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A novel approach to the synthesis of the electromagnetic field distribution in a chain of coupled resonators has 

been developed. This approach is based on the new matrix form of the solutions of the second-order difference 

equations. If a chain of coupled resonators can be described by the second-order difference equation for amplitudes 

of expansion of the electromagnetic field, two linearly independent solutions can be constructed on the basis of the 

solutions of nonlinear Riccati equation. Setting the structure of one solution, from the Riccati equation we can find 

the electrodynamical characteristics of resonators and coupling holes, at which the desired distribution of amplitudes 

is realized. On the base of this approach we considered the problem of separation of the electromagnetic field into 

“forward” and “backward” components in the inhomogeneous chain of resonators. It was shown that in the frame of 

considered model such separation is not defined uniquely. 

PACS: 84.40.Az  
 

INTRODUCTION  

There are three main fields of using the coupled res-

onator chains – accelerators [1], RF-sources, mainly 

travelling wave tubes (TWT) [2] and RF filters [3]. If 

for the first two applications it is necessary to create the 

special field distribution for the given frequency (accel-

erators) or some frequency range (TWT) along of the 

chain, then for the RF filters requirements are imposed 

on the amplitude-frequency and phase-frequency char-

acteristics at the chain output. 

Coupled-resonator circuits are of importance for de-

sign of RF/microwave filters, in particular, the narrow-

band bandpass filters that play a significant role in many 

applications. There is a general technique for designing 

coupled-resonator filters in the sense that it can be ap-

plied to any type of resonator despite its physical struc-

ture [4, 5]. 

In coupled-cavity TWTs several tens of coupled cavi-

ties are used as the slow wave structure. The efficiency of 

a TWT is limited by peculiarity of the bunching process 

and the bunch transfer from decelerating phase into the 

accelerating phase of the RF field. The usual technique 

suggested for increasing the efficiency involves tapering 

of the wave phase velocity so that the decelerated bunch-

es remain within the decelerating phase of the wave. 

There were proposed several methods for synthesis of the 

optimum phase velocity distribution along the slow 

wave structure (see, for example, [6 - 13]). 

The widest use the the cavity chains have found in 

the accelerator technique. At the very beginning of its 

development, the RF accelerators have the RF resona-

tors as the main element of its construction. Disk-loaded 

waveguides [14 - 19], different side-coupling standing 

wave structures [20, 21], hybrid (combined) accelerat-

ing structures (the initial part of the structure is a stand-

ing wave buncher, and its main part is a disk-loaded 

waveguide) [22, 23] – this is a short enumeration of the 

different coupled resonator chains that are used in ac-

celerators. There is enormous number of publications 

that describe the calculation and design the accelerating 

structures.  

The calculation of parameters and the design play an 

important role in the process of developing an accelerat-

ing structure. No less important role is played by the 

process of tuning cells after section brazing.   

In order to provide synchronism with the beam and 

electromagnetic field in the accelerating structure, the 

phase advance of each cell needs to be adjusted to its 

nominal value. This can be done after brazing by cor-

recting machining deviations, assembly and brazing 

mismatching. This adjustment process is called tuning 

(post-tuning). 

The tuning methods based on the non-resonant per-

turbation field distribution measurement [24 - 30] have 

been widely used for tuning travelling-wave structures, 

especially in tuning the constant-gradient ones [31 - 44]. 

There are several approaches for post-tuning. The 

most widespread tuning method became one, in which 

the field distribution was considered to be a linear su-

perposition of forward and backward waves in each cell 

[31]. The internal reflection of each cell was obtained 

by calculating the difference of the amplitudes of the 

backward waves seen before and after that cell. But 

forward and backward waves were not strictly deter-

mined. Their amplitudes were introduced phenomeno-

logically. 

Development of the Coupling Cavity Model (CCM) 

[45 - 48] gives possibility to look into this method more 

deeply [49, 50]. However, the problem of expanding the 

electromagnetic field into the forward and backward 

waves in each cell of the inhomogeneous chain has not 

been cleared up yet. 

