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PERIODIC LAYERED DIELECTRIC 
V.I. Tkachenko1,2, I.V. Tkachenko1, A.P. Tolstoluzhsky1, S.N. Khizhnyak1 

1National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine; 
2V.N. Karazin Kharkiv National University, Kharkov, Ukraine 

The parametric Cherenkov radiation of a uniformly moving particle in an ideally conducting metal waveguide 
filled with a spatially periodic layered dielectric is investigated analytically and numerically for the case of wave-
lengths comparable with the inhomogeneity period. Fields and spectra of parametric Cherenkov radiation are de-
scribed. The particle's average energy losses on the period of the structure and energy fluxes of the fields are deter-
mined. 
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INTRODUCTION 
In [1], for the first time, a general expression was 

obtained for the energy losses of a uniformly moving 
charged particle in an unbounded layered medium and 
in a waveguide filled with a layered dielectric. The main 
attention was paid to the energy losses of the charged 
particle for the case of wavelengths exceeding the peri-
od of the dielectric structure. Here the spectral distribu-
tion of the polarization losses as well as the losses to the 
parametric Cherenkov radiation due to the specificity of 
the interaction of waves in a layered dielectric is studied 
in detail. 

For the case of wavelengths comparable with the in-
homogeneity period, the energy losses of an oscillating 
charge moving with a nonrelativistic velocity in a peri-
odically changing medium are considered in [2, 3]. In 
the present paper we continue the investigation of the 
parametric Cherenkov radiation of a uniformly moving 
particle in a layered dielectric for the case of wave-
lengths comparable to the inhomogeneity period. 

The fields of the parametric Cerenkov radiation and 
the spectra of this radiation are obtained, the energy loss 
of the particle are averaged over the period of the struc-
ture and the energy fluxes of the fields are determined. 

However, it should be noted that the conclusions of 
[1] are based not on calculating the radiation obtained 
for the spectral distribution, but on the basis of the tran-
sition to an equivalent anisotropic dielectric. Such tran-
sition is possible in the case when the wavelength of the 
radiation considerably exceeds the period of the struc-
ture. However, such limitation on the wavelength of the 
radiation is not always justified. 

Therefore, it is of interest to consider the parametric 
Cherenkov radiation of a uniformly moving particle in 
an ideally conducting metal waveguide filled with a 
spatially periodic layered dielectric for the case of the 
wavelengths comparable with the period of inhomoge-
neity. 

Let’s consider the radiation of a charged particle 
moving along the axis of an ideally conducting metal 
waveguide filled with a spatially periodic layered die-
lectric. Let us determine the spectrum of its parametric 
Cherenkov radiation. 

1. OBTAINING EQUATIONS DESCRIBING 
PARTICLE RADIATION IN A SPATIALLY 

PERIODIC LAYERED DIELECTRIC 
To solve the stated problem let's start from the sys-

tem of Maxwell equations describing the interaction of a 
uniformly moving particle with the electromagnetic 
waves of a given medium [1]: 
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Here the operators ˆ ˆ, ,ε µ are defined as  
 ˆ ( ) ( , )i t i tz e z eω ωε ε ω⋅ = ⋅ , ˆ ( ) ( , )i t i tz e z eω ωµ µ ω⋅ = ⋅ , (4) 

q  is the charge and v  is the velocity of the particle. 
In the considered case of a charged particle's motion 

along the axis of a waveguide filled with a dielectric, 
the equation for determining the Fourier component of 
the longitudinal component of the electric induction 

, ( )z nD zω  can be represented as:  
2

, 2
, 2

,

( )1( , ) ( ) ( , ) ( , )z n n
z n

z

D z
z D z k z z

z z R
ω

ω
ω

λ
ε ω µ ω ε ω

ε
 ∂  ∂

+ − =    ∂ ∂   

( )
( , ) ( , )

,

i z
i z v

vq q ez ik z e
c v z z

ω
ω

ε ω µ ω
π π ε ω

−
−

  
∂  = + ⋅  ∂     

.   (5) 

Here the component of , ( )z nD zω  is obtained from 
the expression for the electric induction  
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using the orthogonality condition of Bessel functions, R 
is the radius of the waveguide, and nλ  the n-th root of 
the zero-order Bessel function ( )0 0nJ λ = . In what fol-
lows we omit the ω , n  indices. 

