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The interaction between a tubular beam of charged particles and a nonmagnetic anisotropic dispersive medium 
of cylindrical configuration has been investigated. It has been found the absolute instability of bulk-surface waves 
that occurs because of peculiarities of the anisotropic cylinder properties. The resonance behavior of the permittivity 
frequency dependence causes the emergence of the sections of dispersion curves of the E-type bulk-surface 
eigenmodes with negative group velocity. It has been shown there are the E-type surface eigenmodes and pseudo 
surface eigenmodes of E- and H-types in the cylinder. 

PACS: 03.50.-z, 52.40.-w, 52.59.-f, 85.45.-w 
 

INTRODUCTION  
Investigation of the generation mechanisms of elec-

tromagnetic waves that are excited when charged parti-
cles move in various electrodynamic systems is im-
portant in microwave electronics. To create sources of 
electromagnetic radiation in the millimeter and submil-
limeter ranges, the beam instabilities occurring in elec-
trodynamic systems of various kinds are of great inter-
est. Currently, special attention is given to multiwave 
Cherenkov sources of surface waves [1, 2] and auto-
oscillatory systems based on dielectric resonators [3 -
 5], and dielectric Cherenkov masers [6]. Besides, the 
beam instabilities that occur in electrodynamic systems 
containing dispersive media are of special interest. In 
particular, the instabilities of the tubular electron beam 
that interacts with a plasmalike medium and a left-
handed dispersive medium of cylindrical configuration 
were studied in [7] and [8], respectively. 

In the present paper, the interaction between a tubular 
beam of charged particles and eigenmodes of nonmagnet-
ic cylindrical solid-state waveguide, in which the compo-
nents of permittivity tensor have frequency dispersion, is 
theoretically investigated. This crystal-like medium of the 
waveguide may have the permittivities with the different 
signs in perpendicular and parallel directions to the opti-
cal axis in a certain frequency range. Our goal is to de-
termine the conditions for the excitation of eigenmodes 
with anomalous dispersion. It will be shown that the in-
teraction of an electron beam with the waveguide 
eigenmodes gives rise to the absolute instability of the 
bulk-surface electromagnetic waves, which are the prop-
agating waves in the waveguide and, at the same time, are 
evanescently confined along the normal to the lateral 
cylinder surface in vacuum. This means that the aniso-
tropic dispersive media can be used as the delaying struc-
tures with "natural feedback" for generation of electro-
magnetic waves in backward-wave tubes. Besides, the 
possibility of excitation of weakly damped whispering 
gallery waves in an anisotropic cylinder [9] will allow the 
generation of electromagnetic waves in the submillime-
ter region of the spectrum. 

1. STATEMENT OF THE PROBLEM  
AND BASIC EQUATIONS 

Consider a nonmagnetic cylindrical solid-state 
waveguide with the radius 0ρ  occupying the region 

00 ρ ρ≤ ≤ , 0 2ϕ π≤ ≤ , and z−∞ ≤ ≤ +∞  (Fig. 1). 
The cylinder is made of an anisotropic single crystal, the 
optical axis of which orientates parallel to the symmetry 
axis Z  of cylinder. A tubular electron beam with the 
radial thickness a  and density 0 ( )N ρ  moves in vacu-
um at a distance of bρ  from the cylinder axis at a veloc-
ity 0v . We assume that the charges of electrons are 
compensated by the background of positive charges and 
the thickness of the beam a  is much smaller than the 
other spatial scales of the electrodynamic system under 
consideration. Hence, the undisturbed beam density can 
be represented as 0 0( ) ( )bN N aρ δ ρ ρ= − , where 0N  is 
the equilibrium beam density and ( )bδ ρ ρ−  is the Di-
rac delta function. 

 
Fig. 1. Geometry of electrodynamic system 

In case of linear approximation, the disturbed beam 
current density at a point with the radius-vector r  at a 
moment t  has the form 

0 0( , ) ( ) ( , ) ( , )t eN t e N tρ= +j ρ v ρ v ρ , 
where e  is the electron charge, and ( , )N tr  and ( , )tv r  
are the variable components of the beam density and the 
electron velocity, respectively. Hereafter, we will sup-
pose that the radial component of the beam current den-
sity is equal to zero because of the chosen model of the 
electron beam. 
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System of equations, which describes the interaction 
between the electron beam and the cylinder eigenmodes, 
represents the Maxwell equations supplemented with 
the linearized continuity and motion equations for the 
beam electrons: 

1 4rot ( , ) ( , ) ( , )t t t
c t c

π∂
= +

∂
H r D r j r ,  (1) 

1rot ( , ) ( , )t t
c t
∂

= −
∂

E r H r ,    (2) 

div ( , ) 4 ( , )t eN tπ=D r r ,    (3) 
div ( , ) 0t =H r ,     (4) 

( , ) div ( , ) 0N te t
t

∂
+ =

∂
r j r , 

0 0
( , ) ( , ) 1( , ) [ , ( , )]t t ev t t
t z m c

∂ ∂  + = + ∂ ∂  

v r v r E r v H r , 

where m  is the electron mass, c  is the velocity of light 
in vacuum, ( , )tE r  and ( , )tH r  are the electric and 
magnetic field vectors, and ( , )tD r  is the electric dis-
placement vector that is related with the ( , )tE r -vector 
by the constitutive equations 

ˆ( , ) ( ) ( , )
t

i ij jD t t t E t dtε
−∞

′ ′ ′= −∫r r , 

where ˆ ( )ij t tε ′−  is the influence function that character-
izes the efficiency of the field action in time. Indices i  
and j  correspond to one of the directions along the 
coordinate axes ρ , ϕ , and z . Here, the summation by 
the index j  is carried out with a search of all directions. 
In vacuum we have ˆ ( ) ( )ij ijt t t tε δ δ′ ′− = − , where ijδ  is 
the Kronecker symbol. Note that the difference nature 
of the kernels of the integrals is due to the homogeneity 
of the waveguide properties in time. 

In order to derive the dispersion equation for the 
electromagnetic waves in the electrodynamic system 
under consideration, it is necessary to satisfy certain 
boundary conditions at 0ρ ρ=  and bρ ρ= . These con-
ditions are as follows. First, the tangential components 
of the electric and magnetic fields are continuous at 

0ρ ρ= . Second, at bρ ρ=  the tangential components 
of the magnetic field have to be discontinuous because 
of the beam current, whereas the tangential components 
of the electric field are continuous. Note that the normal 
component of the magnetic field vector remains contin-
uous, whereas the normal component of the electric 
displacement vector suffers discontinuity because of the 
disturbed beam charge. 

We determine the discontinuities of the tangential 
components of the magnetic field and the normal com-
ponent of the electric displacement [in vacuum 

( , ) ( , )D t E tρ ρ≡ρρ  ] by integrating (1) and (3) over the 
infinitesimally small beam thickness. As a result, we 
have 

0 0
0

4( , ) ( , ) ( , )lim
b

b b
b

z
b

H t H t j t d
c

ρ ρ

jj ρ ρ ρ ρ
ρ ρ ρ

π ρ ρ
ρ

+∆

= + = −
∆ → −∆

− = ∫ρρρ   , 

0 0
0

4( , ) ( , ) ( , )lim
b

b b
b

z zH t H t j t d
c

ρ ρ

φρ ρ ρ ρ
ρ ρ ρ

π ρ
+∆

= + = −
∆ → −∆

− = − ∫ρρρ   , 

0 0
0

4( , ) ( , ) ( , )lim
b

b b
bb

eE t E t N t d
ρ ρ

ρ ρρ ρ ρ ρ
ρ ρ ρ

π ρ ρ
ρ

+∆

= + = −
∆ → −∆

− = ∫ρρρ   . 

