удк 544.77.023.5:544.18 КОЛИВАЛЬНА СПЕКТРОСКОПІЯ ФУЛЕРЕНОПОДІБНИХ МОЛЕКУЛ ДІОКСИДУ КРЕМНІЮ

О.В. Філоненко, В.В. Лобанов

Інститут хімії поверхні ім. О.О. Чуйка Національної академії наук України вул. Генерала Наумова 17, Київ, 03164, Україна

Методом функціоналу густини з гібридним обмінно-кореляційним функціоналом B3LYP і базисним набором 6-31G(d, p) розраховано інфрачервоні спектри фулереноподібних молекул $(SiO_2)_{20}(H_2O)_{10}$ і $(SiO_2)_{20}$ і раманівські спектри гідроксильованих молекул $(SiO_2)_N(H_2O)_{N/2}$ та виконано віднесення частот у відповідності з типом коливань.

Вступ

На сьогодні синтезовано велику кількість нанооб'єктів різноманітної морфології та хімічного складу, серед яких особливий інтерес викликають такі наноструктурні форми речовини, як нанотрубки та фулерени [1–3]. Проводять інтенсивні пошуки можливих їх аналогів для інших речовин, зокрема неорганічних, таких як SiO₂. Більшість форм діоксиду кремнію мають структуру нескінченної тривимірної сітки зв'язків Si–O, утворену кремній-кисневими тетраедрами, сполученими вершинами або ребрами за винятком молекулярних форм SiO₂, які існують у колоїдних та в силікатних розчинах у вигляді молекул кремнієвих кислот (від мономера до вищих олігомерів) та відповідних їм аніонів [4, 5]. Експериментально встановлено [6], що протягом перших годин золь-гель синтезу матеріалів на основі діоксиду кремнію у розчині утворюються різні олігомерні види, а саме димери, тримери, тетрамери, три- та чотиричленні кільця, октамерні комірки та інші олігомери більш складної структури. Структура олігомерів кремнієвих кислот (частинки розміром 1–2 нм) невідома.

Існування силоксанових сполук типу (RSiO_{1,5})_n, (R = H, CH₃; n = 8, 10, 12, ...) [7] так званих олігомерних сілсесквіоксанів не виключає можливості утворення сферичних пустотілих молекул полісилоксанів при поліконденсації кремнієвої кислоти. Експериментальні дані [8] щодо аніонного складу водних розчинів силікатів лужних металів, отримані методом спектроскопії ЯМР на ядрах ²⁹Si, який дозволяє визначити не тільки серед продуктів конденсації кремнієвої кислоти із ступінню полімеризації n = 8 – 10 існують атоми кремнію, до яких примикають три силоксанові зв'язки. Останнє свідчить про появу тримірних каркасних структур кубічної та призматичної форм, що також наводить на думку про можливість утворення в розчині каркасних сферичних молекул полісилоксанів більших розмірів. Однак однозначні докази їх існування відсутні і тому не досліджена їх можлива структура.

В роботах [9, 10] методом функціоналу густини з гібридним обмінно-кореляційним функціоналом B3LYP та базисним набором 6-31G (d, p) визначені структурні і енергетичні характеристики фулереноподібних молекул діоксиду кремнію (ФМДК) (SiO₂)_N і (SiO₂)_N(H₂O)_{N/2} та доведена їх відносна стійкість. Теоретично обґрунтована [11] можливість утворення фулереноподібних молекул кремнієвих кислот (SiO₂)_N(H₂O)_{N/2} як інтермедіатів при гідротермальному та золь-гель синтезі матеріалів з наперед заданими властивостями на основі діоксиду кремнію. Порівняння експериментально виміряних IЧ- та КР-спектрів олігомерів кремнієвих кислот з теоретично отриманими коливальними спектрами ФМДК може надати докази їх існування у водних розчинах з огляду на наявність у останніх структурних елементів молекул кремнієвих кислот.

