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The model of coupled oscillators plays an important role in modern physics. It is used for description of various
processes: from oscillations of atoms in solid states to electromagnetic oscillations in slow-wave structures. The
model with “short-range coupling” is the most widely used, for which a separate oscillator is coupled with two adja-
cent ones only. There are two main types of oscillators coupling: “capacitive” (“electric”, “power”) and “inductive”

CLINT3

(“magnetic”,

inertial”). In the first case, the coupling is proportional to the amplitudes of oscillations in the adjacent

cells, in the second one — to the second derivative of these amplitudes. For numerical study of dynamics of a system
that can be described by a model of coupled oscillators with an "inductive" coupling, it is necessary to find explicit
expressions for the second derivatives of the amplitudes. To find these expressions, we propose to use the methods
of solving of difference equations. The results of the analysis of this method are given in the paper.

PACS: 29.20.Ej
INTRODUCTION

The model of coupled oscillators plays an important
role in modern physics. It is used for description of var-
ious processes: from oscillations of atoms in solid states
to electromagnetic oscillations in slow-wave structures.
The model of coupled oscillators (for slow-wave struc-
tures the term “coupled resonators” is often used) is
very simple. An equation for each oscillator contains the
oscillator amplitude, multiplied by the square of the
resonant frequency, second derivative of the oscillator
amplitude and coupling terms which are proportional to
the amplitudes of the neighbouring oscillators multi-
plied by coupling coefficients. The model with “short-
range coupling” (nearest neighbouring coupling), when
each oscillator in the chain is coupled with two adjacent
ones only, is used most widely. There are two main
types of oscillators coupling: "capacitive" (“electric”,
“power”) and "inductive" (“magnetic”, “inertial”).

For using the numerical methods in investigation of
the non-stationary (transient) behaviour of the coupled
oscillators, each equation for complex amplitude must
contain only one second derivative of the oscillator am-
plitudes. This condition is automatically fulfilled for the
chain of electrically coupled oscillators, because in this
case the coupling terms contain the amplitudes of
neighbouring oscillators. When oscillators in the chain
are coupled magnetically, the coupling terms contain the
second derivatives of the amplitudes of neighbouring
oscillators and in one equation we have several second
derivatives. Direct use of numerical methods is impos-
sible in this case. If the coupling coefficients are small,
these second derivatives of the amplitudes of neighbour-
ing oscillators can be replaced by the amplitudes multi-
plied by the square of the resonant frequency. But the
issue of using the numerical methods in general case has
not been clarified so far [1 - 5].

We propose a method of solving this problem. The
results of using this method are given for two systems:
an infinite chain of magnetically-coupled cells and the
backward travelling wave (BTW) structure.
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1. INFINITE CHAIN OF OSCILLATORS

Let’s consider an infinite chain of lossless magneti-
cally coupled oscillators®. The chain is described by the
following system of the second-order differential equa-
tions

@r2e) A o _g[dz’*-l +d2‘¥+1j= F®)s,,. (1)

dt? dt? dt?
Here A is the amplitude of the n-th oscillator;

is the oscillator resonant frequency (all the oscillators
are identical); ¢ is the coupling coefficient; —o<n<oo,
F(t) is external force that acts on the p-th oscillator.

For the case F(t)=0 and the time dependence of
the amplitudes as exp(—iat) , the solution of the infinite

system (1) can be written as
A =Ap", )
where p is the solution of a characteristic equation
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the system (1) can be rewritten as follows:
X, (1+2¢) —.S(an1 + XM) =-wlA + F)s,,. (5)
This is an inhomogeneous second-order difference

equation with constant coefficients. The Green’s func-
tion solution of this equation is
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n-k
gl—, nzk,
1+2¢(1-9,)
xn—k = n—k (7)
gg—, ngk,
1+2¢(1-9,)
1+2¢ 1+2¢ Y
= — -1. 8
9= ( 2 j ©)

1 . Lo .
For example, magnetic coupling in slow-wave disk-loaded

structures is realized through holes or slots out of disk axis.
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Forsmall e ( e<<1) g,=¢.
Using the definition for x_ , we can write

[1+2g(1—91)]%+m§/3,1+ o
+0f Y00 (A, +A) =0 RO,

The system of equations (1) and the system of equa-
tions (9) describe the same object: the infinite chain of
identical magnetically coupled oscillators.

