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Abstract. We consider the XXX spin- 12 Heisenberg chain on the circle with an arbi-
trary twist. We characterize its spectral problem using the modified algebraic Bethe anstaz
and study the scalar product between the Bethe vector and its dual. We obtain modified
Slavnov and Gaudin–Korepin formulas for the model. Thus we provide a first example of
such formulas for quantum integrable models without U(1) symmetry characterized by an
inhomogenous Baxter T-Q equation.
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The study of quantum integrable models with U(1) symmetry by the Bethe ansatz (BA)
methods [4, 11, 34] provides exact solutions which found applications in a wide range of do-
mains such as: statistical physics, condensed matter physics, high energy physics, mathematical
physics, etc. One of the major accomplishments of the method has been the obtaining of form
factors, for models related to gl2 and gl3 families of symmetry, in the compact form of deter-
minants [8, 9, 21, 22, 24, 26, 31]. In particular, for models related to the gl2 symmetry, the
key results are the Slavnov [35] and the Gaudin–Korepin [19, 20, 25] formulas, which provide,
respectively, the scalar product between an eigenstate and an arbitrary state and the norm of
the eigenstates.

In the case of models without U(1) symmetry, the usual BA techniques in general fail to
provide a complete description of the spectrum1. Thus alternative methods have been de-
veloped, for instance, the separation of variables (SoV) [15, 16, 23, 30, 33], the commuting
transfer matrices method [3], the functional method [18] or the q-Onsager approach [2]. Recently,
key steps have been accomplished for the Bethe ansatz solution of such models. On the one
hand, a new family of inhomogeneous Baxter T-Q equation to determine the eigenvalues has
been proposed by the off-diagonal Bethe ansatz (ODBA) [12, 37]. On the other hand, the
construction of the off-shell Bethe vector has been done in the context of a modified algebraic
Bethe ansatz (MABA) approach [1, 5, 6, 10]. Let us remember that previous developments in
the BA technique, in particular the obtainment of the eigenvectors of the XXX chain on the
segment with upper-triangular boundaries [7], brought important insights to the MABA.

1In some cases, some gauge transformation can allow to apply the ABA, see for example the XYZ spin
chain [4, 36]. For the XXX case, that we consider here, the GL(2) symmetry allows one to restore the U(1)
symmetry [14] and the usual ABA applies, provided that the twist is a non-singular matrix. Also, in the context of
open XXZ spin chains, constraints on the parameters of the model allow one to apply the usual techniques, see [28].
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Here, we consider the question of the scalar product between the Bethe vectors obtained from
the modified algebraic Bethe ansatz. For simplicity, we consider the case of the isotropic spin−1

2
Heisenberg chain on the circle with an arbitrary twist. This is the simplest model which can be
considered by the MABA. In fact, its solution contains the main features entailed by the method:
the spectrum is characterized by an inhomogeneous Baxter T-Q relation and the off-shell Bethe
vector is generated by a modified creation operator. In this context, we obtain a modified
Slavnov formula for the scalar product between an on-shell Bethe state and its off-shell dual.
The formula (see (17)) is given in terms of a determinant depending on the Jacobian of the
inhomogenous eigenvalue expression. Moreover, it contains a new factor related to a certain
expansion of the Bethe vector. The square of the norm, i.e., the modified Gaudin–Korepin
formula (see (19)), is obtained by a limit. As expected, the case with general integrable open
boundary, which also breaks the U(1) symmetry, has the same structure and will be presented
in a separated publication.