In this article a novel approach to analysis of the 

electromagnetic field distribution in a chain of coupled 

resonators is presented. This approach is based on the 

new matrix form of the solutions of the second-order 

difference equations [51]. 

1. SECOND-ORDER LINEAR DIFFERENCE 

EQUATION FOR THE CHAIN OF THE 

FINITE NUMBER OF RESONATORS 

In the frame of the CCM electromagnetic field in 

each cavity of the chain of resonators are represented as 

the expansion with the short-circuit resonant cavity 

modes [17, 18, 52 - 55] 
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In the case of N  1, the system of coupled equa-

tions (3) is very similar to the one that can be construct-

ed on the basis of equivalent circuits approach (see, for 

example, [20, 56 - 58]). But in the frame of the CCM 

the coefficients ( , )

0

k j

mn
  are electrodynamically strictly 

defined for arbitrary N and can be calculated with nec-

essary accuracy. In the theory of RF filters the coupling 

matrix circuit model is used intensively (see, for exam-

ple, [59] and cited there literature). The main problem is 

how to calculate the matrix elements.  

Amplitudes of other modes ( ( , ) (1,0)m n  ) can be 

found by summing the relevant series  
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For the chain of cylindrical resonators longitudinal 

component of electric field at 0r   (on the system lon-

gitudinal axis) is:   
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If we can ignore “long coupling” interaction, the set 

of coupling equations (3) takes the form
1
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The set of coupling equations (6) can be considered 

as the second-order difference equation. This difference 

equation, which defines the amplitudes of the basic 

modes ( )

010

ke , is the main equation of the CCM. It is rea-

sonable to note that the amplitudes of the basic modes 
( )

010

ke  are non-measured values. Indeed, we can measure 

the components of electric field in any point, for exam-

ple, by the nonresonant perturbation method, but we 

cannot measure ( )

0

k

mne  and have to use numerical methods 

for finding these amplitudes by using the expansion (1). 

                                                           
1
There is a problem of taking into account absorption of RF ener-

gy in walls as there are difficulties in obtaining appropriate eigen 

functions for cylindrical regions. All developed procedures in the 

frame of the CCM do not include this phenomenon. We used the 
simplest approach for including absorption into consideration. We 

supposed that the coupling coefficient do not depend on absorption 

and include the quality factor into the resonant term in the equations 

for 010e  amplitudes.  

This circumference create difficulties in studding the 

properties of the real slow-wave waveguides, including 

their tuning [31, 49]. The similar situation arises also in 

other electrodynamic models. For example, the space 

harmonics in homogeneous periodic waveguides are 

non-measured values, too. 

We will consider the chain with the finite number of 

resonators (Fig. 1). The first and the last resonators are 

connected to the transmission lines
2
 and the equations 

(6) for 1k   and k N  have to be changed [58] 
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where 
1 , 

N  – coupling factors of the first and the last 

resonators with transmission lines; Z – impedance of 

the input transmission line; 
1R  – shunt impedance of the 

first resonator, / 2U P Z ; P – power of the external 

RF source; 
kd  – length of the k-th resonator. 

Amplitude of the reflected wave in the input trans-

mission line is 

(1)1

1 010

1

R

Z
U d e U

R


   .                     (9) 

 
Fig. 1 

According to the results of the work [51], we will 

seek a solution of difference equations (6) - (8) as 
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Using this representation, the equations (7), (8) can 

be rewritten as 
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and there are such matrix difference equation for new 

unknowns [51] 
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2
We will consider the chains with the transmission lines connect-

ed to the first and end resonators. Other connections can be considered 

similarly. 
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Values of the grid vectors in the first and the 

( 1N  )-th cells are connected by a linear relation  
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Using these relations, the equations (7) and (8) can 

be rewritten in the form 

   (1,2) (1) (1) (1,2) (2) (2)

1 010 1 1 1 010 1 1

1 1

(1)

11 010

2 1
,

Z y Z y

Ri
U

Z dQ

   





   


      (16) 

   

   

(1) ( , 1) (2) ( , 1) (1)

1 010 11 1 010 21 1

(1) ( , 1) (2) ( , 1) (2)

1 010 12 1 010 22 1 0.