Методи розрахунку

Частоти та типи коливань атомів розглянутих систем знаходили як власні значення та власні вектори мас-зваженого гесіану відповідно, отриманого в наближенні DFT/B3LYP/6-31G (d, p) в рамках пакету US GAMESS [12]. При розрахунку спектрів комбінаційного розсіювання (КР) застосовували модель континууму, що поляризується, для врахування впливу розчинника. Був задіяний коефіцієнт масштабування теоретично обчислених частот, який зазвичай використовується при розрахунках в гармонічному наближенні частот нормальних коливань в вище наведеному наближенні, величина якого дорівнює 0,96 [13].

Результати та їх обговорення

 $(SiO_2)_{20}(H_2O)_{10}$. Метод ІЧ-спектр молекули ІЧ-спектроскопії широко застосовують для дослідження систем на основі діоксиду кремнію [14]. Наявність характеристичних смуг для різних кремній-кисневих груп дозволяє провести їх Так. у тривимірних структурах поглинання Si-O ілентифікацію. зв'язків спостерігається в області частот (1050 – 1200 см⁻¹): у кристобаліту 1050 – 1200 см⁻¹, у кварцу 980 – 1200 см⁻¹, у кварцевого скла 1027 – 1195 см⁻¹. Для двомірних структур (шаруватих, кільцевих) і одновимірних у вигляді ланцюгів смуга валентних асиметричних коливань Si-O зв'язку розміщена в інтервалі 1000 – 1100 см⁻¹ [15].

У природі існують кристалічні модифікації кремнезему із поліедричними пустотами, каркаси яких тотожні каркасам кремнієвих кислот $(SiO_2)_{20}(H_2O)_{10}$, $(SiO_2)_{24}(H_2O)_{12}$, що є предметом даного дослідження, а саме мінерал природного походження меланофлогіт та штучно синтезований ZSM-39 (додекасил-3C). Дані сполуки належать до родини пентасилів – цеолітів. Їх структура, поряд з іншими елементами, формується і п'ятичленними кільцями, наявність яких встановлена за допомогою ІЧ-спектроскопії. Так, характеристичними для меланфлогіту є смуги при 1118 та 795 см⁻¹, які відповідають асиметричним та симетричним валентним коливанням зв'язків в містку Si–O–Si. Для ZSM-39 відповідні смуги знаходяться при 1090 і 790 см⁻¹ [16].

Для спектрів синтезованих нещодавно порожнистих багатостінних наносфер кремнезему із внутрішнім діаметром 290 нм характерна наявність декількох смуг поглинання, а саме тих, що відповідають деформаційним коливанням атомів в триатомному фрагменті Si–O–Si (пік при 470 см⁻¹) та валентним симетричниим коливанням атомів силоксанових зв'язків (796 см⁻¹). Смуга з максимумом біля 964 см⁻¹ обумовлена деформаційним коливанням атомів кута Si–O–H, а смуга при 1093 см⁻¹ – асиметричним валентним коливанням атомів зв'язку Si–OH [17, 18].

На рис. 1 представлено теоретично розрахований коливальний спектр молекули фулереноподібної кремнієвої кислоти $(SiO_2)_{20}(H_2O)_{10}$, каркас комірки якої утворений лише п'ятичленними кільцями та має структуру подібну до структури молекули фулерену C₂₀. Він містить інтенсивну смугу при 1141 см⁻¹, що відповідає асиметричним валентним коливанням атомів Si–O–Si зв'язків, та смугу невеликої інтенсивності при 796 см⁻¹, яка відноситься до симетричних коливань цих зв'язків. Вищенаведені частоти коливань ФМДК (SiO₂)₂₀(H₂O)₁₀ добре узгоджується із експериментально отриманими частотами для меланофлогіту та ZSM-39 [16], що свідчить про можливу наявність даних кислот у розчині. Їх можна розглядати як вторинні будівельні одиниці при синтезі вищезгаданих пентасилів.