The layered medium is represented by layers of two 
homogeneous and isotropic dielectrics alternating along 
the axis of the waveguide: the layer 0a z− ≤ ≤  has die-
lectric and magnetic permeabilities 1 1,ε µ , respectively, 
the layer has 0 z b≤ ≤  permeabilities 2 2,ε µ . Thus, in 
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each layer, equation (5) is an equation with constant 
coefficients, the solutions of which in each layer will 
have the form: 
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where 2 2 2
1 1 1p k kε µ ⊥= ⋅ − , 2 2 2
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From equations (1) we find expressions for the com-
ponents of the electric and magnetic field strength in 
each of the regions: 

1

2

1

2
2

1 ,

,

i z
v

z

i z
v

z

i kH
k k

i k

qE e
c

qEH
k

e
kc

ω

ϕ

ϕ

ωε

π
ε

π

⊥ ⊥

⊥ ⊥

−

−

= +

= +








     (7) 

1 1
1

2 2
1

1

1

,

.

ikz

i

r z

z

z

r

k

dE q e
c

E
k dz

dE E
k d

q e
cz

β

β

π

π

βε

βε

−

−

⊥

⊥

 −
= −  

 
 −

=



−





 
 





   (8) 

From the boundary conditions on the surface of die-
lectrics and the conditions for the periodicity of the 
fields 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

0 01 2

0 01 2

1 2

1 2

( ) ( ) ,

( ) ( ) ,

( ) ( ) ,

( ) ( ) ,

z z

r rz z

i L
v

z a z b

i L
v

r rz a z b

H z H z

E z E z

e H z H z

e E z E z

ϕ ϕ

ω

ϕ ϕ

ω

= =

= =

−

=− =

−

=− =

 =

 =


=



=

 L a b= + ,   (9) 

we obtain a system of linear algebraic equations for 
finding the coefficients A, B, C and D: 
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or in the matrix form M̂ a b⋅ =


 .  
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From (10) we find the expression for the coefficients 

A, B, C and D: 
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It should be noted that the field , ( )r nÅ zω  contains 
the derivative with respect to the longitudinal coordinate 
from the longitudinal field , ( )z ndЕ z dzω , so that the 
right-hand sides of equations (10) have the terms pro-
portional to v kω β= . 

Thus, the equalities (11) allow us to determine the 
coefficients , , ,A B C D . 

All the singularities in the expressions for the coeffi-
cients , , ,A B C D  are determined by the conditions of 
[1]:  

2 2 2
1 / 0,p vω− =       (12) 

2 2 2
2 / 0,p vω− =      (13) 

cos( / ) cos( ) 0.L vω ψ− =      (14) 
We are interested in the radiation of a particle in a 

medium due to the interference of fields in a layered 
dielectric, which is determined by the roots of equation 
(14). Since the equation cos( / ) cos( ) 0L vω ψ− =  is the 
dispersion equation of a layered dielectric, the frequen-
cies determined by the roots of this equation correspond 
to waves propagating in such a layered medium. 

We note that the values of the coefficients 
, , ,A B C D  are expressed in terms of 1Z  and 2Z . 

Hence it follows that for small differences in the param-
eters of the medium for each of the regions, for exam-
ple, for 1 2 1ε ε− << , the values of the coefficients 

, , ,A B C D  will also be small. Physically it is ex-
plained by the fact that when the media parameters dif-
ference in two regions decrease we turn to the case of a 
homogeneous medium in which interference effects are 
absent. Therefore, to increase the interference efficiency 
of fields excited in layered media, it seems necessary to 
use dielectric layers with substantially different dielec-
tric permittivities. 
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2. NUMERICAL SOLUTION OF EQUATIONS 
DESCRIBED OF PARTICLE RADIATION  

IN SPATIALLY PERIODIC LAYER 
DIELECTRIC 

Since the expressions for the fields (6) - (8), and the 
dispersion equation (14) in the general case can not be 
analytically investigated, let us analyze them numerical-
ly. To do this, we choose the following values of the 
media parameters: 1 2 1µ µ= = , 1 2.1ε = , 2 3.5ε = , 

