NUMERICAL APPROACH FOR SIMULATION OF PALMER COOLING

M.E. Dolinska, N.L. Doroshko
Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine
E-mail: kinr@kinr.kiev.ua

In this paper the time domain algorithm is described and applied for the Palmer Cooling method. The possibility
of using the Palmer system in such case for simultaneous longitudinal and transverse cooling by a suitable choice of
the pickup to kicker distance was described by Hereward [1, 2]. Using his method the special computer code has
been developed to calculate beam cooling in time domain approach.
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INTRODUCTION

For improving beam quality in storage rings is used
Stochastic cooling (SC). It is also used for accumulation
of high intensity ion beams. In our previous papers, the
main principles of stochastic cooling were described.
Many theoretical results for the stochastic cooling sys-
tem, which is planned to be used in the Collector Ring
(CR) of the FAIR complex (Darmstadt, Germany), were
presented [3 - 7].

The momentum cooling and antiproton accumula-
tion are usually simulated by numerically solving the
Fokker-Planck (FP) equation [1]. This approach howev-
er can not be easily extended to account for many real-
life complications, particularly the two-way transverse-
longitudinal coupling due to the finite betatron size at
the pickup.

An alternative approach to stochastic cooling simu-
lation can be described as the macroparticle simulation
using the discrete particles and the time- domain re-
sponse functions of the pickup (PU) — kicker (KK) cir-
cuits. The beam dynamic under influence of the stochas-
tic cooling forces can be studied by a particle by particle
and turn by turn in the time-domain treatment. This
treatment escapes the involvement of complicated, un-
certain and changing frequency spectra, which anyhow
are likely to be incomplete by considering Fokker-
Planck equation and its solution. To keep the computa-
tion times within reasonable limits, the scaling law that
cooling times are proportional to the number of particles
(for zero preamplifier noise and all other parameters
remaining unchanged, except the gain) has been applied
throughout. A typical simulation super-particle number
is about (1...10)-10%

1. THE NUMERICAL CODE
FOR CALCULATION OF COOLING
BY PALMER METHOD

The Collector Ring (CR) at FAIR [3] is going to be
used for fast cooling of hot ions coming from separa-
tors. This ring will be equipped with stochastic cooling
systems, which can allow to cool beam by different
methods: TOF (time of flight), notch filter and Palmer.
The Palmer cooling system will be used as a pre-cooling
of radioactive ion beams (RIBs), since this system al-
lows to avoid the Schottky band overlap of ions, for
which the # — accelerator slip factor is rather large
0.178. The Palmer cooling will be useful in the first
stage of stochastic cooling process at the CR. It serves
to detect signals in all 3 phase space planes. After the
rms Ap/p (root mean square of momentum spread)
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decreases below 0.1%, it is possible to switch off the
signals from the Palmer Pick up and turn to Notch filter
cooling.

The initial normalized particle coordinates x.; and
x’ci are generated and transformed to the normalized
coordinated X, ; and X",

Xp =ty Xp= By Xo Pk, (1)
\/EPU VPBpuy
Here Sy and apy are Twiss parameters of a ring at
Pick up (beta and alfa functions). The normalized coor-
dinates are used because of the simple modeling of
betatron oscillation in the ring. The particle amplitude is
defined

A2 = X214 X2,
The maximum radius of A? is interpreted as emit-

tance ¢ The particle coordinate is generated with a
Gaussian distribution  with the o=¢q Where

_ A2
grms - Arms )

1. The initial momentum deviation Ap/p; is assigned
to each particle. The initial particle ensemble has the
Gaussian momentum distribution with 6 = Ap/Prms=0rms-

2. The time length t; of one sample is defined using
the bandwidth characteristic of cooling system W

For a certain number of samples ns the total time
length of beam is calculated: Ty=nst;. For each particle
the initial time t; is generated within the time domain
from O up to T, with a homogenous probability. Now
one can say that each particle belongs to one of the
samples (from 1 to ny). This is important issue, which
characterizes the particle ensemble of each sample. In
the code each sample is analyzed turn by turn. Now the
cooling process together with beam dynamic in the ring
is calculated. It should be noted that Palmer cooling is
characterized by a fact that a test particle has a horizon-

tal orbit displacement x; = Dpy A_pp proportional to its
1

momentum error Ap/p, where Dpy is the value of the
“orbit dispersion function” at the pickup as determined
by the focusing properties of the storage ring. This dis-
placement is detected by horizontal position pickup. It is
assumed that the particles momentum contribution dom-
inates at the pickup.

3. The single particle displacement at the PU is cal-

culated by X,; = X, + Dy py ap , Where Dy py is the
P
normalized dispersion function at PU.