The isotropic spin−1
2 Heisenberg chain on the circle with an arbitrary twist is given by the

Hamiltonian

H =

N∑
k=1

(
σxk ⊗ σxk+1 + σyk ⊗ σ

y
k+1 + σzk ⊗ σzk+1

)
(1)

subject to the following boundary conditions

γσxN+1 =
κ̃2 + κ2 − κ2

+ − κ2
−

2
σx1 + i

κ2 − κ̃2 − κ2
+ + κ2

−
2

σy1 + (κκ− − κ̃κ+)σz1 ,

γσyN+1 = i
κ̃2 − κ2 − κ2

+ + κ2
−

2
σx1 +

κ̃2 + κ2 + κ2
+ + κ2

−
2

σy1 − i(κ̃κ+ + κκ−)σz1 ,

γσzN+1 = (κκ+ − κ̃κ−)σx1 + i(κ̃κ− + κκ+)σy1 + (κ̃κ+ κ+κ−)σz1 .

The twist parameters {κ, κ̃, κ+, κ−} ∈ C4 are generic and γ = κ̃κ − κ+κ−. The Pauli matri-
ces2 σαk with α = x, y, z act non trivially on the kth space of the quantum space H = ⊗Nk=1Vk
with Vk = C2.

The Hamiltonian (1) is integrable and can be considered within the quantum inverse scatte-
ring method [17]. Let us briefly recall this formalism. The key object is the rational R-matrix

R(u) =
u

c
+ P,

which acts on C2 ⊗ C2, with P = σ+ ⊗ σ− + σ− ⊗ σ+ + 1
2(1 + σz ⊗ σz) and c ∈ C∗. From the

R-matrix, we construct the monodromy matrix

Ta(u) = Ra1(u− θ1) · · ·RaN (u− θN ) =

(
t11(u) t12(u)
t21(u) t22(u)

)
a

,

which acts on C2 ⊗H and with {θ̄} = {θ1, . . . θN} ∈ CN being the inhomogeneity parameters.
This monodromy matrix satisfies the RTT relation

Rab(u− v)Ta(u)Tb(v) = Tb(v)Ta(u)Rab(u− v)

that encodes commutation relations between the operators {tij(u)}, see Appendix A. The trans-
fer matrix, generating function of the conserved quantities of the model, is given by

t(u) = Tra
(
KaTa(u)

)
= κ̃t11(u) + κt22(u) + κ+t21(u) + κ−t12(u),

2σz =

(
1 0
0 −1

)
, σ+ =

(
0 1
0 0

)
, σ− =

(
0 0
1 0

)
, σx = σ+ + σ−, σy = i(σ− − σ+).
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with

K =

(
κ̃ κ+

κ− κ

)
. (2)

The commutation relation between transfer matrices with different spectral parameters

[t(u), t(v)] = 0,

follows from the RTT relation and the GL(2) invariance of the R-matrix

[Rab(u− v),KaKb] = 0. (3)

The Hamiltonian (1) is given by

H = 2c
d

du

(
ln(t(u))

)∣∣
u→0, θi→0

−N,

and thus its spectral problem is the same of the one of the transfer matrix.
The diagonalization of the transfer matrix can be obtained by means of the MABA [1, 5, 6, 10]

and leads to an inhomogeneous Baxter T-Q equation. In order to do that, we introduce the
following transformation of the twist matrix (2)

K = LDL

with

L = µ
1
2

(
1 ρ

κ−
ρ
κ+

1

)
, D =

(
κ̃− ρ 0

0 κ− ρ

)
, µ =

κ̃+ κ− ρ
κ̃+ κ− 2ρ

and

ρ2 − (κ̃+ κ)ρ+ κ+κ− = 0.

By means of this transformation, we can obtain a modified monodromy matrix T (u) = LT (u)L
with entries given by modified operators {νij(u)}. They are expressed in terms of the initial
{tij(u)} operators by

ν11(u) = µ

(
t11(u) +

ρ

κ+
t12(u) +

ρ

κ−
t21(u) +

ρ2

κ+κ−
t22(u)

)
,

ν12(u) = µ

(
t12(u) +

ρ

κ−
(t11(u) + t22(u)) +

( ρ

κ−

)2
t21(u)

)
,

ν21(u) = µ

(
t21(u) +

ρ

κ+
(t11(u) + t22(u)) +

( ρ

κ+

)2
t12(u)

)
,

ν22(u) = µ

(
t22(u) +

ρ

κ+
t12(u) +

ρ

κ−
t21(u) +

ρ2

κ+κ−
t11(u)

)
.