210 0.1a b −= =  m, 23 10R −= ⋅  m, / 0.65, 0.95v cβ = = . 
In following calculations the particle charge was 

chosen equal to 9 106 10 , 9.613 10q e C−= ⋅ = ⋅ . 
Graphs of the dependence of the function 

( / ) cos( / ) cos( )D c L cω ω β ψ= − , and its spectrum, 
shown in Figs. 1 and 3 show that the dependence of 

( / )D cω  is determined mainly by the beating of two 
cosines with a period /L L βL =  equal to the characteristic 
length of the change cos( / )L cω β  and with a period ψL  
equal to the characteristic length of the change cos( )ψ . 

In addition, as follows from the form of the normal-
ized spectral power SpD , there is a weakly expressed 
branch of cos( )ψ  with a small period of variation ψλ . 

  
Fig. 1. Dependence ( / ) cos( / ) cos( )D c L cω ω β ψ= −  
on / cω  and its spectrum  SpD  for / 0.65v cβ = = . 

Where in 0.973LL = , 1.0528ψL = , 0.1353ψλ =  

 
Fig. 2. Dependences of the difference 

1( ) /i i ik cω ω π−D = −  of the neighboring roots  
of the dispersion equation ( / ) 0iD cω =  of layered 

dielectric on the values / cω  of these roots  
for / 0.65v cβ = =  and 1k Rλ⊥ =  

  
Fig. 3. Dependence ( / ) cos( / ) cos( )D c L cω ω β ψ= −  
on / cω  and its spectrum SpD  for / 0.95v cβ = = , 

1k Rλ⊥ = . Where in 0.6657LL = , 1.0528ψL = , 
0.1353ψλ =  

 
Fig. 4. Dependences of the difference 

1( ) /i i ik cω ω π−D = −  of the neighboring roots of the 
dispersion equation ( / ) 0iD cω =  of layered dielectric 
on the values / cω  of these roots for  / 0.95v cβ = =  

and 1k Rλ⊥ =  

On the graphs of the difference in the wavenumbers 
of the neighboring zeros of the dispersion equation 
(Figs. 2 and 4), it is clearly seen that in addition to the 
main two wavenumbers, which make the maximum 
contribution to the change in the dispersion equation 
(14), there is one more wavenumber indicating the roots 
of the dispersion equation with close values of wave-
numbers. Thus, we see that there are different periods of 
succession of the roots of the dispersion equation (14). 
To determine the averages over the period of energy 
losses of particles, the expressions for the average field 
structures of the field have the form [1]: 
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Summarizing the obtained fields for various trans-
verse wavenumbers with allowance for their radial dis-
tribution, we find the dependences of the mean fields 

, ,z rE E Hϕ  of the parametric Cherenkov radiation on 
the radius (shown in the figures below), as well as the 
dependence of the energy losses averages on the period 
of the structure on the radius:  
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where n nk Rλ⊥ = , Nbess  is the number of radial har-
monics, 

jresω  are the roots of the dispersion equation 

(14) for each nk⊥ , Nres  is equal to the number of roots 
of the dispersion equation (14) in a given frequency 
interval. The values for the fields ( )

jz resE ω  are deter-
mined from equations (6) in each region. 

It follows from (16) that the particle's average ener-
gy loss is determined by the average field on the period 
of the structure zE . 

Let us find the dependence of the fields averages on 
the structure period , ,z rE E Hϕ  on the radius for the 
case when the thicknesses of the dielectric layers are the 
same. To represent the radial dependence, the number of 
steps along the radius is chosen equal to 70, 24Nbess = . 
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The graphs of the average fields dependence 
, ,z rE E Hϕ  on radius averaged on the structure period 

are shown in Figs. 5, 6 

а 

b 

а 

b 
Fig. 5. Dependence of the 

fields on the radius  
averaged on the structure 
period: а) zE ; b) ,rE Hϕ  

for the parameters 
/ 0.65v cβ = =  

Fig. 6. Dependence of the 
fields on the radius  

averaged on the structure 
period: а) zE ; b) ,rE Hϕ  

for the parameters 
/ 0.95v cβ = =  

Analysis of (15) shows that the mean values of the 
field zE  are real, and the mean values of the fields rE  
and Hϕ  are, as expected, purely imaginary. This indi-
cates on the transfer of radiation energy along the axis 
of the waveguide. 