ISSN 1562-6016. BAHT. 2018. Ne3(115)


mailto:kinr@kinr.kiev.ua

4. At the PU the accessory of a particle to the certain
sample s is defined and saved. Belonging to the certain
sample depends on its time value t;. The average value

of <X,> is calculated for each sample s by
1

(Xn), :N_ani , where N is a number of parti-
S =1

cles in sample s.

5. On the way from PU to KK the particles migrate
from sample to sample, which means the time of each
particle at KK has new value and calculated by

t =t + AL, At =Tpe |77PK|£ , At; is a time change of
P
the particle. For each sample the creation of new en-
semble with a new time characteristic is called as “mix-
ing”.
6. The particle coordinates at the KK have also
mixed and new values due to betatron oscillation recal-

culated by
Xn,K ={ CPK SPK:| Xn,P (2)
Xr'LK _SPK CPK xr,1,P

Cor =Cos(Aup )i Spic =sin(Autpy ); Auex is a
phase advance fro PU to KK. One can see that the beta-
tron oscillation is considered as simple rotation in nor-
malized coordinates with radius A.

7. At the KK the accessory of particle to certain
sample s is defined and saved. Belonging to a certain
sample s depends on its time value t;. Depending on the
sample number s the single particle correction is calcu-
lated by

A0 _AP 8 x,) cap-s(a),  (3)

Xp=Xp+9-(Xn)g e S(AL) . (4)

The g is a normalized gain, a,; is damping factor,
which reduce the gain efficiency due to the noise. In the
code this factor is calculated by formulae given in chap-
ter 3. The s(At) is a time profile of the signal, which is
calculated by the formula given in chapter 2. The
Egs. (3) and (4) describe the cooling effect in the time
domain approximation. One can see that for the Palmer
method the momentum error of particles is corrected
proportionally to the center gravity of sample, which
characterized by average value of coordinate Xi.

8. On the way from KK to PU the particles migrate
again from sample to sample, which means the time of
each particle at PU is changed and calculated by

G=h+AG, Ay :TKP‘UKP‘AT)p '

9. The particle coordinates at the PU are rearranged

and recalculated by
Xn,P :|: CKP SKPi|(Xn,KJ
xr'1,P _SKP CKP Xr;,K
advance from KK to PU.

10. At the position of PU the analyses of the rms
values of Ap/p.ms and emittance e, are performed and
saved.

11. The next turn is calculated. Go to step 4.
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2. THEORETICAL DESCRIPTION
OF THE MAIN PARAMETERS
OF STOCHASTIC COOLING

2.1. GAIN FACTOR
For momentum cooling the gain factor g can be ex-
pressed [1] as

n2
2¢2
e‘fo ) R,
le N_efeRyN 5)

oE W (E/e)%

gp=

Here the sum goes over all harmonics in the pass-
band, i.e. from fi,=nif., t0 fra=nofey and average im-
pedance can be approximately calculated by

1
R, =——>» R..
o (nz_nl)z "

For the transverse cooling the gain factor g can be
expressed as [4]

47NZ2e%c 83\’
J¢ _—I\/npnkzoPUZUK (&j Ga\/ﬂpﬁk : (6)

meA E07IBZ

Zopy and Zy transverse impedance of Pick-up and Kick-
er; Rpy and Rk input impedance of network (shunt im-
pedance); n, and n, are number of Pick-up and Kicker
units; g, and fy are betatron functions at Pick-up and
Kicker; fgpy and fyky are geometry factors of electrodes;
G, is an electrical gain; Z; and A; are the ion charge and
mass; f, is a revolution frequency; e is the electron
charge; f=v/c; v is a relativistic factor; N is the number
of particles; m, is the middle harmonic.

2.2. NOISE

The gain damping factor a, can be calculated by
a, =1—%(1+Up) for momentum cooling and
ay :1_%(1+Ux) for betatron cooling. Here U, and Uy

are the noise-to-signal ratio. For Palmer cooling this
value is defined by [10]
2 2

2 o2 2
—_fms 8 and U, = Dpy Srms 4+ -5

P R2 2 2 '
DPU §rms é‘rms Arzms Arzms
In this equation the noise-to-signal ratio ;52 /5r2ms
can be calculated according the formula

5¢  1010KT,
Stns  2NZ7e®fon,RA
The v is noise of the amplifier (usually 1.5...3.0 dB);
R is input resistance of the amplifier; A is a sensitivity
factor; N — number of particles in the beam; e — electron
charge; fo — revolution frequency; n, — number of pick-
ups; k — Boltzmann constant; T, — temperature (K). The
possible increase of U, as the beam shrinks, and many
construction details, are hidden in 1. As first approxima-
tion, in the code it is assumed that the sensitivity factor

2
calculated by Ap(8ms) = %% and 4, (&;ms) = 4o eéms )
0 0

The parameter 4y is geometrical factor, which char-
acterizes the PU. In simulation it is assumed 4,=0.5.
00=(Ap/Prms)o is initial rms momentum spread of beam.
€0=(erms)o IS the initial rms emittance. These equations
reveal that the noise limits the cooling rate.
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2.3. KICKER ACTION