N N N N

N N N N

N N N N

N N N N

Z T Z T y

Z T Z T y

   

   

   

 

   

 

    
 

     
 

  (17) 

We can choose the sequences (1)

k  and (2)

k in such 

way that the matrix 
kT  will be the diagonal one [51]. 

From (14) it follows that ,12 ,21 0k kT T   for (1) (2),k k   

which fulfilled Riccati type difference equation (the 

second-order rational difference equation) [60, 61] with 

different initial values of (1)
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We will call (1)

k  and (2)

k as characteristic multipli-

ers. 

In this case, the equation (17) transforms into  
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Solving the equations (16) and (20), we obtain 
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We introduced the two linearly independent grid 

functions (1) (2),k ky y  which are the product of multipliers 

(1)

k  and (2)

k  (see (19)). These multipliers are the solu-

tions of the nonlinear difference equation (18) with dif-

ferent initial values of (1)

1  and (2)

1 . These initial values 

of (1)

1  and (2)

1  can be chosen arbitrarily. Therefore, 

we have a continuous set of the two linearly independ-

ent grid functions (1) (2),k ky y , sum of which gives the 

same grid function ( ) (1) (2)

010

k

k ke y y   for the given struc-

ture of the chain. In the process of synthesis we can 

change the structure of the chain in such way that 
(1)

k , (2)

k  and (1)

1y , (2)

1y  will take the required values 

and the desired electromagnetic field distribution ( ( )

010

ke ) 

in a chain of coupled resonators will be realized.  

It is a usual requirement to insure no reflected signal 

in steady-state, which corresponds to the matching the 

input transmission line to the considered chain 
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Substituting (23) and (24) into (26), we obtain  
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From (27) it follows that the critical value of the 

coupling factor 1  is 
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and an additional condition is to be fulfilled 
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As 1  is a real positive value, then ImG  has a min-

imal value 
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If the chain has a single input (standing wave struc-

ture), we can create the desired field distribution by 

choosing the values of (1)

k , (2)

k  and finding the geo-

metrical parameters of resonators and coupling openings 

from the Riccati difference equation (18). Characteris-

tics of the first resonator are determined by equations 

(30) and (31). 
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If the chain has two ports (traveling wave structure), 

there is additional possibilities for manipulating with field 

distribution. We can create the field distribution based on 

the one solution (1)

ky  ( (2)

ky =0). In this case the value of 
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k  (quasiperiodic structure):  

( 1) (1) ( ) (1) (1)

010 010 010

1

k
k k

k s

s

e e e 



  .                (33) 

Such electromagnetic field distribution can be real-

ized if the initial value of the second solution equals to 

zero 
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This equation determines the characteristics of the 

last resonator and the value of coupling with the output 

transmission line 
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From (28) and (29) it follows that (1)

1G   and the 

matching condition (27) takes the form 
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The equations (30) and (31) are also simplified 
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The initial value (1)

1y (23) do not depend on the char-

acteristic multipliers (2)
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It is important to note that from (37) and (40) it fol-

lows that the coupler is not a symmetric element. Only 

at Q  the coupler do not reflect from two sides. 

2. SOLUTIONS OF THE DIFFERENCE 

EQUATIONS FOR THE HOMOGENEOUS 

CHAIN 

Characteristic multipliers (1)

k  and 
(2)

k
  are the solu-

tions of the nonlinear difference equation (18) with the 

initial values (1) (2)

1 1  . In the general case, these ini-

tial values can be chosen arbitrary. Input transmission 

line matching requirement imposes some restrictions 

(see (32), (38), (42)) on these values.  

For the homogeneous chain, the equation (18) takes 

the form  
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This equation has two stationary points 
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The first stationary point is unstable (
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 ), as 

the other one is attractive (
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The solutions of the equation (44) is [61] 
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If we choose (1)

1 1   and (2)

1 2  , the grid func-
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where (1) (2)

1 1  . 