The energy flux for the average over the period struc-
ture of the fields excited by the particle is determined by 
the Umov-Poynting vector: *Re mid midS E H = × 

  

. Hence, it 
is not difficult to determine the values of the energy 
fluxes from the projections on the coordinate axes: 

( )*Re zr HS E ϕ= − , 0Sϕ = , ( )*Re rz ES H ϕ= . 

  
Fig. 7. The average energy 

fluxes over a structure 
period zS  for / 0.65v cβ = =  

Fig. 8. The average energy 
fluxes over a structure 

period zS  for / 0.95v cβ = =  

CONCLUSIONS 
Thus, as a result of the carried out investigation of 

the radiation of a charged particle moving along the axis 
of an ideally conducting metal waveguide filled with a 
spatially periodic layered dielectric, the following con-
clusions can be drawn.  

1. The problem of radiation of charged particle in an 
ideally conducting metal waveguide filles with a spatial-
ly periodic layered dielectric is solved without a transi-
tion to an equivalent anisotropic dielectric. 

2. The dependencies of electric and magnetic radia-
tion fields averaged on the structure period on the 
waveguide's radius are determined numerically under 
conditions when the period of the structure is of the 
same order as the wavelength of the radiation and the 
width of the dielectrics is the same. 

3. It is shown that for equal thicknesses of the dielec-
trics the mean values of the field zE  are real, and the 
mean values of the fields ,rE Hϕ  are purely imaginary. 

4. The average over the structure period radiation 
flux for equal thicknesses of dielectrics is positive, di-
rected along the waveguide axis, has a maximum at 
small distances from the waveguide axis, and decreases 
with approach to the waveguide wall. 

5. The carried out investigation makes it possible to 
determine both the average fields generated by the 
charged particle and the energy fluxes of these fields for 
arbitrary values of the thicknesses and dielectric permit-
tivities of the layers, the velocity of the charged particle, 
and the waveguide's radius.  
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ИЗЛУЧЕНИЕ ЗАРЯЖЕННОЙ ЧАСТИЦЫ В ИДЕАЛЬНО ПРОВОДЯЩЕМ МЕТАЛЛИЧЕСКОМ ВОЛНОВОДЕ, 
ЗАПОЛНЕННОМ ПРОСТРАНСТВЕННО ПЕРИОДИЧЕСКИМ СЛОИСТЫМ ДИЭЛЕКТРИКОМ 

В.И. Ткаченко, И.В. Ткаченко, А.П. Толстолужский, С.Н. Хижняк 

Аналитически и численно проведено исследование параметрического черенковского излучения равномерно движу-
щейся частицы в идеально проводящем металлическом волноводе, заполненном пространственно периодическим слои-
стым диэлектриком для случая длин волн, сравнимых с периодом неоднородности. Описаны поля и спектры параметри-
ческого черенковского излучения. Найдены средние по периоду структуры потери энергии частицы и определены пото-
ки энергии полей.  

ВИПРОМІНЮВАННЯ ЗАРЯДЖЕНОЇ ЧАСТИНКИ У ІДЕАЛЬНО ПРОВІДНОМУ МЕТАЛЕВОМУ 
ХВИЛЕВОДІ, ЗАПОВНЕНОМУ ПРОСТОРОВО ПЕРІОДИЧНИМ ШАРУВАТИМ ДІЕЛЕКТРИКОМ 

В.І. Ткаченко, І.В. Ткаченко, О.П. Толстолужський, С.М. Хижняк 
Аналітично та чисельно проведено дослідження параметричного черенковського випромінювання частинки, що рівно-

мірно рухається в ідеально провідному металевому хвилеводі, заповненому просторово періодичним шаруватим діелектри-
ком для випадку довжин хвиль, які можна порівняти з періодом неоднорідності. Описано поля і спектри параметричного 
черенковського випромінювання. Знайдено середні по періоду структури втрати енергії частинки і визначені потоки енергії 
полів. 