It can be shown that the homogeneous system of
equations (9) has the solution of the form (2) with the
same characteristic multiplier p.

It is useful to pay attention on several characteristic
features of the system of equations (9).

Analysis of this system shows that instead of mag-
netic neighbouring coupling (“short connection™) in the
system (1) we obtained the electrically coupled oscilla-
tors with “long connection” (each oscillator is connect-
ed with all the others).

The external force that acts on the p -th oscillator in
the chain of oscillators with magnetic neighbouring
coupling transformed into the force that acts on all ele-
ments of the chain.

If we can formulate the rule for truncating the sum,
the system of equation (9) is suitable to carry out the
numerical analysis of non-stationary behaviour of the
oscillator chain with magnetic coupling. As for small
e(e<<l) g,=¢, then for ¢£<1 we can expect that
the sum in the system (9) converges and can be truncat-
ed

ggf(/x_k+A1+k)’—~k2_°lgf(m+m). (10)

Bellow, on the example of the backward travelling
wave section, we shall show that the sum in the system
(9) really converges and the number of couplings M,
that should be taken into account is determined by the
value of &

2. BACKWARD TRAVELLING WAVE
STRUCTURE

Let’s consider the N cells of disk-loaded waveguide
(Fig. 1). The coupling between cells is magnetic, so the
coupling slots (or holes) are located at the disks periph-

ery.
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Fig. 1. Backward traveling wave structure

Considered structure is described by the following
set of N equations
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where U is the amplitude of input RF pulse; A, is the
amplitude of electric field in the nth cell, z=at, o,
is the operating frequency; @, and o, are the eigen
frequencies of the couplers; «, is the eigen frequency
of the cells, & is the coupling coefficient;
Bu/Qu =¢sinpw, o, , B/Q =csinpa,/w, ¢ is
the phase advance per cell.

For the time dependence of the amplitudes and ex-
ternal signal as exp(—iwt) on the basis of the system

(11) the parameters of resonators and its coupling were
chosen to provide the phase shift between resonators
@=4r/5 at the operating frequency f, =2856 MHz.
Moreover, the couplers parameters were chosen to pro-
vide the absence of reflections from terminal cells at
this frequency [6, 7].

Denoting d?A, /dz® =%, we can rewrite the set of
equations (11) in the following form

2
(1+6)% %, =-A % - LA
o, ©,Q dr

p
(1+26)%, —&(Xo 1+ %) ==A 7,

(1+&)%y —e%y, =
@ _onby A, 20, dU
o, ®,Q, dr  ®,Q.0 dr
By analogy with the infinite structure, the solution of

p
the system of equations (12) can be expressed through
the Green’s function

aA an(ﬂw_fﬂ_ﬁld_a]_

dr? o, ©,Q dr
w2 N-1
——5 2 Ko A (13)
Wy k=2
_gn,N(ANw_@Mdﬂ_Md_U],
o, ©,Q, dr  ®,Q.0 dr

Here the matrix X is the Green’s function of the
system (12)
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(1+&) X, —eX,, =y,

(1+25)X~n,k _S(Xn—l,k + Xn+1,k):5n,k 1 (14)

(l+g))ZN,k _5XN71,k =0y k>
where 1<k <N.

