–
Hooke Lie algebra in two-dimensional space are given by

[J,Ki] = Kjε
j
i , [J, Pi] = Pjε

j
i ,

[Ki, Pj ] = Mδij , [Ki, E] = Pi, [Pi, E] = ω2Ki,

which means that the generators of space translations as well as pure Newton–Hooke transfor-
mations commute. One can not then associate a noncommutative phase space to the Newton–
Hooke group. It is then the absence of the symmetry rotations (anisotropy of the plane) which
guaranties the noncommutative phase space for the anisotropic Newton–Hooke group.

4.3 Three-dimensional spaces case

Let mM∗ + hiJ
∗i + kiK

∗i + piP
∗i + eE∗, i = 1, 2, 3 be the general element of the dual of the

central extended Lie algebra. Then m and hi are trivial invariants under the coadjoint action of
ANH± in three-dimensional spaces. We need another invariant. As we can verify, the Kirillov’s
form, in the basis (Ki, Pi, E), is given by

Bαβ =


hkε

k
ij

c2
mδij pi

−mδij ±
hkε

k
ij

r2
±ω2ki

pj ∓ω2kj 0

 .

The other invariant which is a solution of the Kirillov’s system is

U = e−
pipj

(
Φ−1±

)ij
2m

−
mω2qiqj

(
Φ−1±

)
ij

2
+ ω2piq

j
(
Φ−1± A

)i
j
,

where

Aij =
hkε

k
ij

mc2
, Φ± = I ± ω2A and qi =

ki
m
.
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We see that Φ± is a metric for R3. Let us denote the maximal coadjoint orbit by O
(m,~h,U)

. The

restriction of the Kirillov’s form on the orbit is then

Ω = m

(
Aij δji
−δij ±ω2Aij

)

and its inverse is

Ω−1 =
1

m

±ω2
(
AΦ−1±

)
ij

(
Φ−1±

)j
i

−
(
Φ−1±

)i
j

(
AΦ−1±

)ij
 .

The maximal orbit is then equipped with the symplectic structure

σ =
(
Φ−1±

)i
j
dpi ∧ dqj +

1

m

(
AΦ−1±

)ij
dpi ∧ dpj ±mω2

(
AΦ−1±

)
ij
dqi ∧ dqj

and it follows that the Poisson brackets of two functions defined on the orbit is then

{f, g} = (Φ−1± )ji

(
∂f

∂pi

∂g

∂qj
− ∂f

∂qi
∂g

∂pj

)
+ Fij

∂f

∂pi

∂g

∂pj
+Gij

∂f

∂qi
∂g

∂qj
.

This implies that

{pi, pj} = Fij , {pi, qj} =
(
Φ−1±

)j
i
, {qi, qj} = Gij ,

where the magnetic field Fij and the dual magnetic field Gij are given by

Fij = ±mω2
(
AΦ−1±

)
ij

and Gij =
1

m

(
AΦ−1±

)ij
.

Moreover the Hamilton’s equations are

dpk
dt

= −
(
Φ−1±

)i
k

∂H

∂qi
±mω2

(
AΦ−1±

)
ik

∂H

∂pi
,

dqk

dt
=
(
Φ−1±

)k
i

∂H

∂pi
+

1

m

(
AΦ−1±

)ik ∂H
∂qi

.

With the anisotropic Newton–Hooke groups ANH± in three-dimensional spaces, we also have
realized phase spaces where the momenta as well as the positions do not commute.

5 Conclusion

We know that we can introduce the classical electromagnetic interaction through the modified
symplectic form σ = dpi∧dqi+ 1

2Fijdq
i∧dqj [1, 7, 17]. This has been initiated by J.M. Souriau [17]

in the seventies. Recently many authors (see, e.g., [3, 4, 18, 19]) generalized this modification of
the symplectic form by introducing the so-called dual magnetic field such that σ = dpi ∧ dqi +
1
2Fijdq

i ∧ dqj + 1
2G

ijdpi ∧ dpj . The fields F and G are responsible of the noncommutativity
respectively of momenta and positions. In our paper we have introduced these fields firstly
by minimal coupling momenta with magnetic potentials (the usual one), secondly by minimal
coupling of positions with dual potentials and lastly by mixing the two couplings. We have also
realized phase spaces endowed with modified symplectic structures as coadjoint orbits of the
anisotropic Newton–Hooke groups in two and three-dimensional spaces. In all these cases, the
fields are constant because they are coming from central extensions of Lie algebras.
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