It follows that the transfer matrix has a modified diagonal form given by

t(u) = Tr
(
DT̄ (u)

)
= (κ̃− ρ)ν11(u) + (κ− ρ)ν22(u).

To construct the Bethe vector we use the usual highest weight representation and the highest
weight vector

|0〉 =

(
1
0

)⊗N

.
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The actions of the operators {tij(u)} on it are given by

tii(u)|0〉 = λi(u)|0〉, t21(u)|0〉 = 0,

with

λ1(u) =
N∏
i=1

u− θi + c

c
, λ2(u) =

N∏
i=1

u− θi
c

. (4)

For the dual Bethe vector we use the dual highest weight vector

〈0| = (1, 0)⊗
N
,

with the actions

〈0|tii(u) = λi(u)〈0|, 〈0|t12(u) = 0, 〈0|0〉 = 1.

For the operators {νij(u)}, we have a modified action on the highest weight vector. We can
show that

ν11(u)|0〉 = λ1(u)|0〉+
ρ

κ+
ν12(u)|0〉, (5)

ν22(u)|0〉 = λ2(u)|0〉+
ρ

κ+
ν12(u)|0〉, (6)

ν21(u)|0〉 =
ρ

κ+

(
λ1(u) + λ2(u)

)
|0〉+

( ρ

κ+

)2
ν12(u)|0〉. (7)

We have thus all the ingredients to implement the MABA. We will use the notation ū with
#ū = M for the set of M variables {u1, u2, . . . , uM}. If the element ui is removed, we note
ūi = {u1, u2, . . . , ui−1, ui+1, . . . , uM}. If we also remove the element uj , we note ūij = ū/{ui, uj}.
For products of functions (see (8) bellow) or of operators {νij(u)}, we use the convention

g(u, ū) =
M∏
i=1

g(u, ui), g(v̄, ū) =
M∏
i=1

M∏
j=1

g(vj , ui),

g(ui, ūi) =

M∏
j=1,j 6=i

g(ui, uj), νij(ū) =

M∏
k=1

νij(uk).

The functions

g(u, v) =
c

u− v
, f(u, v) = 1 + g(u, v) =

u− v + c

u− v
(8)

will be widely used.
Let us consider the vector

BM (ū) = ν12(u1) · · · ν12(uM )|0〉 = ν12(ū)|0〉, (9)

and act with the transfer matrix on it. In order to perform this calculation we need to find the
action of the operators {νij(u)} on the vector (9). Using the GL(2) invariance (3), it is easy
to see that the new operators satisfy the same commutation relations (23), (24), (25) of the
operators {tij(u)}, see Appendix A. Thus, using these commutation relations and the action
(5), (6), (7), we can show that

ν12(u)BM (ū) = BM+1(u, ū),



Slavnov and Gaudin–Korepin Formulas for Models without U(1) Symmetry 5

ν11(u)BM (ū) =
ρ

κ+
BM+1(u, ū) + λ1(u)f(ū, u)BM (ū)

+

M∑
i=1

g(u, ui)λ1(ui)f(ūi, ui)BM (u, ūi),

ν22(u)BM (ū) =
ρ

κ+
BM+1(u, ū) + λ2(u)f(u, ū)BM (ū)

+

M∑
i=1

g(ui, u)λ2(ui)f(ui, ūi)BM (u, ūi),

ν21(u)BM (ū) =
( ρ

κ+

)2
BM+1(u, ū) (10)

+
ρ

κ+

(
ΛMd (u, ū|1, 1)BM (ū) +

M∑
i=1

g(ui, u)EMd (ui, ūi|1, 1)BM (u, ūi)

)