We represent all variables in the form of the set of 
space-time harmonics, for instance: 

( , ) ( , , ) exp[ ( )]n z z z
n

t q i q z n t dq dρ ω ϕ ω ω
∞ ∞∞

=−∞ −∞ −∞

= + −∑ ∫ ∫E ρ E , (5) 

where ω , zq , and n  are the frequency, longitudinal 
wave number, and the number of the spatial harmonic 
(coinciding with the azimuthal mode index), respective-
ly; 2 1i = − . Then we have 

( , , ) ( ) ( , , )i z ij j zD q E qρ ω ε ω ρ ω= , 

where 
0

( ) ( ) exp( )ij ij i de ω e τ ωτ τ
∞

= ∫  is the permittivity 

tensor of medium. 
Consider the medium inside the cylinder, which 

consists of anisotropic oscillators characterized by a set 
of eigenfrequencies Lω , rω , and sω . Such a medium 
corresponds to a crystal, whose permittivity tensor has a 
diagonal form with components ε⊥  and ||ε , where the 
indices " ⊥ " and " || " indicate the material properties in 
the perpendicular and parallel directions to the optical 
axis of the crystal, respectively. We assume that the 
frequency dependences ( )ε ω⊥  and || ( )ε ω  have the 
form [10 - 13] 

2

0 2 2( ) L

r

ω
ε ω ε

ω ω⊥ = −
−

, 
2

|| 0 2 2( ) L

s

ω
ε ω ε

ω ω
= −

−
, 

where 0ε  is the background value of the dielectric con-
stant of the crystal determined as the high-frequency 
limit of ( )ε ω⊥  and || ( )ε ω . It is clear that there are such 
frequency bands in which ( )ε ω⊥  and || ( )ε ω  have nega-
tive values. 

In particular, these dependences ( )ε ω⊥  and || ( )ε ω  
characterize the magnetized collisionless semiconductor 
medium, in which 

22

0 2
1

( ) L

r

α

α α

ω
ε ω ε

ω⊥
=

= +∑ ; 
22

|| 0 2
1

( ) Lα

α

ω
ε ω ε

ω=

= −∑ , 

where 2 24 /L e n mα α α αω π=  and 0 /r e H m cα α αω = , eα , 
mα  and nα  are the charge, mass and the majority-
carrier concentration of the α -kind: electrons (α  = 1) 
and holes (α  = 2), respectively, 0H  is the induction of 
an external magnetic field (whose vector orientates par-
allel to the symmetry axis Z  of cylinder). At the same 
time 0sω =  and r rαω ω≡ , and rαω ω>>  because of 

0H →∞ . 
If we take into account (5), we can rewrite the origi-

nal equations (1) - (4) for the axial spectral components 
of the field in the region inside the cylindrical solid-
state waveguide ( 0ρ ρ≤ ) in the following form: 
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2
2

2

1 ( , , ) 0E zn z
nq E qρ ρ ω

ρ ρ ρ ρ
  ∂ ∂

+ − =  ∂ ∂   
, (6a) 

2
2

2

1 ( , , ) 0H zn z
nq H qρ ρ ω

ρ ρ ρ ρ
  ∂ ∂

+ − =  ∂ ∂   
, (6b) 

where 2 2 2 2/H zq c qε ω⊥= −  and 2 2
|| /E Hq q ε ε⊥=  are the 

square of the transverse (radial) wave number of elec-
tromagnetic wave of H- and E-types, respectively. The 
corresponding equations for the axial spectral compo-
nents of the field in vacuum ( 0ρ ρ> ) outside the elec-
tron beam ( bρ ρ≠ ) are 

2
2

2

( , , )1 0
( , , )

zn z

zn z

E qnq
H q

ρ ω
ρ

ρ ωρ ρ ρ ρ
    ∂ ∂

+ − =   ∂ ∂    
, (6c) 

where 2 2 2 2/ zq c qω= − . If 2 2 2, , 0H Eq q q > , the equations 
(6) have the form of the Bessel equations, whereas if 

2 2 2, , 0H Eq q q <  they are the modified Bessel equations. 
We are only interested in the waves, which have sur-

face behavior in vacuum. For these waves the condition 
2 0q <  is satisfied. Exactly, these waves are excited by 

the beam of charged particles provided the Cherenkov 
resonance 0zq vω =  [14]. Indeed, for the nonrelativistic 
electron velocities ( 1β << , where 0v cβ =  is the di-
mensionless electron velocity) considered herein, we 
have 2 2 2

zc qω <<  and 2 0q < . Taking into account the 
aforesaid, we represent the expressions for the spectral 
components of the electromagnetic field ( , , )zn zE qρ ω  
and ( , , )zn zH qρ ω  in the following form: 

2

02

0

( ), 0
,

(| | ), 0
( , , )

(| | ) (| | ), ,
(| | ), ,

E
n n E E
E
n n E E

zn z E E
n n n n b
E
n n b

A J q q
A I q q

E q
B K q C I q
D K q

ρ
ρ ρ

ρ
ρ ω

ρ ρ ρ ρ ρ
ρ ρ ρ

 >
≤ <=  + < <

 >

 

2

02

0

( ), 0
,

(| | ), 0
( , , )

(| | ) (| | ), ,
(| | ), ,

H
n n H H
H
n n H H

zn z H H
n n n n b
H
n n b

A J q q
A I q q

H q
B K q C I q
D K q

ρ
ρ ρ

ρ
ρ ω

ρ ρ ρ ρ ρ
ρ ρ ρ

 >
≤ <=  + < <

 >

 

where ( )nJ u  is the n th order Bessel function of the 
first kind; ( )nI u  and ( )nK u  are the modified functions 
of the first kind (Infeld function) and the second kind 
(Macdonald function), respectively; ,E H

nA , ,E H
nB , ,E H

nC , 
and ,E H

nD  are the arbitrary constants. The choice of the 
solution is due to the fulfillment of finiteness conditions 
for ( , , )zn zE qρ ω  and ( , , )zn zH qρ ω  at 0ρ →  and 
ρ →∞ . At 2 1ε β⊥ >  the radial distribution of the field 
component ( , , )zn zH qρ ω  inside the cylinder is de-
scribed by Bessel functions ( )n HJ q ρ , and at 2 1ε β⊥ <  
it is described by modified Bessel functions 

(| | )n HI q ρ . Using the Maxwell equations, we express 
transverse spectral components of the electromagnetic 
fields in the cylinder region ( 0ρ ρ< ), as well as in the 
annular gap ( 0 bρ ρ ρ< < ), and on the other side of the 

beam ( 0ρ ρ> ) via the components ( , , )zn zE qρ ω  and 
( , , )zn zH qρ ω . 