The sum of these grid functions ( (1) (2)

k ky y ) is a grid 

function that do not depend on (1)

1  and (2)

1 . 

3. SYNTHESIS OF THE COUPLED 

RESONATOR CHAIN WITH DESIRED 

ELECTROMAGNETIC FIELD 

DISTRIBUTION 

In the CCM electromagnetic field distribution is de-

fined by the amplitudes of the basic oscillations [45 - 48]. 

For description the lowest passband we have to choose 

the amplitudes of 010E  mode as basic oscillations.  

In the considered above approach the distribution of 

amplitude ( )

010

ke  is defined by the characteristic multipli-

ers (1)

k , (2)

k  and initial values of grid functions (1)

1y , 

(2)

1y . So, during the synthesis process, we must choose 

a chain structure (parameters of resonators and coupling 

elements) such that the coefficients (1)

k , (2)

k  and (1)

1y , 

(2)

1y  will take on the required values and the desired 

value of amplitudes ( )

010

ke  in a chain of coupled resona-

tors will be realized.  

Below we will consider the chain of cylindrical res-

onators that are connected via circular central openings 
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in the walls – the disk loaded waveguides (DLW)
3
. It 

was shown that the DLWs, that are usually used in lin-

acs, with disk spacing large enough ( / 3d  ) can be 

describe with sufficient accuracy by the difference 

equation (6) [62]. Appropriate values of the coupling 

coefficients ( , ) ( , 1)

010 010,k k k k    at fixed frequency can be 

approximated by some functions of geometrical sizes. 

Calculations on the base of the CCM show that for the 

most often used in linacs DLWs such approximations 

can be used 
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kd  – the resonator length, 
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Analysis shows that we can consider parameters 
( ) ( ),s c

k kp p  as the functions of the geometric sizes of the 

diaphragms only (the opening radius
ka , the thickness 

kt  of the diaphragm between 1k   and k  resonators 

and the radius of the rounding of the disk hole edges).  

For kt = 0.4 cm, kd = 3.0989 cm, parameters 
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k kp p  can be represented
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-0.0928 0.4491 -0.0444.

s

k k k

c

k k k

p a a

p a a

 

 
   (50) 

The parameter ( )c

kp  determines the deviation of the 

dependence of the coupling coefficient ( , 1)

010

k k   on 
ka  

from the law 3

ka , ( )s

kp  – the deviation of the dependence 

of the resonator frequency shift due the hole in the k  – 

disk on ka  from the law 3

ka  (see (49)). 

The equation (18) after separation of the real and 

imaginary parts and making some transformations takes 

the form 

 

3 (1)

14 2

(1)

(1) (1)

1 1 1 1

(1) (1)

1

cos( )

sin( )

sin( ) sin( ) sin( )
0,

sin( )

k k k k

k k

k k k

k k k k k k k k

k

k k k k

b p
b b

Q

p p
u

d

 

 

     

  



   



 
   

   
  

(51) 

                                                           
3
DLW structures are the most often used in linacs and represent 

the chain of cavities in which the phase varies smoothly from cell to 

cell in such way, that an accelerated particle constantly locates in 

accelerating field. 
4
For simplicity, we will consider the case without of the rounding 

of the disk hole edges. For taking into account the rounding of the disk 

hole edges. 

1

1 (1) (1)

1

3

(1)

sin( )

sin( )

, 2 1.
sin( )

k

k k

k k k

k

k k k

u u

b d
k N

Q



  

 







 

   

          (52) 

Parameters of the first and last resonators can be 

found from equations  

4 2 (1) (1)2 2

1 1 2 1 1

1 1

cos( ) 0
u u

b b p
d d

     ,       (53) 

(1) (1)2

1 1 1 13

1 1

1 sin( )
u

Q
b d

    ,            (54) 

4 2 (1) (1)

1 1(1)

1

cos( ) 0N

N N N N N

N N

u
b b p

d
 


 



    
 

,  (55) 

(1)

13 (1)

1

sin( ) 1N

N N N

N N N

u
Q

d b
 






  .         (56) 

By specifying the values of the multipliers (1)

k  and 

a certain set of resonator parameters, from equations 

(51) - (56) we can find the missing set of parameters. 