In general case all elements of the matrix X are
nonzero and the system (13) describes the interaction of
individual resonators with all the other ones. Using in
the system (13) truncated matrix X instead of the
Green’s function X , we can restrict the number of in-
teracting resonators. For example, for the matrix

x|
I

0

0

0 ..
(15)

0

X

(5,2
o

X
o
SO
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each resonator is coupled with the four neighboring
ones®. For convenience, we shall mark the case when
each resonator is coupled with the two neighboring ones
as M_ =1, when each resonator is coupled with the four

neighboring ones as M_ =2, when each resonator is
coupled with the six neighboring ones as M_ =3 and so

on. The case of interacting of individual resonators with
all the other ones we shall markas M, =N .
We used the Runge-Kutta method to find approxi-

mate solution of the system (13). As an input signal we
used the wave front of the type

. t
Lot |SIN r_ , O=st<t),
Ut)=e ™ - 2t, (16)
1 t> tp .
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Fig. 2. The time dependence of the input (1) and output
amplitudes (2 — M.=1; 3 —M.=2; 4 —M,=N), &= 0.02

2 Except for the terminal resonators
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Fig. 3. The time dependence of the reflected signal
(2 -M=1; 3 -M=2; 4 —-M=N), £=10.02
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Fig. 4. Deviation from a predetermined phase
distribution (3 —M.=2; 4 —M.=3; 5 — M=N),
£=0.02, 7= 2713000
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Fig. 5. The time dependence of the input (1) and output
amplitudes (2 —M=1;3 —M=2; 4 —M.=3; 5 — M.=N),

£=0.06

The time dependence of the input and output ampli-

tudes for the structure with ¢ =4z/5 and N =100 is
shown in Fig.2 (£=0.02, B, =v,/c ~
-0.03), Fig. 5 (£ =0.06, B, =v,/c ~-0.073) and Fig. 8
(=02, B, =v,/c ~-0.17). The time dependence of
the amplitude of the reflected signal is shown in
Figs. 3,6,9 for the same parameters. Deviations of
phase distributions from a predetermined one
(@, =@xn) for the same values of ¢ and B, =v,/c
are shown in Fig. 4 (= 2x-13000), Fig. 7 (= 22-5000),
and Fig. 10 (z=27-2200).
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Fig. 6. The time dependence of the reflected signal
(3-M=2; 4 —M=3; 5 —M=N), &= 0.06
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Fig. 7. Deviation from a predetermined phase distribution
(4 —M=3; 5 —M=4; 6 —M=N), &= 0.06, = 225000
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Fig. 8. The time dependence of the input (1) and output
amplitudes (2 —M=1; 3 —M=2; 4 — M=3;
5 -M=N), &=0.2
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Fig. 9. The time dependence of the reflected signal
(3—M=2; 4 —M.=3; 5-M=N), &= 0.2
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Fig. 10. Deviation from a predetermined phase distribu-
tion (6 —M=5; 7 —M=6; 8 —M=N), £ =0.2,
7= 2r-2200

Phase oscillations in Figs. 4, 7, 10 indicate that due
to reflections from couplers there is no completely
steady state at the specified time.

Presented results show that the transients in the
chain of magnetically coupled oscillators are sensitive
to a mathematical model that used for numerical simula-
tion. Especially strong influence of the value of cou-
pling and the number of coupled resonators is observed
for phase distributions (see Figs. 4, 7, 10). Also the in-
fluence of coupling characteristics on the reflected sig-
nal can not be neglected. It is important for developing
methods for tuning couplers and resonators [8, 9].

CONCLUSIONS

For numerical study of dynamics of a system that
can be described by a model of coupled oscillators with
an "inductive" coupling, we proposed to use the meth-
ods of solving of difference equations. Based on this
approach we analysed the influence of the value of cou-
pling and the number of coupling resonators on the
characteristics of transients in the chain of magnetically
coupled oscillators. It was shown that the transients in
this chain are sensitive to a mathematical model that
used for numerical simulation.
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AHAJIN3 HECTAIIMOHAPHOM MOJIEJIU CBSI3BAHHBIX OCLIUJLIAATOPOB
C UHAYKTHUBHOM CBSI3bIO