We note that in the nonrelativistic case, if 2 1β << , 
but 2 1ε β⊥ > , the discontinuities of the tangential mag-
netic field components ( , , )n zH qϕ ρ ω  and ( , , )zn zH qρ ω  
at the beam surface ( bρ ρ= ) are small values of the 
order of ( )O β . Therefore, in what follows, in the 
boundary conditions at the beam surface ( bρ ρ= ), we 
suppose these components are continuous, and take into 
account only the discontinuity of the normal (radial) 
electric field component ( , , )n zE qρ ρ ω . 

Assuming the beam is nonrelativistic, and satisfying 
the above-mentioned boundary conditions at the cylin-
der and electron beam surfaces, we obtain the following 
dispersion equation for the beam-cylinder coupled 
waves: 

2 2 2
0Δ [( ) Γ( , ) ]n z z b bq v q nω ω αω− − = ,  (7) 

where 2
04 /b e N mω π=  is the plasma frequency of 

beam electrons, zΓ(q , )n  is the depression factor of 
space-charge forces [15], found to be 

2 2 2
z

0

0

Γ(q , ) ( ) (| | ) (| | )

(| | ) (| | )
1 .

(| | ) (| | )

z b n z b n z b

n z n z b

b n z b n z

n n q I q K q

I q K qa
I q K q

ρ ρ ρ

ρ ρ
ρ ρ ρ

= + ×

 
× − 

 

 

The value α  is the coupling factor of the beam with 
cylinder eigenmodes that has the form 

2
2 2 2

2 2 2
0 0

(| | )
( )

(| | )
Hn z b

z b n
b z n z

K qa n q
q K q

ρ
a ρ

ρ ρ ρ
= + ∆ , 

2 H E
n n n na∆ = −∆ ∆ , 

2
2

2 2 2
0

( 1)z
n

H

nqa
q q c
ω ε

ρ
⊥ −

=  
 

, 

||0 0

0 0 0 0

(| | ) ( )1Δ
| | (| | ) ( )

E n n E
n

n E n E

K q J q
q K q q J q

ερ ρ
ρ ρ ρ ρ

′ ′
= + , 

0 0

0 0 0 0

(| | ) ( )1 1Δ
| | (| | ) ( )

H n n H
n

n H n H

K q J q
q K q q J q

ρ ρ
ρ ρ ρ ρ

′ ′
= + . 

The primed cylindrical functions denote their deriva-
tives with respect to the argument. Note that equation 
(7) has the form analogous to the characteristic equation 
of a traveling-wave tube [15]. In our case, it describes 
the interaction of the beam space-charge waves (SCWs) 
with the cylinder eigenmodes. Dispersion equations for 
the beam SCWs and the cylinder eigenmodes are de-
scribed by the following equations: 

2 2
0( ) Γ( , ) 0z z bq v q nω ω− − = , and 0n∆ = . 

The solutions of the equation 0n∆ =  determine the 
eigenfrequencies ns ns nsiω ω ω′ ′′= − , 0nsω′′ ≥ , of the cylin-
drical waveguide with the hybrid E- and H-type waves. 
The azimuthal mode index n  = 0, 1, 2, 3, … corre-
sponds to half the number of field variations in the angle 
ϕ . The radial index s  represents the number of field 
variations along the radial coordinate ρ  and corre-
sponds to the pair of roots order number of the equation 

0n∆ = , whose solutions determine the frequencies nsω  
of the cylinder eigenmodes with the longitudinal wave 
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number zq . In the case of azimuthally-homogeneous 
symmetric ( n  = 0) waves and axially-homogeneous 
( zq  = 0) oscillations, the indices s  correspond to the 
root order numbers of the homogeneous dispersion 
equations 0H

n∆ =  and 0E
n∆ = , on which the equation 

0n∆ =  splits. In the dispersion equation 0n∆ =  the 
value na  plays the role of the coupling constant be-
tween the E- and H-waves. 

The dispersion dependences 0 ( )s zqω  of the symmet-
ric eigenmodes H0s and E0s of a solid-state cylinder are 
determined by the solutions of the dispersion equations 

0 0H∆ =  and 0 0E∆ = , respectively. The solutions of the 
equation 0n∆ =  at n  ≠ 0 determine the dispersion de-
pendences ( )ns zqω  of the hybrid EHns (H-type) or HEns 
(E-type) eigenmodes of the waveguide. A unique corre-
spondence of these equation solutions to a specified 
type of wave (H- or E-type) can be identified only after 
determining the dominant longitudinal field component, 
in other words after comparing the maximum values of 

the moduli ( , , )zn z nsH qρ ω  and ( , , )zn z nsE qρ ω  [9]. In 

the case of HEns mode the constant H
nA  is determined 

through the constant E
nA , and vice versa, in the case of 

EHns mode the constant E
nA  is determined through the 

constant H
nA . 

The quantities contained in equation (7) correspond 
to the cylinder eigenmodes with transverse wave num-
bers for which the conditions 2 0Hq >  and 2 0Eq >  are 
satisfied. In the case of 2 0Hq <  and 2 0Eq < , the terms 

0 0 0( ) / ( )n H H n HJ q q J qρ ρ ρ′  and || 0 0 0( ) / ( )n E E n EJ q q J qε ρ ρ ρ′  

in H
n∆  and E

n∆  in the equation (7) acquire the form 

0 0 0(| | )/ | | (| | )n H H n HI q q I qρ ρ ρ′−  and 

|| 0 0 0(| | )/ | | (| | )n E E n EI q q I qε ρ ρ ρ′− , respectively. 

Depending on the signs of 2
Hq  and 2

Eq , the 
eigenmodes of the waveguide have different types (Ta-
ble). In Table, the type classification of eigenmodes is 
given in accordance with the terminology in [16 - 18]. 

 

Types of eigenmodes of a solid-state cylinder located in vacuum 
The sign of the square of the 

transverse wave number 
The sign of the 

permittivity Type of eigenmodes Reference 
2
Hq  2

Eq  ( )ε ω⊥  || ( )ε ω  
+ + + + bulk-surface [16] 

+ – + – surface and/or bulk-surface symmetric, 
pseudo-surface hybrid 

 
[16 - 18] 

– + + – bulk-surface [16] 
– + – + bulk-surface [16] 
– – – – surface [17, 18] 
– – + + do not exist (forbidden zone)  

 

We note that the pseudo-surface axial-homogeneous 
( zq  = 0) eigenmodes and pseudo-surface azimuthally 
homogeneous symmetric ( n  = 0) eigenmodes do not 
exist because they are hybrid. The absence of cylinder 
eigenmodes is determined by the absence of solutions of 
the dispersion equation 0n∆ = . In this case, the corre-
sponding frequency and wavenumber regions form for-
bidden zones in the spectra of the waveguide waves. 

When the cylinder is absent in the electrodynamic 
system, i.e. in the case of 0 0ρ → , we have Δ 0nα → , 
and the solutions of the dispersion equation (7) deter-
mine the frequencies of the slow (ω− ) and fast (ω+ ) 
beam SCWs: 0 0 ( )z z bq v R q ,nω ω− = −  and 

0 0 ( )z z bq v R q ,nω ω+ = + , where 0 0( ) Γ ( )z zR q ,n q ,n=  
is the reduction factor [15], and  

0
0 0

2 2 2

Γ ( ) Lim Γ( )

( ) (| | ) (| | ).

z z

z b n z b n z b
b

q ,n q ,n

a n q I q K q

ρ

ρ ρ ρ
ρ

→
= =

= +
 

Consequently, the phase velocities of the slow 
( / zqω− ) and fast ( / zqω+ ) SCWs are less and greater 
than the beam velocity 0v , respectively. 