Amplitudes ( )

010

ke  in the chain with this full set of resona-

tor parameters will distribute along structure in accord-

ance with the formula (33). 

Proposed approach can be used for developing of 

different inhomogeneous DLWs.  

Among the slow wave waveguides, the most com-

plex structure have the ones with phase velocities that 

change along the longitudinal coordinate (an injector in 

linacs [1, 63 - 65], TWT [2, 6 - 13]). They must ensure 

not only the acceleration (deceleration) of particles, but 

also their grouping into small bunches. Injector sections 

for linacs are usually designed with a constant phase 

shift between cells, but with a variable length of resona-

tors. The proposed above approach gives possibility to 

design the structures with the inhomogeneous phase 

shifts.  

As example, we considered the possibility of creat-

ing smooth transition between the DLW with 

1 14 /15   and the DLW with 
2 2 /3   ( Q   ). 

For f   2856 MHz, d  3.0989 cm, t  0.4 cm the 

phase velocity changes from 0.71 c  to c . 

We chose two sequences for (1)

k . The first one (the 

sequence N1) is 

1

(1)

2

exp( ),

exp( 13 /15),

exp( 12 /15), 1

exp( 11 /15), 2

exp( ), 3

k

i k s

i k s

i k s

i k s

i k s





 











  
  


 

.          (57) 

The second one (the sequence N2) is 

1

(1)

2

exp( ),

0.949exp( 13 /15),

0.949exp( 12 /15), 1

0.949exp( 11 /15), 2

exp( ), 3

k

i k s

i k s

i k s

i k s

i k s





 











  
  


 

.   (58) 

Geometry calculated on the basis of equations (51) -

(52) are presented in Table. Geometry used for calcula-
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tion on the base the CCM differs in the homogeneous 

parts less than 2 µm. 
 

 N1 N2 

 
ka  

kb  
ka  

kb  

k=s-2 1.4 4.19633 1.4 4.19633 

k=s-1 1.4 4.19633 1.4 4.19633 

k=s 1.4 4.15983 1.4 4.16117 

k=s+1 1.16863 4.10769 1.18496 4.11500 

k=s+2 1.06051 4.08584 1.10506 4.09765 

k=s+3 0.99754 4.07353 1.06792 4.08760 

k=s+4 0.95872 4.06882 1.04010 4.08261 

k=s+5 0.95872 4.06882 1.04010 4.08261 

   

 R=7.29E-003  R=7.64E-003  

Calculation results of the longitudinal electric field 

distribution in the resonator centres obtained on the ba-

sis of the CCM are presented in Figs. 2 and 3 (s =11). 

We see that the longitudinal electric field has nearly the 

same phase distribution as the chosen one for the ( )

010

ke  

amplitudes. We can also see that for the same phase dis-

tribution we can create different amplitude distributions
5
 

which are desirable for different types of injectors – the 

first distribution with the increasing amplitude [65] and 

the second one with the constant amplitude [64].  

 
Fig. 2 

 
Fig. 3 

Difference between the specified phase shifts per 

cells and calculated on the basis of the CCM. 

Amplitude distributions calculated on the basis of 

the CCM. 