Synchronism between particles and their correcting
pulse on their way from pick-up to kicker must be
properly calculated. In the time domain approach the
incoherent heating effect is calculated in a simpler way
compare to that is done by Focker-Planck Equation. It is
assumed that the action at the kicker produces the time-
pulse curves. These curves can be calculated by inverse
Laplace transformation of a single passage of sample for
a certain bandwidth cooling system. As a result of such
transformation the signal shape similar to that shown in
Fig. 1, can be obtained.

s(% St oy

1

p

p2
At
t

Fig. 1. Approximated correcting pulse in the kicker

In Fig. 1 At is the time error of the particle p2 with
respect to the p1, which is located in the middle of the
sample and synchronized with an ideal test particle p1.
The particle p2, which arrives at KK with a time delay
At, gets a partial kick. T is the useful width of the cor-
rection pulse and usually equal to the sample length t;
for low pass system. But T, is shorter than ts for a high
frequency band-pass system. (this is subject is still un-
der study).

For simplification, in this work a parabolic response

model of the form
At
t)=1- , 7
-2 2

C
for Palmer and TOF signal approximation is used. In
Fig. 2 (left) the signal shape calculated by Eq. (7) is
shown. Here is assumed that T=ty/2.3, t; is the time
length of sample.

1.25

ideal signal

1,004
0,754
0,504
TOF signal
0,254
0,00 ——
-0,254

-0,50
-03

st

03

1
Sample |ength [s]
T T T

3

notch signal

T
ideal signal

-0,3 ~0I,2 -61 0?0 071 0j2 03

Sample length [ns]
Fig. 2. Test signals s(t) reproducing a signal shape (left)
for Palmer and TOF (right) for the Notch filter method
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For the notch filter the signal shape is approximated by

2
. |At| - T, g
s(t) =1 (Tc , ®)
where T.=t/4.3. The signal shape calculated by Eq. (8)

is shown in Fig. 2 (right).

3. ANALYTICAL APPROACHES
FOR STOCHASTIC COOLING

In this chapter the analytical formulae are presented
in order to cross check the results of simulation obtained
with numerical method given in this work. Using these
formulae the beam evolution is calculated and results
are compared with time domain approach described
above. A simple, but, useful, calculation of the stochas-
tic cooling by analytical formulae can be done using
cooling rates 1/z. The set of equation are solved to cal-
culated rms emittance and rms momentum spread a each
time step i with a time step of At:

At i+l i
S;EIs = Erms expE_ _J Ap = Ap ex p[ . (9)
P rms Tp

Th P rms

Here the cooling rates 1/z are calculated by formulae [5]
1 W
1 —W[ngB(t) —g2(M(®) +U, 1)) and
Tp
W

—= _W[_ 29,,B(t)cos(Aup ) — 95 (M () +U,, (t))] .
h

The parameters B, M, U are time dependent func-
tions. The average mixing factor M(t) for the Gaussian
distribution is expressed as

:—1 In[n—zj-
Zm‘n‘&(t)rmsAn nl
The Jp (t) is a rms momentum spread, which de-
pends on time. The noise-to-signal rations U, and Uy, for
Palmer method are calculated by

i 2
_ EmsPru * Xnpu

Up R 2
p
D
PU[ p rms]

2T, Z,

TN a2 2.0
Ne fOnpﬁPUZpt‘grms

N
Xppy =10%0kTg, v =1.5dB - noise. (10)
For Palmer or TOF method

B(t) = cos(27r|77PK [Ny o (L) rms). For Notch filter
cooling B(t) zcos(0.57r77eff nzao(t)rms). Z, is char-
acteristic impedance of the electrode; N — number of
particles in the beam; e — electron charge; f, — revolution
frequency; n, — number of pick-ups, k — Boltzmann
constant; T, — temperature (K); S, — beta function at the
pickup. Aupk — phase advance between pick-up and
kicker.

The optimal value of the g; can be calculated [4] as
B(t) cos(Appk )

M (t) +U (1)

Some useful analytical formulae formula, which can
be used for test simulations.

The noise-to-signal ration can be expressed through the
noise electron current 1, and Schottky currect at PU Ipy.

U= |§ :ﬂ'Drms
EY

Gt opt =

| PU , ers I SC ,
h rms 2
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The 4 is sensitivity factor; h — half of gap of electrodes;
I, — noise current due to temperature of electronic

= /@ and I 5. =426’ NfgW — Schottky current.