When the beam electrons move along the lateral sur-
face of a cylindrical solid-state waveguide ( 0bρ ρ= ) or 
close to it ( 0bρ ρ≠ ) under the condition that the re-

duced plasma frequency of the beam 
( , ) | |z bR q n ω δω<< , where ( , ) ( , )z zR q n q n= Γ  and 

δω  are small additions to the frequencies nsω  that arise 
due to interaction between the beam and cylinder 
eigenmodes, the Cherenkov effect, under which 

0ns zq vω = , is realized in an electrodynamic system [8]. 
The instability increments of the beam-cylinder coupled 
waves are expressed as follows [8]: 

1 3
2 3( )3Im

2 Δ ( )
ns

b
n nsω

α ω
δω ω

ω
=

′
,   (8) 

where ( )nsα ω  is the coupling factor α  at the resonance 
frequency nsω . We note that 1/3

0Im Nδω ∝ . Conse-
quently, the excitation of the cylinder eigenmodes by 
resonance beam particles (whose velocity satisfies the 
condition 0ns zq vω = ) is coherent [19]. 

If the electron beam is transported at a considerable 
distance from the cylindrical surface of the waveguide 
( 0bρ ρ> ), the anomalous Doppler effect is realized in 
the system. In this case, the resonance interaction of the 
beam with the cylinder eigenmodes is realized at fre-
quencies 0 ( , )ns z z bq v R q nω ω ω±

±= = ±  [8]. The instabil-
ity arises only in the interaction of slow space-charge 
waves with the cylinder eigenmodes. The instability 
increments are determined as follows [8] 
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1 2
( )

Im
2 ( , )Δ ( )

ns b

z n nsR q n ω

α ω ω
δω

ω

−

−

 
=  ′ 

.   (9) 

It follows that 1 4
0Im Nδω ∝ . 

For a fundamental understanding of the interaction 
mechanism between the charged particles of a tubular 
beam and cylinder eigenmodes, below we present the 
results of numerical analysis of the dispersion equation 
(7), and the expressions for the instability increments 
(8) and (9). 

2. NUMERICAL ANALYSIS  
OF THE DISPERSION EQUATION 

The dispersion equation 0n∆ =  has dimensionless 
form, which emphasizes its universality. The dimen-
sionless form of the waveguide eigenfrequencies is pro-
vided by their normalization to the characteristic fre-
quency 0 0/cω ρ= , taking into account the identity of 
the cylindrical waveguide configuration. 

We suppose that the cylindrical solid-state wave-
guide under study has the characteristic frequency 

0ω  = 6⋅1010 s-1, which corresponds to the radius 

0ρ  = 0.5 cm, and is made of an artificial material with 
following parameters: 0ε  = 2, 0/Lω ω  = 3.5, 

0/rω ω  = 4, 0/sω ω  = 6. The values of the equilibrium 
beam electron density 0N , the radial thickness of the 
beam a , and the directed motion velocity of the beam 
electrons are chosen as follows: 0N  = 7.6⋅1010 cm-3, and 
a  =0.05 cm, and 0v  = 0.3 c , respectively. For the se-
lected system parameters, we have 2 2

0bω ω  ≈ 0.07. The 
normalized frequencies || 0/ω ω  and 0/ω ω⊥ , at which 

|| ( )ε ω  = 0 and ( )ε ω⊥  = 0, have values 6.49 and 4.7, 
respectively. 

2.1. SPECTRA OF THE CYLINDER 
EIGENMODES 

Fig. 2 shows the spectra of the cylinder symmetric 
( 0n = ) and the unsymmetrical ( 0n ≠ ) eigenmodes. 

  
a b 

Fig. 2. Dispersion dependences of the symmetric (a) 
and the hybrid (b) eigenmodes of the cylinder 

 

Lines 1 correspond to the frequencies and the longi-
tudinal wave numbers at which the transverse wave 
numbers Hq  vanish. Line 2 refers to the light line in 
vacuum 0 0/ zqω ω ρ=  when q  = 0. We are only inter-
ested in the ranges of frequencies and longitudinal 
wavenumbers of the waveguide eigenmodes where the 

condition 2q  < 0 is satisfied. Lines 3 and 4 correspond 
to the frequencies || 0/ω ω  and 0/ω ω⊥ . Lines 5 and 6 
are for the normalized eigenfrequencies of the oscilla-
tors of artificial material in perpendicular ( 0/rω ω ) and 
parallel ( 0/sω ω ) directions to the symmetry axis of the 
cylinder, respectively. Lines 7 and 8 represent the spec-
tra of the H- and E-type bulk-surface waves, for which 

2
Eq  > 0 and 2

Hq  > 0, namely, the symmetric modes H0 1, 
E0 1, H0 2, H0 3 and E0 2 (Fig. 2,a), and the hybrid modes 
EH1 1, HE1 1, EH1 2, EH1 3 and HE1 2 (Fig. 2,b) that are 
arranged in ascending order of frequencies nsω . Note 
that the density of the dispersion curves of the H-type 
eigenmodes increases with radial index s  in the fre-
quency range 0 rω ω< <  at 0ns rω ω→ −  (from be-
low). In doing so, the wave number Hq , which enters 
into the argument of the Bessel function 0 0( )HJ q ρ  in 
the dispersion equation 0 0H∆ = , changes from 0Hq =  
at 0ω =  and 0zq =  to Hq →∞  at rω ω= . The num-
ber of the E-type eigenmodes remains finite in the same 
frequency range. This is because the transverse wave 
number Eq , which enters into the argument of the Bes-
sel function 0 0( )EJ q ρ  in the dispersion equation 

0 0E∆ = , changes from 0Eq =  at 0ω =  and 0zq =  to 

|| ( ) /E r rq cω ε ω=  at rω ω= . Curves 9 correspond to 
the dispersion dependences of the bulk-surface symmet-
ric E0s (see Fig. 2,a) and the hybrid HE1s (see Fig. 2,b) 
modes with s  = 3, 4, 5, 6 in the frequency range 

rω ω ω⊥< < . The density of the dispersion curves of 
the waveguide eigenmodes increases with radial index 
s  when their frequencies nsω  tend to the frequency ω⊥  
from below ( 0nsω ω⊥→ − ). In the frequency range 

||sω ω ω< <  the dashed parts of the dispersion branches 
10 correspond to the surface symmetric E-type waves in 
Fig. 2,a and the pseudo-surface hybrid HE1 1 waves in 
Fig. 2,b for which 2

Eq  < 0, 2
Hq  > 0 and || ( )ε ω  < 0, 

( )ε ω⊥  > 0. In Fig. 2,a, the branch of the surface waves 
(curve 10) intersects the curve Hq  = 0 (curve 1) and 
converts to the branch of the bulk-surface E0 1 waves for 
which 2