For high current linacs it is needed to develop accel-

erating sections with constant phase shifts between the 

cells (
k const  ) and the amplitudes of the electric 

field increasing along the structure (
( )

010

ke const ) (see, 

                                                           
5
 Many possible structures realize the variable phase velocity. As the 

power flow must be constant ( Q  ), then needed distribution of 

electric field amplitudes determine the law of change of the aperture 
sizes. We can realize the increase of the phase velocity at the constant 

(or increasing) apertures, but the amplitudes have to increase strongly 

(see, for example, [8, 9]).  

for example, [62, 66]). Setting the law of amplitude var-

iation along the structure ( )

010

ke , we can find the full set 

of resonator parameters from equations (51) - (52) with 

such characteristic multipliers 

 
( 1)

010(1)

( )

010

exp

k

k k

e
i

e
 



 .                  (59) 

4. FORWARD AND BACKWARD FIELDS 

In light of work on the new matrix form of second-

order linear difference equations [51], we can look at 

the problem of expanding the electromagnetic field into 

the forward and backward waves in each cell of the in-

homogeneous chain of resonators from the new point of 

view. 

We have shown that in the chain that is described by 

the second-order difference equation (6) we can realize 

any reasonable ( exp( )n na i ) amplitude-phase distribu-

tion that is the product of the characteristic multipliers  
1

( ) (1) (1) (1)

010 1

1

, 2
k

k

k s

s

e y y k N




    .      (60) 

For that we have to choose the resonator and open-

ing sizes that are fulfilled the relations (51) - (52) and 

the parameters of couplers (53) - (56). At such geomet-

rical sizes the second independent solution of the equa-

tion (6) equals to zero. As there is no reflection from the 

input coupler, we can consider that RF power transmits 

through the structure without reflection. This electro-

magnetic field we can consider as the “forward” one. 

Let’s suppose that the output coupler is detuned 

( (1) ( , 1)

1 010 0N N

N NZ   

   ). What changes will occur in the 

distribution of the amplitudes ( )

010

ke ? 

From (10), (19) it follows that the new field (2)

ky  

will appear in addition to the “forward” field 
( ) (1) (2)

010

1 1
(1) (1) (2) (2)

1

1 1

, 2 .

k

k k

k k

s k s

s s

e y y

y y k N 
 

 

  

    
       (61) 

The amplitude of the “forward” field (1)

1y  differs from 

the unperturbed one (1)

1y  and depends on the initial value 

of the characteristic multiplier (2)

1  and the value of the 

output coupler detuning (see (23), (25)). The characteris-

tic multipliers (2)

s  are the solution of the difference 

equation (18) with defined coefficients and with the ini-

tial value (2)

1  which we can choose arbitrary.  

In the limit Q   , when kZ  is the real value and 

the couplers become the symmetrical elements, there is 

a reasonable background to consider that the amplitude 

of the “forward” field (1)

1y  do not depends on the tuning 

of the output coupler. Then from (23) and (25) we ob-

tain the initial value (2)

1   

(1,2) (2)

1 010 1 0Z    .                   (62) 

As 1 1/Q  has a finite value (see (39), (40)), we have  

(1,2) (1) (1,2) (1)

1 010 1 010 12 ImZ i      .        (63) 

From (62) it follows that  
(2) (1) (1) (1)

1 1 1 1Re Imi                 (64) 
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and, as 
kZ  is the real value, from (18) we obtain 

(2) (1)

k k   .                             (65) 

Therefore, the additional field that arises due to re-

flection from the output coupler becomes the conven-

tional backward field.  

The problem becomes more difficult at Q   . The 

characteristic multipliers (2)

k  that define the structure 

of additional field are the solution of the difference 

equation (18). This equation we can rewrite as  
( 1, ) ( 1, )

(2) (1)010 010
1 1( 1, 2) (2) ( 1, 2) (1)

010 010

, 1 2
k k k k

k kk k k k

k k

k N
 

 
   

 

    
       , (66) 

where (2) (1)

1 1   is a free parameter. If 

( 1, ) ( 1, 2)

010 010

k k k k    , 1 2k N    (the homogeneous 

chain) and  (1) expk i    ( 1 1k N   ) we have 

the solution of the equation (66) in the analytical form 

 (2)

(1)

1
exp , 1 1k

k

i k N  


       .    (67) 

In the general case, the equation (66) has no simple 

solution. As (2)

1  is a free parameter and there is not 

reasonable background for its choice, then the structure 

of additional field and its amplitude (2)

1y  are not define 

uniquely. Moreover, the amplitude of the “forward” 

field (1)

1y  which depend on (2)

1  and (2)

1N 
 (see (23)) is 

not define uniquely, too. 