H.U. Auzayxuii, E.10. Kpamapenko

Mopens CBS3aHHBIX OCHWIIITOPOB UIPACT BKHYIO PO B COBPeMEHHOH ¢u3nke. OHa HCIIOMB3yeTCs IS OTH-
CaHMS Pa3IMIHBIX MIPOIECCOB: OT KOJICOAHNH aTOMOB B TBEP/BIX TellaX O AIEKTPOMArHUTHBIX KOJIeOaHUH B 3aMeI-
JSIOMHAX CTPYKTypax. Hanbosee mupoko MCIomb3yeTcss MOAETb C «ONMKHEH CBS3BIO», KOT/Ia KOHKPETHBIA OCITHII-
JIITOP CBSI3aH TOJIBKO C ABYMsI coceqHMMH. CyIlecTBYET JABa OCHOBHBIX BHJA CBSI3U OCLUMIUISTOPOB: «3JIEKTPHYE-
cKasD» («EMKOCTHAs», «CHJIOBas») U «MarHUTHas» («MHIYKTUBHASN», «MHEPIIUOHHAS). B mepBoM cirydae cBS3b mpo-
MOPIMOHAIbHA aMIUTUTYAaM KOJicOAHHH B COCEMHUX siuciiKaX, BO BTOPOM — BTOPOM MPOM3BOJHON 3THX aMIUIUTY/I.
IIpu yuCIEHHOM HCCIENOBAaHUM JUHAMMKU CUCTEMBI, OIIMCHIBAEMOI MOJEIBIO CBA3aHHBIX OCLWIIATOPOB ¢ UHAYK-
TUBHOU CBA3bI0, HEOOXOAMMO HAWTH SIBHBIC BBIPAXKEHUS JAJISI BTOPBIX NMPOU3BOAHBIX aMIUTUTYA. Il HaXOXIEHUS
9THX BBIPAXKEHUH B JAaHHOW padoTe mpeiiaracTcsi UCIOJIb30BaTh METO/IbI PEIICHHs] PA3HOCTHBIX ypaBHeHHH. [Ipu-
BOJSTCS PE3yJIbTaThl aHAIM3a JaHHOTO METOAA.

AHAJII3 HECTAIIIOHAPHOI MO/IEJII 3B'SI3AHUX OCIIUJISAATOPIB
3 IHAYKTUBHUM 3B'SI3KOM

M.I. Aiizayvkuii, K.1O. Kpamapenko

Mogens 3B'S3aHUX OCHIIATOPIB Bilirpae BaXKIMBY POlb y CydacHil disumi. Ii BuKopuCTOBYIOTH 17151 omucy pis-
HOMaHITHHX TIPOIECIB: BiJl KOJMBAHb aTOMIB Y TBEpAMX Tilax O €JIEKTPOMATHITHHX KOJHBAaHb B YHOBUIHHIOIOUNX
cTpyKkTypax. HalOinpI MUPOKO BHKOPHCTOBYIOTH MOJIENb 3 «OJMKHIM 3B'I3KOM», KOJH KOHKPETHUH OCLMIIATOD
3B'sI3aHUN TIABKU 3 JBOMA CYCimHIMHU. ICHye Ba OCHOBHHX BHIH 3B'S3KY OCIHJISTOPIB: «EJICKTPUUHUIT» («EMHIC-
HUI1», «CUIOBHI») 1 «MarHiTHUI» («IHIYKTHBHUI, «IHEPLUIHHUNY). Y MEepIIOMY BHIAKY 3B'SI30K € MPONOPLIHHIM
aMILTITyJaM KOJIMBaHb y CYCIZIHIX KOMIpKaX, y Apyromy — JApyrii noxigHid nux amrutitya. [Ipu uncensHOMY J0CIi-
JOKCHHI JTMHAMIKA CHCTEMH, sIKa OMUCYETHCS MOJICIUIIO 3B'SI3aHUX OCIIJIATOPIB 3 IHAYKTUBHHM 3B'SI3KOM, HEOOX1IHO
3HAMTH SIBHI BUpa3M IS IPYTUX MOXITHUX aMIUTiTy . JJisi 3HaX0KEeHHs MX BUPa3iB y AaHii poOOTi IPONOHYETHCS
BUKOPHCTOBYBATH METOJIY PO3B'sI3aHHS PI3HUIIEBUX PiBHIHB. [IpUBOISTECS pe3yibTaTh aHaAli3y JJAHOTO METOY.
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