Eq  > 0. Note that the dispersion equation 0E
n∆ =  

has no solutions at the very point of intersection. In 
Fig. 2,b the branch of the pseudo-surface hybrid HE1 1 
wave converts continuously to the branch of the bulk-
surface HE1 1 wave at ||ω ω> . Lines 11 represent the 
spectra of the bulk-surface symmetric E0s (see Fig. 2,a) 
and the hybrid HE1s (see Fig. 2,b) modes. The E0 1 and 
the HE1 1 modes have the lowest frequencies in the fre-
quency range sω ω ω⊥ < < , whereas the E0 2 and the 
HE1 1 modes have the highest frequencies in the fre-
quency range ||sω ω ω< < . In the frequency range 

sω ω ω⊥ < <  the density of the dispersion curves of the 
waveguide eigenmodes increases with radial index s  at 

0ns sω ω→ −  when || ( )ε ω → +∞ , whereas in the fre-
quency range ||sω ω ω< <  the density of the corre-
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sponding curves increases with radial index s  at 
0ns sω ω→ +  when || ( )ε ω → −∞ . The dispersion 

curves go from one frequency band to another through 
the zero forbidden zone (the point of intersection of the 
branches and the curve Hq  = 0 in Fig. 2) [20]. Under 
the transition of the branches of the symmetric modes 
between frequency bands, the radial indices are in-
creased by one in the direction of increasing frequencies 

0sω . The series of curves 12 in Fig. 2,a show the spectra 
of the bulk-surface symmetric eigenmodes H0s with 
s  = 1, 2, and they are arranged in order of increasing 
frequencies 0sω . In Fig. 2,b the dispersion branch 12 
refers to the pseudo-surface waves (dashed line) in the 
frequency range ||sω ω ω< < , whereas at frequencies 

||ω ω>  it is for the bulk-surface hybrid EH1 1 waves 
(dash-and-dot line). Note that the conversion of the 
pseudosurface waves into the bulk-surface ones at the 
frequency ||ω , when ||ε  = 0, accompanies the above 
mentioned continuous transition of the dispersion 
branch from one frequency range to another. Lines 13 
are the dispersion curves of the bulk-surface symmetric 
E0s waves ( s  = 1, 2 in order of increasing frequencies 

0sω ) in Fig. 2,a and the hybrid EH1 2 waves in Fig. 2,b. 
As seen from Fig. 2, the E-type bulk-surface waves 

(curves 9) in the frequency range rω ω ω⊥< <  have 
negative group velocities and their dispersion depend-
ences approach asymptotically the straight line 

0 0/ / 0rω ω ω ω= +  at 0zq ρ →∞ . It is worthwhile to 
emphasize that the H0s eigenmodes do not exist in this 
frequency range because the dispersion equation 

0 0H∆ =  has no solutions there. The frequencies and the 
longitudinal wave numbers of the symmetric E0s modes 
are determined by the solutions of the dispersion equa-
tion 0 0E∆ = . Beyond the range rω ω ω⊥< < , the wave-
guide eigenmodes possess the positive group velocities. 
In the frequency range rω ω<  at 0zq ρ →∞  the disper-
sion curves of the bulk-surface eigenmodes approach 
asymptotically the straight line 0 0/ / 0rω ω ω ω= − , 
whereas in the frequency range ||sω ω ω< <  they ap-
proach the straight line 0 || 0/ / 0ω ω ω ω= − . It is inter-
esting to note that in the frequency range ||sω ω ω< <  
the surface, the pseudosurface, and the bulk-surface 
waves exist simultaneously at one and the same fre-
quency, but have different wavenumbers. 

The shaded areas in Fig. 2 show the regions of fre-
quencies and wave numbers where the eigenmodes do 
not exist in the waveguides under consideration (so-
called, forbidden zones). In these regions the corre-
sponding dispersion equations 0n∆ =  have no solu-
tions. In addition, the frequency band rω ω ω⊥< <  is 
forbidden for the H-type waves. 

Note that the qualitative behavior of the dispersion 
dependences of cylinder eigenmodes with 1n >  is simi-
lar to the dependences for the modes with 1n = . 

In Fig. 3, the radial distributions of the field compo-
nents | ( , , ) |zn zE qρ ω  of the bulk-surface symmetric E0s 

(see Fig. 3,a) and hybrid HE1s (see Fig. 3,b) eigenmodes 
with the indices s  = 1, 3 are shown as an example. The 
distributions of the field axial components are normal-
ized to their maximum values. Dependences 1 corre-
spond to the E0 1 and HE1 1 waves with frequencies 

rω ω<  and positive group velocities. Dependences 2 
correspond to the E0 3 and HE1 3 waves with frequencies 
in the range rω ω ω⊥< < . Note that the radial indices 
represent the number of the total field variations along 
the radial coordinate, reading from the symmetry axis of 
the waveguide. 

  
a b 

Fig. 3. Normalized field distributions of the spectral 
axial components of the symmetric E0s (a) and hybrid 

HE1s (b) eigenmodes ( s  = 1, 3) of the cylindrical 
waveguide along the radial coordinate 

It should be noted that in practice the finite energy 
losses in the cylinder material cause the predominant 
existence of the eigenmodes with the radial indices 
s  = 1, 2, 3, whereas the eigenmodes with s  > 3 are 
decayed [9, 21]. In fact, a weak decaying of the wave-
guide eigenmodes is provided by the concentration of 
their fields near the waveguide cylindrical surface. Such 
properties are inherent in the modes with azimuthal in-
dices 1n >> , for example, in the whispering gallery 
modes in quasi-optical structures [9]. 

The fact that the E-type bulk-surface eigenmodes of 
the cylindrical waveguide under consideration possess 
the negative group velocities in the frequency range 

rω ω ω⊥< <  is very important to practical applications 
because the interaction of these waves with a tubular 
beam of charged particles results in the absolute insta-
bility [7]. It is important to stress that these waves exist 
in an anisotropic waveguide with permittivities || 0ε >  
and 0ε⊥ <  that provides 2 0Eq >  and 2 0Hq < . 

2.2. SPECTRA OF COUPLED WAVES: 
ABSOLUTE AND CONVECTIVE INSTABILITIES 

Let us ascertain the nature of the instability that oc-
curs in the Cherenkov resonant interaction between the 
electron beam and the bulk-surface symmetric 
eigenmodes of the cylindrical waveguide ( 0 0z sq v ω= ) 
under the conditions ( , ) | |z bR q n ω δω<<  and an ex-
tremely small distance of the beam from the cylinder. 
Henceforward, we suppose that 0bρ ρ= . To this end, 
we will use the well-known Sturrock method [8, 19, 22] 
in the small areas in the vicinities of intersection points 
of the dispersion dependences of the cylinder 
eigenmodes with the beam waves 0 0/ zqω ω β ρ=  (of 
the so-called resonance points). 
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We note that only the E-type eigenmodes are unsta-
ble because only their fields have a nonzero component 
of the electric field 0 ( , , )z zE qρ ω  with which the non-
relativistic beam electrons interact. All conclusions 
about the nature of the instabilities remain valid also for 
the excitation of bulk-surface unsymmetrical modes of 
the cylindrical waveguide in the small areas in the vicin-
ities of the corresponding resonance points. 