Крім цього, в ІЧ-спектрі молекули $(SiO_2)_{20}(H_2O)_{10}$ проявляється широка смуга поглинання в інтервалі від 3600 до 4000 см⁻¹ з піками при 3776 та 3870 см⁻¹, обумовленими валентними коливаннями атомів О–Н зв'язків силанольної групи, атом водню якої задіяний у водневому зв'язку із атомом кисню сусідньої силанольної групи,

та валентними коливаннями атомів О–Н зв'язків вільної силанольної групи відповідно. Для ФМДК $(SiO_2)_{20}(H_2O)_{10}$ ці частоти дещо зміщені в сторону більших значень хвильового числа порівняно із відповідними значеннями для водневозв'язаних силанольних груп поверхні кремнезему (v₁ = 3510 та v₂ = 3715) [19], що можна пояснити впливом об'ємної фази в останньому випадку. В області 952 см⁻¹ знаходиться смуга поглинання віднесена до деформаційних коливань силанольної групи, частота яких мало відрізняється від частоти деформаційних коливань Si–O–H групи (964 см⁻¹), характерної для ІЧ-спектра порожнистих наносфер кремнезему великого діаметра, поверхня яких, як вважають автори [17, 18], вкрита гідроксильними групами.

Рис. 1. ІЧ-спектр молекули (SiO₂)₂₀(H₂O)₁₀.

Із наведених вище даних видно, що теоретично розрахований спектр молекули $(SiO_2)_{20}(H_2O)_{10}$ непогано узгоджується із експериментальним спектром порожнистих наносфер. На нашу думку, молекулу $(SiO_2)_{20}(H_2O)_{10}$ та її гомологи можна використовувати як моделі при дослідженні властивостей синтезованих порожнистих наносфер, які мають великий науковий та практичний інтерес [20], в першу чергу, як можливі контейнери для довготривалого зберігання та адресної доставки лікарських речовин.

ІЧ-спектр молекули (SiO₂)₂₀. Експериментальний спектр дегідратованої поверхні аморфного кремнезему та кремнеземних тонких плівок характеризується двома чіткими піками при 888 та 908 см⁻¹, які відносяться до коливань атомів двочленних кілець [21].

Теоретично розрахований коливальний спектр фулереноподібної молекули $(SiO_2)_{20}$ наведено на рис. 2. Найбільш інтенсивна смуга з максимумом поглинання при 1048 см⁻¹ обумовлена накладенням смуг, які відповідають валентним асиметричним коливанням триатомного фрагмента Si–O–Si та зміною кутів O–Si–O дисилоксанового містка. Нормальне коливання, яке відповідає піку в області 998 см⁻¹, в основному обумовлено деформаційними коливаннями дисилоксанових містків за участю атомів кисню, розміщених в середині молекули з невеликим внеском валентних асиметричних коливань зв'язків силоксанових містків. Поглинання при 979 см⁻¹ віднесено до валентних коливань зв'язків Si–O дисилоксанових містків та деформаційних коливань силоксанових містків. Дві чіткі смуги невеликої інтенсивності в діапазоні частот 830–910 см⁻¹ обумовлені деформаційними коливаннями атомів фрагмента Si–O–Si дисилоксанового містка за участю атома кисню, розміщеного зовні молекули, з невеликим внеском валентних бистків. Дві чіткі смуги невеликої інтенсивності в діапазоні частот 830–910 см⁻¹ обумовлені деформаційними коливаннями атомів фрагмента Si–O–Si дисилоксанового валентних за участю атома кисню, розміщеного зовні молекули, з невеликим внеском валентна Si–O–Si зв'язків (пік при

897 см⁻¹) та деформаційними коливаннями триатомного фрагмента Si–O–Si дисилоксанового містка з досить суттєвим внеском валентних асиметричних коливань зв'язків дисилоксанових містків (пік при 842 см⁻¹) відповідно. Дані піки спричинені в основному коливаннями циклічного фрагмента Si₂O₂, які зсунуті в довгохвильову область спектра в порівнянні із відповідними смугами в спектрах дегідратованого аморфного кремнезему. Тим не менше, вони потрапляють в область 800 – 900 см⁻¹, в якій наявні дві чіткі смуги і для циклодисилоксанових молекул [22].

Деформаційні коливання Si–O–Si за участю двох атомів кисню, що входять до складу дисилоксанових містків, викликають поглинання в області 763 см⁻¹. Смуга з максимумом при 499 см⁻¹ зумовлена симетричним виходом атомів кисню з площини дисилоксанових містків Si₂O₂.

Рис. 2. Коливальний спектр молекули (SiO₂)₂₀.