+

 M∑
i=1

F (u, ui, ūi)BM−1(ūi) +
∑

1≤i<j≤M
G(u, ui, uj , ūij)BM−1(u, ūij)

 ,

with

ΛMd (u, ū|x, y) = xf(ū, u)λ1(u) + yf(u, ū)λ2(u),

EMd (ui, ūi|x, y) = −xf(ūi, ui)λ1(ui) + yf(ui, ūi)λ2(ui),

F (u, ui, ūi) = g(u, ui)λ1(u)λ2(ui)f(u, ūi)f(ūi, ui) + g(ui, u)λ1(ui)λ2(u)f(ui, ūi)f(ūi, u),

G(u, ui, uj , ūij) = g(u, ui)g(uj , u)λ1(ui)λ2(uj)f(ui, uj)f(ui, ūij)f(ūij , uj)

+ g(u, uj)g(ui, u)λ1(uj)λ2(ui)f(uj , ui)f(uj , ūij)f(ūij , ui),

and where we have used the functional identities

f(ū, u) +

M∑
i=1

g(u, ui)f(ūi, ui) = 1, f(u, ū) +

M∑
i=1

g(ui, u)f(ui, ūi) = 1.

It follows that the action of the transfer matrix is given by

t(u)BM (ū) =
κ−

µ
BM+1(u, ū) + ΛMd (u, ū|κ̃− ρ, κ− ρ)BM (ū)

+
M∑
i=1

g(ui, u)EMd (ui, ūi|κ̃− ρ, κ− ρ)BM (u, ūi), (11)

where we have used the relation ρ
κ+

(κ̃+κ−2ρ) = κ−

µ . The new term BM+1(u, ū) is characteristic
for models which break the U(1) symmetry. From the formula (11) we can obtain, by limit the
upper triangular case κ− = 0 and the diagonal case κ− = κ+ = 0. The Bethe ansatz solution is
then obtained by requiring that EMd (ui, ūi|κ̃ − ρ, κ − ρ) = 0 for M = 0, . . . , N . Only the part
with positive total spin contributes to the solution. Here to complete the MABA we must thus
find the action of the operator ν12(u) on the Bethe vector (9) when M = N . In this case the 2N

independent diagonal Bethe vectors with M ≤ N and partitions of N variables are contained
in the vector, see Appendix B for the expression of the Bethe vector in terms of the initial
operator t12(u). This allows us to find an off-shell action with a wanted/unwanted form

κ−

µ
BN+1(u, ū) = ΛNg (u, ū)BN (ū) +

N∑
i=1

g(ui, u)ENg (ui, ūi)BN (u, ūi), (12)
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ΛNg (u, ū) = 2ρλ1(u)λ2(u)g(u, ū), ENg (ui, ūi) = 2ρλ1(ui)λ2(ui)g(ui, ūi).

This action can be proved following the method given in [13] and will be considered elsewhere.
Finally, from (11) and (12), we obtain the off-shell equation with generic ū with #ū = N ,

t(u)BN (ū) = ΛN (u, ū)BN (ū) +
N∑
i=1

g(ui, u)EN (ui, ūi)BN (u, ūi),

with an inhomogeneous eigenvalue

ΛN (u, ū) = (κ̃− ρ)λ1(u)f(ū, u) + (κ− ρ)λ2(u)f(u, ū) + 2ρλ1(u)λ2(u)g(u, ū), (13)

and an inhomogeneous Bethe equation

EN (ui, ūi) = −(κ̃− ρ)λ1(ui)f(ūi, ui) + (κ− ρ)λ2(ui)f(ui, ūi)

+ 2ρλ1(ui)λ2(ui)g(ui, ūi), (14)

for i = 1, . . . , N .
One can proceed in a similar way for the dual Bethe vector

CN (ū) = 〈0|ν21(ū), (15)

and, in particular, obtain

CN (ū)t(u) = ΛN (u, ū)CN (ū) +
N∑
i=1

g(ui, u)EN (ui, ūi)CN (u, ūi),

with the same eigenvalue and Bethe equations of the Bethe vector (9) with M = N .
When the Bethe equations are satisfied, i.e., EN (ui, ūi) = 0 for i = 1, . . . , N , and we consider

non-singular solutions of the Bethe equations [29], the on-shell Bethe vectors are eigenstates of
the transfer matrix

t(u)BN (ū) = ΛN (u, ū)BN (ū), CM (ū)t(u) = ΛN (u, ū)CN (ū).