Fig. 4 shows the dispersion curves corresponding to 
the symmetric eigenmodes of the cylindrical waveguide, 
and to the waves being radiated by the beam electrons, 
and to the space-charge waves of the beam. Lines 1, 2, 
4, 5 and curves 7 - 9 have the same physical meaning as 
those in Fig. 2. Line 3 is for the beam waves with fre-
quencies 0zq vω = . Lines 6 and 10 show the spectra of 
the slow and the fast space-charge waves of the beam, 
respectively. Points A and B correspond to the intersec-
tions of the dispersion dependence of the beam waves 
with the dispersion curves of the bulk-surface waves 
E0 3 and E0 1 in the frequency ranges rω ω ω⊥< <  and 
0 rω ω< < , respectively. The coordinates of these 
points ( 0 ,z resqr , 0/resω ω ) refer to the Cherenkov reso-
nances of the particle-wave type ( 0 0z sq v ω= ) [23]. The 
group velocities of the symmetric electromagnetic 
waves E0s are determined as follows [8]: 

,

1

z z res
res

E E
n n

gr
z q q

v
q

ω ω

ω

−

=
=

  ∂∆ ∂∆
= −  ∂ ∂  

, 

where the partial derivatives /E
n zq∂∆ ∂  and /E

n ω∂∆ ∂  
are calculated at the resonance points ( ,z resq , resω ). 

 
Fig. 4. Dispersion dependences of the cylinder symmet-

ric modes [curves (7)-(9)], and the beam waves (3),  
and the slow (6) and fast (10) space-charge waves  

of the beam 
In Fig. 4, the intersection points of the dispersion 

dependence of the slow SCWs (straight line 6) with the 
dispersion curves of the bulk-surface waves E0s in the 
frequency range rω ω ω⊥< <  (curves 9) are of special 
interest. These points with coordinates ( 0 ,z resqr , 

0/resω ω ) refer to the resonances with anomalous Dop-
pler effect of the slow bulk-surface waves with the cyl-
inder symmetric modes ( 0 0( , )z z b sq v R q n ω ω−− = ). 

Fig. 5 presents the dispersion dependences of the 
waves excited by the beam in the small areas in the vicini-
ties of point A with coordinates 0 ,z resqr ≈ 13.79, 

0/resω ω ≈ 4.13 (see Fig. 5,a), and point B with coordinates 

0 ,z resqr ≈ 13.016, 0/resω ω ≈ 3.896 (see Fig. 5,b). These de-
pendences are the solutions of the following equation [8]: 

,

1
2 2

0
0

( ) ( )
z z res

res

E
n

z gr z b
q q

av q v q

ω ω

δω δ δω δ ω
r ω

−

=
=

 ∂∆
− − =  ∂ 

,(10) 

where zqδ  is the small variation of the corresponding lon-
gitudinal wave number ,z resq . Note that equation (10) is 
the result of the transformation of equation (7) in the small 
areas in vicinities of resonance points. Lines 1 and 2 refer 
to the values 0zqδ =  and 0δω = , respectively. Line 3 is 
for the asymptote 0 0/ ( / )gr zv c qδω ω r δ= , and line 4 is 
for the beam wave 0 0/ zqδω ω βρ δ= . Curves 5 and 6 are 
for the bulk-surface modes E0 3 (see Fig. 5,a) and E0 1 (see 
Fig. 5,b) excited by the beam in the frequency ranges 

rω ω ω⊥< <  and 0 rω ω< < , respectively. 

  
a b 

Fig. 5. Dispersion curves of the coupled bulk-surface 
symmetric waves E0 3 and E0 1 excited by the beam  
in the small areas in the vicinities of points A (a)  

and B (b) in Fig. 4, respectively 
Since the equation (10) is a cubic one, then, as 

known, it has three different real roots or one real root 
and two conjugate complex roots. As one of these com-
plex roots has positive imaginary part, the instability 
develops. From Fig. 5, it follows that the instabilities 
occur at values 0 0 ,0z zq qρ δ ρ δ<  and hold up to values 

0 zqρ δ → −∞ . It is also clearly seen that that asymp-
totes 3 and 4 are inclined in different directions in 
Fig. 5,a and in the same direction in Fig. 5,b with re-
spect to line 2. The negative slope of asymptote 3 in 
Fig. 5,a and the positive slope of analogous asymptote 
in Fig. 5,b are caused by the negative and positive val-
ues of the group velocities of the E0 3 and E0 1 modes in 
the frequency ranges rω ω ω⊥< <  ( /grv c  ≈ –1.35⋅10-2) 
and 0 rω ω< <  ( /grv c  ≈ 1.7⋅10-2), respectively. In ac-
cordance with the Sturrock rule [19, 22], this signifies 
the occurrence of the absolute and convective instabili-
ties in corresponding frequency ranges. 

Note that the absolute and convective instabilities 
are used for the generation and amplification of elec-
tromagnetic oscillations, respectively [15, 19, 24, 25]. 

2.3. ANALYSIS OF INSTABILITY INCREMENTS 

Let us dwell on the dependences of instability in-
crements Imδω  for the E-type coupled bulk-surface 
waves on the values of azimuthal n  and radial s  mode 
indices in the frequency range rω ω ω⊥< < . These in-
crement values are calculated using formula (8) under 
the Cherenkov resonance conditions (when 0bρ ρ= ) 
and the formula (9) under the conditions of the reso-
nance with anomalous Doppler effect (when 0bρ ρ> ). 
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The values of the absolute instability increments 
0Im /ω ω  of the excited bulk-surface modes E0s and 

HEns with azimuthal indices in the range n  = 1…20 for 
the radial indices s  = 3, 4, 5 are shown in Fig. 6. Note 
that the dispersion dependences for the modes with 
n  = 0, 1 (curves 9) are only shown in Figs. 2 and 4. 
Fig. 6,a shows the increments of the waves excited by 
the beam under the Cherenkov resonance conditions, 
when the resonant interaction between the beam elec-
trons and the eigenmodes of the solid-state cylindrical 
waveguide takes place. Fig. 6,b presents the increments 
of excited waves under the conditions of the resonance 
with anomalous Doppler effect, when the interaction 
between the beam SCWs and the waveguide 
eigenmodes holds. The increment values are grouped in 
accordance with the radial index s  of cylinder 
eigenmodes. The dependences of the increment values 
of the E0s and HEns modes with the radial indices s  = 3, 
4, 5 on the azimuthal index n  are labeled by the num-
bers 1, 2, and 3, respectively. As evident from Fig. 6, in 
the frequency range rω ω ω⊥< <  the instability incre-
ment values of the E-type under the Cherenkov reso-
nance conditions are two orders of magnitude higher 
than for the Doppler effect. The hybrid modes with 
three field variations along the radial coordinate (HEn3 
modes) have the maximum increments. In Fig. 6, the 
presented dependences have extreme maxima. It is no-
table that these maxima belong to the coupled hybrid 
HEns modes of the whispering gallery [9]. As seen from 
Fig. 6, as the radial index s  increases, the azimuthal 
index n  of the mode with the maximum increment de-
creases. 

  
a b 

Fig. 6. Increment values of the absolute instability  
of the coupled bulk-surface waves E0s and HEns under 

the Cherenkov resonance conditions (a)  
and under the conditions of the resonance  

with anomalous Doppler effect (b) 
In Fig. 7, the dependences of the instability incre-

ment values of excited E03 and HEn3 modes on the azi-
muthal index n  are shown for different radial distances 
between the cylinder and the electron beam 0ρρ −b , 
when the anomalous Doppler effect is realized. The 
dependences corresponding to the values 0ρρ −b  = 0.1, 
0.11 and 0.14 cm are labeled by the numbers 1, 2 and 3, 
respectively. It is seen that the coupled whispering gal-
lery modes, which are excited by a tubular electron 
beam moving at a minimum distance above the cylin-
der, possess the greatest values of the increments. The 
increment values of excited waves decrease with the 
increase of the distance between the electron beam and 
the cylinder 0ρρ −b . In represent dependences, the 

HE9 3 mode has the greatest increment. From Fig. 7 it 
follows that the azimuthal index n  of the mode pos-
sessed the maximum increment decreases with the in-
crease of 0ρρ −b . It is equivalently that the frequency 
of the most nonstable wave decreases. 