Для порівняння на рис. З наведено розрахований коливальний спектр кластера $Si_{10}O_{20}$, який містить дев'ять дисилоксанових містків та дві кінцеві Si=O групи. Цим кластером змодельовано w-кремнезем, розмір цього кластера обумовлений обмеженими комп'ютерними ресурсами. В ІЧ-спектрі кластера $Si_{10}O_{20}$ присутні три інтенсивні смуги поглинання. Слабкоінтенсивна смуга поглинання із максимумом при 989 см⁻¹ зумовлена в основному валентними асиметричними коливаннями атомів триатомних фрагментів Si–O–Si дисилоксанових містків з частковим внеском деформаційних коливань атомів кутів O–Si–O Si₂O₂ циклів. Поглинання з максимумом при 932 см⁻¹ викликане деформаційними коливаннями атомів триатомних фрагментів Si–O–Si дисилоксанових містків. Поглинання в області 850–900 см⁻¹ (пік при 879 см⁻¹) відноситься до нормального коливання, обумовленого зміщеннями атомів, які приймають участь у валентних асиметричних та деформаційних коливаннях O–Si–O зв'язків дисилоксанових містків. Пік з максимумом поглинання при 821 см⁻¹ віднесено до деформаційних коливань атомів триатомних O–Si–O ув'язків дисилоксанових містків.

Як бачимо, в області 800–900 см⁻¹ присутні два чіткі піки, шо відносяться до коливань атомів у двочленних кільцях.

КР-спектри олігомерів кремнієвих кислот. Спектроскопія комбінаційного розсіювання також використовується при дослідженні структури водних розчинів кремнезему та розчинів силікатів лужних металів, так званого рідкого скла [23, 24]. ІЧ-спектроскопію для вивчення водних розчинів не застосовують, оскільки вода

інтенсивно поглинає інфрачервоне випромінювання, в той час як комбінаційне розсіювання води є досить слабким. В експериментально виміряних КР-спектрах силікатів лужних металів при нормальних умовах наявні широкі піки, які належать мономерам (735–800 см⁻¹), олігомерам (475–650 см⁻¹) та відповідним їм аніонам, що переважають в лужних розчинах (850–1125 см⁻¹) [25].

Рис. 3. Просторова будова (*a*) та коливальний спектр (*б*) кластера Si₁₀O₂₀, який моделює w-кремнезем.

Тим не менше, однозначне віднесення експериментально отриманих окремих спектроскопічних смуг до конкретних коливальних мод є складною задачею, вирішенню якої можуть сприяти розраховані з допомогою неемпіричних методів типи та частоти коливань, що проявляються в КР-спектрах олігомерів розчинів кремнієвих кислот.

В літературі наявні експериментальні [23] та теоретично розраховані [25] дані щодо характеристичних смуг, які проявляються в КР-спектрах ортокремнієвої та дикремнієвої кислот. Ці кислоти розглянуто як реперні точки для підтвердження розрахунку. правильності обраної методики Також розраховані спектри тетракремнієвої та октакремнієвої кислот, молекули яких мають циклічну і коміркоподібну структури, присутність яких у розчинах лужних металів підтверджена експериментально [16], та молекули фулереноподібної кремнієвої кислоти стехіометричного складу $(SiO_2)_{20}(H_2O)_{10}$.

Найбільш інтенсивним в теоретично розрахованому КР-спектрі ортокремнієвої кислоти є пік при 755 см⁻¹ (рис. 4 *a*), що відповідає повносиметричним валентним коливанням Si–OH зв'язків, і досить непогано узгоджується із експериментально визначеною частотою цього коливання для водного розчину Si(OH)₄ (~ 785 см⁻¹).

Для димера (див. рис. 4 б) найбільш інтенсивною виявилась смуга в області 645 см⁻¹, яка також відноситься до повносиметричних валентних коливань усіх Si–O зв'язків молекули як силанольних, так і тих, що утворюють Si–O–Si містки. В інтервалах 820 – 930 см⁻¹ та 1000 – 1080 см⁻¹ проявляються смуги, викликані

повносиметричними деформаційними коливаннями атомів кутів Si–O–H, які не приводять до зміни дипольного моменту молекули (OH)₃SiOSi(OH)₃.