Let us remark that the completeness of the solution given by (13), (14) has been numerically
checked for chains with small size. It should be interesting to prove it along the lines of [27].

We are now in position to consider the scalar products for the Bethe vector (9) and (15),
namely,

SN (ū|v̄) = CN (ū)BN (v̄). (16)

From the construction given hereafter, we obtain the modified Slavnov formula of the twisted
XXX spin chain characterized by the inhomogeneous Baxter T-Q equation (13). When

EN (ui, ūi) = 0,

for i = 1, . . . , N , the scalar product (16) has a compact form given by

ŜN (ū, v̄) = cN
(

µ2

κ̃+ κ− ρ

)N
WN

0 (ū)
DetN

(
∂
∂ui

ΛN (vj , ū)
)

DetN
(
g(vi, uj)

) (17)

with

WN
0 (ū) =

(
κ−

µρ

)N
〈0|ν12(ū)|0〉,
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which is given explicitly in Appendix B. When

EN (vi, v̄i) = 0,

for i = 1, . . . , N , the scalar product (16) is given by

S̃N (ū, v̄) = cN
(

µ2

κ̃+ κ− ρ

)N
WN

0 (v̄)
DetN

(
∂
∂vi

ΛN (uj , v̄)
)

DetN
(
g(ui, vj)

) . (18)

We can obtain the square of the norm by imposing the limit ū = v̄. Using the well-known
formula for the Cauchy determinant

DetN
(
g(vi, uj)

)
=

g(v̄, ū)∏
i<j

g(ui, uj)g(vj , vi)
,

we obtain

N N (ū) =

(
µ2

κ̃+ κ− ρ

)N
WN

0 (ū)

 N∏
i<j

g(ui, uj)g(uj , ui)

DetN (Gij), (19)

where the matrix elements Gij , for i, j = 1, . . . , N , are given by

Gii = 2ρc(λ2(ui)∂uiλ1(ui) + λ1(ui)∂uiλ2(ui))

+ (−1)N (κ̃− ρ)

c h(ūi, ui)∂uiλ1(ui)− λ1(ui)
N∑

j=1,j 6=i
h(ūij , ui)


+ (κ− ρ)

ch(ui, ūi)∂uiλ2(ui) + λ2(ui)
N∑

j=1,j 6=i
h(ui, ūij)


Gij = (−1)N (κ̃− ρ)λ1(uj)h(ūij , uj)− (κ− ρ)λ2(uj)h(uj , ūij) for i 6= j,

with

h(u, v) =
f(u, v)

g(u, v)
=
u− v + c

c
,

and where we have applied the l’Hospital’s rule to find

Gij = lim
vj→uj

c
∂
∂ui

ΛN (vj , ū)

g(vj , ū)
. (20)

From the conjectured modified Slavnov and Gaudin–Korepin formulas we remark that the
ratio, needed for the calculation of the correlations functions, is independent of the WN

0 (ū) and

of the constant
( µ2

κ̃+κ−ρ
)N

. Thus the relevant part of the formula for the correlations functions
is given by the Jacobian of the inhomogeneous eigenvalue (13) and it limits (20).

To obtain this conjecture we have proceeded in the following way. We start from the following
hypothesis:

• We can impose the Bethe equations (14), EN (vi, v̄i) = 0 for i = 1, . . . , N , by linearizing
the quadratic terms λ1(vi)λ2(vi) in terms of λ1(vi) and λ2(vi).