 
Fig. 7. Instability increment values of the system  

with the coupled bulk-surface waves E03 and HEn3  
at different distances 0bρ ρ−  between the cylinder  

and the electron beam 
Thus, the analysis of the absolute instability of the 

system under consideration suggests that the instability 
occurs in the frequency range rω ω ω⊥< <  where 

( ) 0ε ω⊥ <  and || ( ) 0ε ω > , and the largest values of the 
increments correspond to the bulk-surface hybrid whis-
pering gallery modes HEn3. 

CONCLUSIONS 
The instability of a nonrelativistic tubular electron 

beam that moves in vacuum above an anisotropic solid-
state cylinder has been theoretically examined. It has 
been assumed that an electron beam is infinitely thin in 
the radial direction and the components of the cylinder 
permittivity tensor possess the frequency dispersion. 
The dispersion equations for eigenmodes of the cylinder 
and for the coupled modes of the system have been de-
rived. The analysis of the eigenmode properties and the 
classification of the eigenmodes have been performed. 
The spectra of the cylinder symmetric and unsymmet-
rical eigenmodes have been determined. It has been 
revealed that the bulk-surface waves of the E-type have 
negative group velocities over a certain frequency 
range. It has been shown that the existence of such 
waves is caused by the anisotropic properties of the 
waveguide with the components of the permittivity 

0ε⊥ <  and || 0ε > , which provide fulfillment of the 
conditions 2 0Hq <  and 2 0Eq >  in a unique fashion. The 
existence of the E-type surface symmetric waves and 
the pseudo-surface hybrid waves of the E- and the H-
types in the cylindrical solid-state waveguide has been 
shown. It has been found that there are frequency ranges 
where the surface waves, the bulk-surface waves and 
the pseudo-surface hybrid waves can exist at one and 
the same frequency, but with different wave numbers. 
The ranges of both the frequencies and the wave num-
bers where the eigenmodes in the waveguide under 
study cannot exist have been specified (so-called for-
bidden zones). The increments of the instabilities caused 
by both the Cherenkov and the Doppler effects have 
been analyzed. It has been demonstrated by the Sturrock 
rules that the absolute and convective instabilities of the 
E-type bulk-surface waves occur in different frequency 
ranges. The numerical analysis of the dependences of 
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the instability increments of the system under considera-
tion with the symmetric and the bulk-surface hybrid 
waves of the E-type on the values of azimuthal and ra-
dial mode indices for different distances between the 
electron beam and the cylinder has been performed. It 
has been established that the coupled bulk-surface 
whispering gallery HEn3 modes excited by the beam 
have the largest values of the increments. 

Thus, the use of the anisotropic dispersive material 
with the permittivity components ( ) 0ε ω⊥ <  and || ( ) 0ε ω >  
as the delaying medium makes possible the generation 
of the bulk-surface waves over a certain frequency 
range and eliminates the need for creating artificial 
feedbacks in slow-wave structures. 

REFERENCES 
1. N.S. Ginzburg, V.Y. Zaslavskii, A.M. Malkin, and 

A.S. Sergeev. Relativistic surface-wave oscillators 
with 1D and 2D periodic structures // Technical 
Physics. 2012, v. 57, iss. 12, p. 1692-1705.  

2. N.S. Ginzburg, V.Y. Zaslavskii, A.M. Malkin, and 
A.S. Sergeev. Quasi-optical theory of coaxial and 
cylindrical relativistic surface-wave oscillators // 
Technical Physics. 2013, v. 58, iss. 2, p. 267-276.  

3. A.V. Dormidontov, A.Ya. Kirichenko, Yu.F. Lonin, 
A.G. Ponomarev, Yu.V. Prokopenko, G.V. Sotnikov, 
V.T. Uvarov, and Yu.F. Filippov. Auto-oscillatory 
system based on dielectric resonator with whisper-
ing-gallery modes // Technical Physics Letters. 2012, 
v. 38, iss. 1, p. 85-88. 

4. K.V. Galaydych, Yu.F. Lonin, A.G. Ponomarev, 
Yu.V. Prokopenko, and G.V. Sotnikov. Mathematical 
model of an excitation by electron beam of “whis-
pering gallery” modes in cylindrical dielectric reso-
nator // Problems of Atomic Science and Technology. 
Series “Plasma Physics”. 2010, №6, p. 123-125. 

5. K.V. Galaydych, Yu.F. Lonin, A.G. Ponomarev, 
Yu.V. Prokopenko, and G.V. Sotnikov. Nonlinear 
analysis of mm waves excitation by high-current 
REB in dielectric resonator // Problems of Atomic 
Science and Technology. Series “Plasma Physics”. 
2012, №6, p. 158-160. 

6. V.A. Avgustinovich, S.N. Artemenko, A.I. Mashchenko, 
A.S. Shlapakovskii, and Yu.G. Yushkov. Demon-
strating gain in a dielectric Cherenkov maser with a 
rod slow-wave system // Technical Physics Letters. 
2010, v. 36, iss. 3, p. 244-247. 

7. Yu.O. Averkov, Yu.V. Prokopenko, and 
V.M. Yakovenko. The instability of hollow electron 
beam interacting with plasma-like medium // Tele-
communications and radio engineering. 2016, v. 75, 
iss. 16, p. 1467-1482. 

8. Yu.O. Averkov, Yu.V. Prokopenko, and 
V.M. Yakovenko. Interaction between a tubular 
beam of charged particles and a dispersive met-
amaterial of cylindrical configuration // Physical Re-
view E. 2017, v. 96, iss. 1, 013205. 

9. A.Ya. Kirichenko, Yu.V. Prokopenko, Yu.F. Filippov, 
and N.T. Cherpak. Quasi-optical solid-state resona-
tors. Kiev: “Naukova dumka”, 2008, 286 p. (in 
Ukrainian). 

10. V.E. Pahomov. To the Vavilov-Cerenkov radiation 

theory in anisotropic media with boundaries // Pro-
ceedings of the Lebedev physics institute. 1961, 
v. 16, p. 94-139. 

11. V.P. Silin. Electromagnetic waves in artificial peri-
odic structures // Uspephi fizicheskikh nauk. 2006, 
v. 175, iss. 5, p. 562-565. [Physics-Uspekhi. 2006, 
v. 49, iss. 5, p. 542-545] (in Russian). 

12. N.L. Dmitruk, V.G. Litovchenko, V.L. Strizhevskiy. 
Surface polaritons in semiconductors and dielec-
trics. Kiev: "Naukova dumka", 1989, 376 p. (in 
Ukrainian). 