Рис. 4. Спектри комбінаційного розсіювання кремнієвих кислот: ортокремнієвої кислоти (*a*), дикремнієвої кислоти (*б*), циклічної тетракремнієвої кислоти (*в*), коміркоподібної октакремнієвої кислоти (*г*) та фулереноподібної кремнієвої кислоти (SiO₂)₂₀(H₂O)₁₀ (*d*).

Із КР-спектра циклічного тетрамера (рис. 4 *в*) видно, що найбільш інтенсивна смуга має пік при 616 см⁻¹. Вона відповідає накладенню повносиметричних деформаційних коливань атомів двох типів кутів Si–O–Si та Si–O–H. Пік з максимумом при 1102 см⁻¹ обумовлений деформаційними коливаннями атомів фрагментів Si–O–H водневозв'язаних силанольних груп. Деформаційні коливання атомів Si–O–H кутів вільних силанольних груп викликають появу смуг поглинання в області 850 – 1050 см⁻¹. Поглинання з максимумом інтенсивності при 499 см⁻¹ обумовлено торсійними

коливаннями водневозв'язаних груп Si–O–H та повносиметричними деформаційними коливаннями атомів Si–O–Si кутів чотиричленного циклу. В експериментальних КРспектрах термооброблених зразків кремнезему та кремнеземного скла смуга, яка проявляється в інтервалі 490–500 см⁻¹, віднесена саме до коливань атомів таких чотиричленних циклів [17, 18].

Для октакремнієвої кислоти, молекула якої має коміркоподібну структуру (рис. 4 c), інтенсивні смуги поглинання при 600 см⁻¹ зникають, попри наявність у чотиричленних циклів. вілповілній молекулі Найбільш інтенсивна смуга характеризується піком при 387 см⁻¹ і відповідає валентним повносиметричним коливанням усіх зв'язків Si–O в молекулі, чи, образно кажучи, "дихаючій" моді каркасу інтенсивності при 535 см⁻¹ молекули. Пік малої викликаний комірки повносиметричними деформаційними коливаннями триатомних фрагментів Si-O-Si. Згаданий пік не проявляються в ІЧ-спектрі тому, що це коливання не змінює дипольного моменту молекули. Деформаційні коливання атомів усіх Si-O-H груп обумовлюють поглинання при 738 см⁻¹. В діапазоні 900–960 см⁻¹ знаходяться смуги викликані деформаційним коливанням атомів Si-O-H кутів, які також не приводять до зміни дипольного моменту. Найбільш інтенсивна смуга з максимумом при 1000 см⁻¹ віднесена до повносиметричних валентних коливань атомів Si-O зв'язків.

В КР-спектрі фулереноподібної молекули $(SiO_2)_{20}(H_2O)_{10}$, який наведено на рис. 4 ∂ , найбільш інтенсивний пік поглинання при 552 см⁻¹ викликаний взаємодією торсійних коливань Si–O–H груп та деформаційних коливань Si–O–Si містків, спрямованих всередину молекули. Пік меншої інтенсивності в області більших довжин хвиль 411 см⁻¹ віднесено до колективних торсійних коливань атомів Si–O–H груп та деформаційних коливань Si–O–H та Si–O–Si містків, спрямованих назовні молекули. Деформаційні коливання Si–O–H та Si–O–Si зв'язків викликають поглинання в діапазоні 750 – 790 см⁻¹. В області 900 – 1100 см⁻¹ проявляються смуги, віднесені до деформаційних коливань водневозв'язаних силанольних груп.

Як видно з рис. 4, зі збільшенням ступеня полімеризації від n=2 до n=20, за винятком октакремнієвої комірки, відбувається зсув в довгохвильову область спектра смуги поглинання, обумовленої повносиметричними валентними коливаннями Si–O зв'язків, від 645 см⁻¹ для димеру до 552 см⁻¹ для ФМДК (SiO₂)₂₀(H₂O)₁₀.

Виділити внесок певного олігомерного типу в експериментальному спектрі в області $850 - 1150 \text{ см}^{-1}$ дуже важко, оскільки смуги окремих видів перекривають одна одну. Більш інформативною є область $300 - 700 \text{ см}^{-1}$, в якій ФМДК (SiO₂)₂₀(H₂O)₁₀ має характеристичну смугу з максимумом поглинання при 552 см⁻¹. Це, як очікується, може допомогти в подальшому експериментальному виявленні фулереноподібних молекул в розчинах кремнієвих кислот.