Therefore, in the frame of considered model the sep-

aration of the electromagnetic field into “forward” and 

“backward” components in the inhomogeneous chain of 

resonators is not define uniquely. It is needed to apply 

some additional criteria for defining the properties of 

“reflected” fields. 

CONCLUSIONS  

We presented the novel approach to the synthesis of 

the electromagnetic field distribution in a chain of cou-

pled resonators that can be described by the second-

order difference equation for amplitudes of expansion of 

the electromagnetic field. This approach is based on the 

new matrix form of the solutions of the second-order 

difference equations that give possibility to construct 

the two linearly independent solutions. Setting the struc-

ture of one solution, from the Riccati equation we can 

find the electrodynamical characteristics of resonators 

and coupling holes, at which the desired distribution of 

amplitudes is realized. Several examples show that pro-

posed approach can be useful in solving different physi-

cal problems. On the base of this approach we also con-

sidered the problem of separation of the electromagnetic 

field into “forward” and “backward” components in the 

inhomogeneous chain of resonators. It was shown that 

in the frame of considered model such separation is not 

defined uniquely. 

The problem of creating a special field distribution 

is attracting attention of different researchers. This prob-

lem arises at the construction and design of new materi-

als including nano-materials with so called cloaking 

properties (see, for example, [67 - 70]). The proposed 

approach can be used as a numerical tool to design 1-D 

devices and materials that manipulate waves in a speci-

fied manner. 
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НОВЫЙ МЕТОД СИНТЕЗА РАСПРЕДЕЛЕНИЯ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ  

В ЦЕПОЧКЕ СВЯЗАННЫХ РЕЗОНАТОРОВ 

Н.И. Айзацкий  

Разработан новый метод синтеза распределения электромагнитного поля в цепочке связанных резонато-

ров. Этот метод базируется на новой матричной форме решений разностного уравнения второго порядка. 

Для случая, когда цепочку связанных резонаторов можно описать разностным уравнением второго порядка 

для амплитуд разложения электромагнитного поля, два независимых решения могут быть построены на ос-

нове решений нелинейного уравнения Риккати. Задавая структуру одного решения, из уравнения Риккати 

можно найти электродинамические характеристики резонаторов и отверстий связи, при которых реализует-

ся необходимое распределение амплитуд. На основе этого подхода рассмотрена проблема разделения элек-

тромагнитного поля на «прямые» и «обратные» компоненты в неоднородной цепочке резонаторов. Было 

показано, что в рамках рассматриваемой модели такое разделение не определяется однозначно. 

НОВИЙ МЕТОД СИНТЕЗУ РОЗПОДІЛУ ЕЛЕКТРОМАГНІТНОГО ПОЛЯ  

В ЛАНЦЮЖКУ ЗВ'ЯЗАНИХ РЕЗОНАТОРІВ 

М.І. Айзацький  

Розроблено новий метод синтезу розподілу електромагнітного поля в ланцюжку пов'язаних резонаторів. 

Цей метод базується на новій матричній формі рішень різницевого рівняння другого порядку. Для випадку, 

коли ланцюжок пов'язаних резонаторів можна описати різницевим рівнянням другого порядку для амплітуд 

розкладання електромагнітного поля, два незалежних рішення можуть бути побудовані на основі рішень 

нелінійного рівняння Рiккатi. Ставлячи структуру одного рішення, з рівняння Рiккатi можна знайти електро-

динамічні характеристики резонаторів і отворів зв'язку, при яких реалізується необхідний розподіл амплі-

туд. На підставі такого підходу розглянуто проблему розділення електромагнітного поля на «прямі» та «зво-

ротні» компоненти в неоднорідному ланцюзі резонаторів. Показано, що в рамках розглянутої моделі таке 

розділення не визначено однозначно. 
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