4. NUMERICAL SIMULATIONS

4.1. TEST CALCULATION: COMPARISON
NUMERICAL WITH ANALYTICAL
CALCULATIONS

The special tracking code, where the Palmer cooling
is modelled in the time domain approach, has been writ-

2000 — — y

ten in FORTRAN language. As an example a set of
parameters for a beam and CR cooling system [5] is
used. The beam cooling with the Palmer method has
been performed over the time of 5s. In the Fig. 3 one
can observe the Probability Density Function (PDF)
evolution of dp/p and emittance during cooling time at
each 0.4 s. In Fig. 4 the evolution of rms values of dp/p
and emittance calculated by tracking code and by the
analytical formulae Eqg. (9, 10) are shown. Here the gain
factor g is 0.5.
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Fig. 3. Probability Density Functions (PDF) calculated by tracking code in time domain approach. Cooling
of an Ur beam: horizontal beam profiles (left) and momentum spread distribution recorded every 0.4 s
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Fig. 4. Evolution of the emittance (left) and momentum spread (right) calculated with the Palmer method
in the time domain approach and by the analytical formulae for the CR machine.
Parameters used in calculation are given in [5]. The gain factor g = 0.5

4.2. PALMER COOLING AT THE CR

In this chapter the preliminary simulations of beam
cooling with the Palmer method are presented and com-
pared with an analytical model. In the code the Palmer
cooling is modeled by following steps.

Fig. 5 shows the results of simulation for uranium
beam cooling at the CR for the different gain factors.
The parameters of the CR ring and beam are given in
[5]. One can see that the optimal fast cooling in both
planes can be performed if the gain g is 0.4...0.5 that
corresponds to the amplification factor of 150 dB. Here
the ideal signal is assumed at the Kicker (see chapter 2).
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The realistic signal shape must be obtained from inverse
Laplace transformation and included in simulations.
Under given above conditions the rms Ap/p below 0.1%
can be achieved in 0.5 s, while the rms emittance is
cooled down to about 8 mm mrad as shown in Fig. 5.
Simulations obtained with analytical formulae
Egs. (9), (10) show approximately the similar results,
which are shown in Fig. 6. Here the one can see that the
optimal gain factor is 0.3...0.4. Analytical model pre-
dicts that the rms emittance after 0.5 s is above
10 mm-mrad, while the rms Ap/p is 0.1%.
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Fig. 5. Evolution of the rms emittance and the momentum spread of the U beam
for different gains and obtained in numerical calculation by a time domain method
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Fig. 6. Evolution of the rms emittance and the momentum spread of the U beam during cooling
for different gains and obtained in calculation by analytical formula

CONCLUSIONS

The precise method for the higher dimensions Palm-
er cooling calculations has been presented. The special
code has been developed to investigate the beam dy-
namic in storage ring, where the stochastic cooling
process is used. Presented method can be used for TOF
and Notch filter cooling systems.

Presented method can be used for the wide range of
tasks and will be applied to the realistic parameters for
studying the dynamics of particles in storage rings.
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YUCJIEHHBIMA HOAXO0/ JJ51 CAMYJISALAU OXJIAKIEHUS METO10M PALMER
M.E. lonunckasa, HJI. /lopouwixo

OmuceiBaercs anroput™ «timedomainy, koTopblid npuMeHsieTcst Ui oxiaxaeHus Palmer-merogom. Bo3moxkHO-
CTH mpuMeHeHust Palmer-cuctembl Ui MPOJONBHOTO M MOMEPEYHOrO OXJIAKACHHH MyTeM Moa00pa pacCTOSHUS
MexIy PiCK-Upu Kukep-MarHWTamu ObLIH ommcaHbl B paborax Xepemanbaa [1, 2]. Mcmonb3yst maHHBIN MOAXO,
OblTa paspaboTaHa KOMITBIOTEpPHAS MpOrpaMMa JJisi PacueToB MapaMeTpOB OXJIaXIeHHs ¢ mpuMeHeHnem «timedo-
Main»-MeTOIHNKH.

YUCEJBbHUM NIAXLI JJISI CUMYJISILITE OXOJIOI)KEHHSI METOJOM PALMER
ML.E. /lonincoka, HJI. /lopouiko

OnucyeTbest anmropuT™ «timedomainy, SIKAN 3aCTOCOBYETHCSI JJIsl OXOJIOKCHHsT Palmer-meromom. MoskauBOCTI
3acrocyBaHHsi Palmer-cuctemu Ui MO3IOBXXHBOIO 1 MOMEPEYHOrO OXOJOKEHB IIJSIXOM MiA00py BIICTaHI Mik
pick-up i1 kikep-marHitTamu Oynu omucaHi B poborax Xepesaipaa [1, 2]. BukopucroByrwoun aaHui miaxia, Oyma
po3pobIieHa KOMIT'IOTEpHA TpoTpamMa i po3paxyHKIiB MapaMeTpiB 0XOIO0PKSHHS 13 3aCTOCYBaHHAM «timedomainy-
METO/IUKH.
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