Висновки

Виконані розрахунки частот, типів та інтенсивностей нормальних коливань атомів молекули $(SiO_2)_{20}(H_2O)_{10}$ показали досить добре узгодження із експериментальним спектром порожнистих наносфер діоксиду кремнію, а також олігомерів кремнієвих кислот, молекули яких мають аналогічні структурні елементи. Тому молекула $(SiO_2)_{20}(H_2O)_{10}$ та її гомологи можуть бути придатними моделями для дослідження властивостей синтезованих порожнистих наносфер, які становлять певний науковий та практичний інтерес, в першу чергу, як можливі контейнери для довготривалого зберігання та адресної доставки молекул лікарських речовин.

Характеристичною в КР-спектрі фулереноподібної кремнієвої кислоти (SiO₂)₂₀(H₂O)₁₀ є смуга з максимумом поглинання при 552 см⁻¹.

Література

- Елецкий А.В., Смирнов Б.М. Фуллерены и структуры углерода // УФН. 1995. Т. 165, № 9. – С. 977–1009.
- Лозовик Ю.Е., Попов А.М. Образование и рост углеродных наноструктур фуллеренов, наночастиц, нанотрубок и конусов // УФН. – 1997. – Т. 167, № 7. – С. 751–774.
- 3. Елецкий А.В. Механические свойства углеродных наноструктур и материалов на их основе // УФН. 2007. Т. 177, № 3. С. 233–274.
- 4. Шабанова Н.А., Саркисов П.Д. Основы золь-гель технологии нанодисперсного кремнезема Москва.: Академкнига, 2004. 201 с.
- 5. Корнев В.И., Данилов В.В. Жидкое и растворимое стекло Санкт-Петербург: Стройиздат, 1996. 214 с.
- 6. Trinh T.T., Jansen A.P., Santen R.A. Effect of counter ions on the silica oligomerization reaction // Chem. Phys. Chem. 2009. V. 10, N 11. P. 1775–1782.
- Cheng W.-D., Xiang K.-H., Pandey R. Calculation of linear and nonlinear optical properties of H-Silsesquioxanes // J. Phys. Chem. B. – 2000. – V. 104, N 29 – P. 6737– 6742.
- 8. Knight T.G., Balec R.G., Kinrade S.D. The structure of silicate anions in aqueous alkaline solutions // Angew. Chem. Int. Ed. 2007. V. 46. P. 8148–8152.
- 9. Поліщук О.В. Лобанов В.В. Будова молекулярних форм кремнезему за результатами розрахунків методом функціоналу густини // Наносистеми, наноматеріали, нанотехнології. 2008. Т. 6, № 2, С. 417–423.
- Філоненко О.В. Лобанов В.В. Теоретичне дослідження фулереноподібних кремнеземних молекул і їх комплексів із C₆₀ // Фізика і хімія твердого тіла – 2011. – Т. 12, № 1. – С. 122–128.
- 11. Філоненко О.В. Лобанов В.В. Квантовохімічне дослідження утворення сферичних молекул діоксиду кремнію при полімеризації ортокремнієвої кислоти // Хімія, фізика та технологія поверхні. 2013 Т. 4, № 3. С. 260–265.
- 12. Schmidt M.W., Baldridge K.K., Boatz J.A. et al. General atomic and molecular electronic structure system // J. Comput. Chem. 1993. V. 14, N 11. P. 1347–1363.
- 13. Scott A.P., Radom L. Harmonic vibrational frequencies: an evaluation of Hartree-Fock, Moller-Plesset, Quadratic configuration interaction, density functional theory, and semiempirical scale factors // J. Phys. Chem. 1996. –V. 100, N 41. P. 16502–16513.
- 14. Лазарев А.Н., Миргородский А.П., Игнатьев И.С. Колебательные спектры сложных окислов. Силикаты и их аналоги. Л.: Наука, 1975. 296 с.
- 15. Брыков А.С. Силикатные растворы и их применение. Учебное пособие Санк-Петербург: СПбГТИ (ТУ), 2009. – 54с.
- 16. Jansen J.C., Gaag F.J., Bekkum H. Identefication of ZSM-type and other 5-ring containing zeolites by i.r. spectroscopy // Zeolites. 1984. V. 4. P. 369–372.
- He X., Yang W., Yuan L. et al. Fabrication of hollow polyelectrolyte nanospheres via surface-initiated atom transfer radical polymerization // Materials Lett. -2009. - V. 63. - P. 1138-1140.
- Guo X., Liu X., Xu B. et al. Synthesis and characterization of carbon sphere-silica coreshell structure and hollow silica spheres // Colloids and Surfaces A. – 2009. – V. 345. – P. 141–146.
- Bunker B.C., Haaland D.M., Michalske T.A. et al. Kinetics of dissociative chemisorption on strained edge-shared surface defects on dehydroxylated silica // Surf. Sci. - 1989. - V. 222. - P. 95 - 118.
- 20. Hentze H.-P., Raghavan S.R., McKelvey C.A. et al. Silica hollow spheres by templating of catanionic vesicles // Langmuir. 2003. V. 19, N 4. P. 1069–1074.