13. A. Kolomenskiy. Cherenkov radiation and polariza-
tion losses in a uniaxial crystal // Proceedings of the 
USSR academy of sciences. 1952, v. 86, iss. 6, 
p. 1097-1099. 

14. Yu. O. Averkov, Yu. V. Prokopenko, V. M. Yakovenko. 
Instability of a tubular electron beam moving over a 
dielectric cylinder // Technical Physics. 2017, v. 62, 
iss. 10, p. 1578-1584. 

15. L. A. Vaynshteyn, V. A. Solntsev. Lectures on ul-
trahigh-frequency electronics. Moscow: "Sovetskoe 
Radio", 1973, 400 p. (in Russian). 

16. M. V. Kuzelev, A. A. Rukhadze, and P. S. Strelkov. 
Plasma relativistic microwave electronics. Moscow: 
Publishing House of the N. E. Bauman Moscow State 
Technical University, 2002, 544 p.  

17. R. S. Brazis. Active and nonlinear interactions under 
the excitation of plasma-type polaritons in semicon-
ductors // Lithuanian physical collection. 1981, 
v. 21, iss. 4 p. 73-117.  

18. N. N. Beletskiy, V. M. Svetlichniy, 
D. D. Khalameyda, V. M. Yakovenko. Electromag-
netic phenomena of microwave in inhomogeneous 
semiconductor structures. Kiev: “Naukova dumka”, 
1991, 215 p. (in Ukrainian). 

19. A. I. Akhiezer, I. A. Akhiezer, R. V. Polovin, 
A. G. Sitenko, and K. N. Stepanov. Plasma electro-
dynamics. V.1. Linear Theory. Oxford-New-York: 
"Pergamon press", 1975, 428 p. 

20. A. P. Vinogradov, A. V. Dorofeenko, A. M. Merzlikin, 
A. A. Lisyansky. Surface states in photonic crystals 
// Uspephi fizicheskikh nauk. 2010, v. 180, iss. 3, 
p. 249-263. [Physics-Uspekhi. 2010, v. 53, iss. 3, 
p. 243-257] (in Russian). 

21. A. Barannik., N. Cherpak, A. Kirichenko., 
Yu. Prokopenko, S. Vitusevich, and V. Yakovenko. 
Whispering gallery mode resonators in microwave 
physics and technologies // Int. Journal of micro-
wave and wireless technologies. 2017, v. 9, iss. 4, 
p. 781-796. 

22. P.A. Sturrock. Non-linear effects in electron plasmas 
// Proceedings of the royal society A. 1957, v. 242, 
iss. 1230, p. 277-299. 

23. Yu.V. Bobilev, M.V. Kuzelev. Nonlinear phenome-
na in electromagnetic interactions of electron beams 
with plasma. Moscow: “PhysMathLitt”, 2009, 456 p. 
(in Russian). 

24. R. Kompfner. The invention of the traveling-wave tube. 
San Francisco: "San Francisco press", 1964, 30 p. 

25. D.I. Trubetskov and A.E. Hramov. Lectures on 
u ltrahigh-frequency electronics for physicists. V.1. 
Moscow: “PhysMathLitt”, 2003, 496 p. (in Russian). 

Article received 16.05.2018 

https://doi.org/10.1134/S1063784212120110
https://doi.org/10.1134/S1063784212120110
https://doi.org/10.1134/S1063784213020102
https://doi.org/10.1134/S106378501201021X
https://doi.org/10.1134/S106378501201021X
http://vant.kipt.kharkov.ua/TABFRAME.html
http://vant.kipt.kharkov.ua/TABFRAME.html
http://vant.kipt.kharkov.ua/TABFRAME.html
http://vant.kipt.kharkov.ua/TABFRAME.html
http://vant.kipt.kharkov.ua/TABFRAME.html
https://doi.org/10.1134/S1063785010030132
https://doi.org/10.1134/S1063785010030132
https://doi.org/10.1615/TelecomRadEng.v75.i16.50
https://doi.org/10.1615/TelecomRadEng.v75.i16.50
https://doi.org/10.1615/TelecomRadEng.v75.i16.50
https://doi.org/10.1103/PhysRevE.96.013205
https://doi.org/10.1103/PhysRevE.96.013205
https://ufn.ru/ru/articles/2006/5/j/
https://ufn.ru/ru/articles/2006/5/j/
http://dx.doi.org/10.1070/PU2006v049n05ABEH006036
http://dx.doi.org/10.1070/PU2006v049n05ABEH006036
https://doi.org/10.1134/S1063784217100061
https://doi.org/10.1134/S1063784217100061
https://ufn.ru/ru/articles/2010/3/b/
https://ufn.ru/ru/articles/2010/3/b/
https://doi.org/10.3367/UFNe.0180.201003b.0249
https://doi.org/10.3367/UFNe.0180.201003b.0249
https://doi.org/10.1017/S1759078716000787
https://doi.org/10.1017/S1759078716000787
https://doi.org/10.1017/S1759078716000787
https://doi.org/10.1098/rspa.1957.0176
https://doi.org/10.1098/rspa.1957.0176


ISSN 1562-6016. ВАНТ. 2018. №4(116) 12 

 

ВЗАИМОДЕЙСТВИЕ ТРУБЧАТОГО ПУЧКА ЗАРЯЖЕННЫХ ЧАСТИЦ 
С АНИЗОТРОПНЫМ ДИСПЕРГИРУЮЩИМ ТВЕРДОТЕЛЬНЫМ ЦИЛИНДРОМ 

Ю.О. Аверков, Ю.В. Прокопенко, В.М. Яковенко 

Изучено взаимодействие нерелятивистского трубчатого потока заряженных частиц с немагнитной анизо-
тропной диспергирующей средой цилиндрической конфигурации. Обнаружена абсолютная неустойчивость 
объёмно-поверхностных волн, обусловленная особенностями свойств анизотропного цилиндра. Резонанс-
ный характер частотных зависимостей диэлектрической проницаемости цилиндра приводит к появлению 
участков дисперсионных кривых собственных объёмно-поверхностных волн E-типа с отрицательной груп-
повой скоростью. Показано существование в цилиндре собственных поверхностных волн E-типа и псевдо-
поверхностных волн E- и H-типов. 

ВЗАЄМОДІЯ ТРУБЧАСТОГО ПУЧКА ЗАРЯДЖЕНИХ ЧАСТИНОК  
З АНІЗОТРОПНИМ ДИСПЕРГУЮЧИМ ТВЕРДОТІЛЬНИМ ЦИЛІНДРОМ 

Ю.О. Аверков, Ю.В. Прокопенко, В.М. Яковенко 

Вивчено взаємодію нерелятивістського трубчастого потоку заряджених частинок з немагнітним анізот-
ропним диспергуючим середовищем циліндричної конфігурації. Виявлена абсолютна нестійкість об'ємно-
поверхневих хвиль, що обумовлена особливостями властивостей анізотропного циліндра. Резонансний ха-
рактер частотних залежностей діелектричної проникності циліндра призводить до появи ділянок дисперсій-
них кривих власних об'ємно-поверхневих хвиль E-типу з негативною груповою швидкістю. Показано існу-
вання в циліндрі власних поверхневих хвиль E-типу і псевдоповерхневих хвиль E- та H-типів. 
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