• The usual Slavnov formula must be recovered in the U(1) symmetric limit and thus the
modified Slavnov formula contain the determinant of the Jacobian of the inhomogenous
eigenvalue (13).
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For the U(1) symmetric case (κ+ = κ− = 0), the scalar product between an on-shell Bethe
vector and an off-shell Bethe vector is given by the Slavnov formula [35]. If the v̄ are on-shell,
i.e., EMd (vi, v̄i|κ̃, κ) = 0 for i = 1, . . . ,M , we have

S̃Md (ū, v̄) =
( c
κ̃

)M
λ2(v̄)

DetM
(
∂
∂vi

ΛMd (uj , v̄, κ̃, κ)
)

DetM (g(ui, vj))
.

From the first term of action the (10), for M = N and using (12), we can extract the leading
term of the scalar product with N quadratic terms: λ1(ui)λ2(ui) with i = 1, . . . , N . If we
impose the Bethe equations (14), EN (vi, v̄i) = 0 for i = 1, . . . , N , by linearizing the quadratic
terms λ1(vi)λ2(vi) in terms of λ1(vi) and λ2(vi), this leading term is invariant and is the only
contribution at the top order 3N in the λi. This term is proportional to

WN
0 (v̄)

N∏
i=1

ΛNg (ui, v̄).

It allows us to fix the functional to complete the determinant part of the Slavnov formula (18).
Indeed, the functional is the same, up to a constant, when we consider the leading coefficient
in the λi and use the identity

DetN

(
∂

∂vi
ΛNg (uj , v̄)

)
=

1

cN
DetN

(
g(uj , vi)

) N∏
i=1

ΛNg (ui, v̄).

In the U(1) symmetry limit, ρ = 0, we have WN
0 (v̄) = λ2(v̄)(κκ̃ + 1)N and restore the usual

Slavnov formula up to a constant. The formula (17) can de derived, also up to a constant, in
a similar way starting from the action of the operator ν12(u) on the dual Bethe vector (15). This
way to find the modified Slavnov formula does not fix the constant.

Let us fix this constant by considering the simplest case N = 1 and discuss the difficulties
to find the good parametrization for the off-shell scalar product, which allows us to find the
modified Slavnov formula by linearizing the quadratic term of the Bethe equation, for general N .
In the case N = 1, the good one is

S1(u, v) = µ

(
S1
d(u, v) +

µ

κ̃+ κ− ρ
(
Λ1
g(u, v)W 1

0 (v) + Λ1
g(v, u)W 1

0 (u)
))

(21)

with

W 1
0 (u) = λ1(u) + λ2(u), S1

d(u, v) = g(u, v)(λ1(v)λ2(u)− λ1(u)λ2(v)).

To obtain the Slavnov formula we use the Bethe equation to linearize the quadratic term that
depends on v

λ1(v)λ2(v) =
1

2ρ

(
(κ̃− ρ)λ1(v)− (κ− ρ)λ2(v)

)
(22)

and thus we arrive to our result

S1
E(v)=0(u, v) =

µ2

κ̃+ κ− ρ
g(v, u)W 1

0 (v)
(
(κ̃− ρ)λ1(u)− (κ− ρ)λ2(u)− 2ρλ1(u)λ2(u)

)
.

If we also linearize the second quadratic term, we find zero for u 6= v, which shows the orthogo-
nality of the Bethe vectors and the modified Gaudin–Korepin formula (19) for u = v.
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The parametrization (21) is not unique; for instance, from the projection on the {tij(u)}
operator, see Appendix B, we find

S1(u, v) = µ2S1
d(u, v) + µ2 ρ2

κ+κ−
(
λ1(u) + λ2(u)

)(
λ1(v) + λ1(v)