- 21. Ferrari A.M., Garrone E., Spoto G. et al. Reactions of silica strained rings: an experimental and ab-initio study // Surf. Sci. 1995. V. 323, N 1-2. P. 151–162.
- Ceresoli D., Bernasconi M., Iarlori S. et al. Two-membered silicon rings on the dehydroxylated surface of silica // Phys. Rev. Lett. - 2000. - V. 84, N 17. - P. 3887-3890.
- 23. Zotov N., Keppler H. In-situ Raman spectra of dissolved silica species in aqueous fluids to 900 degrees C and 14 kbar // Am. Mineral. 2000. V.85. P. 600–603.
- 24. Zotov N., Keppler H. Silica specification in aqueous fluids at high pressures and high temperatures // Chem. Geol. 2002. V.184. P. 71–82.
- Hunt J.D., Kavner A., Schauble E.A. et al. Polimerization of aqueous silica in H₂O-K₂O solution at 25-200 °C and 1 bar to 20 kbar // Chem. Geol. 2011. –V. 283. P. 161–170.
- 26. Knight T.G., Balec R.G., Kinrade S.D. The structure of silicate anions in aqueous alkaline solutions // Angew. Chem. Int. Ed. 2007. V. 46. P. 8148–8152.
- 27. Sitarz M., Mozgawa W., Handke M. Rings in the structure of silicate glasses // J. Molec. Struc. 1991. V. 511, 512. P. 281-285
- 28. Pasquarello A., Car R. Identification of Raman defect lines as signatures of ring structures in vitreous silica // Phys. Rev. Lett. 1998. V. 80, N 23. P. 5145-5147.

СПЕКТРОСКОПИЯ ФУЛЛЕРЕНОПОДОБНЫХ МОЛЕКУЛ ДИОКСИДА КРЕМНИЯ

О.В. Филоненко, В.В. Лобанов

Институт химии поверхности им. А.А. Чуйко Национальной академии наук Украины ул. Генерала Наумова, 17, Киев, 03164, Украина

Методом функционала плотности с гибридным обменно-корреляционным функционалом B3LYP и базисным набором 6-31G(d, p) рассчитаны инфракрасные спектры фуллереноподобных молекул $(SiO_2)_{20}(H_2O)_{10}$ и $(SiO_2)_{20}$, а также рамановские спектры гидроксилированых молекул $(SiO_2)_N(H_2O)_{N/2}$ и выполнено отнесение частот в соответствии с формой колебаний.

SPECTROSCOPY OF FULLERENE-LIKE MOLECULES OF SILICON DIOXIDE

O.V. Filonenko, V.V. Lobanov

Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine 17 General Naumov Str., Kyiv, 03164, Ukraine

The IR spectra of fullerene-like molecules $(SiO_2)_{20}(H_2O)_{10}$ and $(SiO_2)_{20}$ and Raman spectra of hydroxylated molecules $(SiO_2)_N(H_2O)_{N/2}$ have been calculated using density functional theory method (exchange-correlation functional B3LYP and basis set 6-31G (d, p)) and assignment of frequencies in conformity with the shape fluctuations have been executed.