)
that is equivalent to (21) when we specify the explicit form of the λi(u) (4). In this case the
quadratic term λ1(v)λ2(v) does not appear and the formula (22) could not be used directly.
Moreover, the recursion relation (10) gives also another parametrization in order 3 in the λi(u)
like (21) but with terms of the form λi(u)λi(v). In this case the linearization of the quadratic
term (22) could be used but does not lead directly to the modified Slavnov formula. A systematic
way to fix the good parametrization of the off-shell scalar product (i.e., a parametrization that
reduces to the modified Slavnov formula, when we linearize the quadratic terms λ1(vi)λ2(vi)
from the inhomogenous Bethe equations) remains an open problem for the moment and will be
discussed elsewhere. The conjecture can be tested exactly for N = 1, which allows us to fix the
constant, and then the cases N = 2 and N = 3 have been checked numerically to support the
conjecture.

Finally, let us point out another problem which is worth to be considered: the construction
of an explicit algebraic link between the MABA solution and the solution obtained by means of
the usual ABA, see, e.g., [32]. One first step to address this problem, at least at the spectral
level, is to equate the eigenvalue expression found from the MABA (13) with the ones obtained
from the usual ABA. The simplest eigenvalue from the usual ABA is given by

αλ1(u) + (κ+ κ̃− α)λ2(u)

with α = 1
2(κ + κ̃ +

√
(κ− κ̃)2 + 4κ+κ−) an eigenvalue of the twist matrix K. As a result, we

can obtain constraints on the parameters ū that, up to symmetrization, provide one solution of
the Bethe equations (14). More details will be given elsewhere.

A Rational functions and commutations relations

Let us introduce the commutation relations of the tij(u) given by

[tij(u), tkl(v)] = g(u, v)
(
tkj(v)til(u)− tkj(u)til(v)

)
.

In particular, we will only use the following ones

t11(u)t12(v) = f(v, u)t12(v)t11(u) + g(u, v)t12(u)t11(v), (23)

t22(u)t12(v) = f(u, v)t12(v)t22(u) + g(v, u)t12(u)t22(v), (24)

t21(u)t12(v) = t12(u)t21(v) + g(u, v)
(
t11(v)t22(u)− t11(u)t22(v)

)
. (25)

The functions f and g are given by (8). They allow us to find the action on the multiple product
of t12(u) that forms a string of length M , namely,

t11(u)t12(v̄) = f(v̄, u)t12(v̄)t11(u) +

M∑
i=1

g(u, vi)f(v̄i, vi)t12(u)t12(v̄i)t11(vi),

t22(u)t12(v̄) = f(u, v̄)t12(v̄)t22(u) +
M∑
i=1

g(vi, u)f(vi, v̄i)t12(u)t12(v̄i)t22(vi),

t21(u)t12(v̄) = t12(v̄)t21(u)

+
M∑
i=1

f(ui, ūi)
(
g(u, ui)t22(ui)t12(ūi)t11(u) + g(xi, y)t22(u)t12(ūi)t11(ui)

)
.
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B Projection of the Bethe vector

The Bethe vector in terms of the operator t12(u) is given by

ν12(ū)|0〉 = µN
N∑
i=0

∑
ū→{ūI,ūII}

( ρ

κ−

)N−i
WN
i (ūI|ūII)t12(ūII)|0〉,

with #ūII = i, #ūI = N − i a partition of the set ū. The sum is over all ordered partitions,
denoted ū→ {ūI, ūII}. The coefficient is given by

WN
i (u1, . . . , uN−i|uN−i+1, . . . , uN ) = SymN−i

u1,...,uN−i

N−i∏
j=1

WN+1−j
N−j (uj |uj+1, . . . , uN )

 ,

where

W i
i−1(u1|u2, . . . , ui) = f(ū1, u1)λ1(u1) + f(u1, ū1)λ2(u1) = Λi−1

d (u1, ū1, 1, 1)

and

SymM
ū

(
F (ū)

)
=

1

M !

∑
σ∈SM

F (ūσ),

with ūσ = {uσ(1), . . . , uσ(M)} an element of the permutation group SM . The dual Bethe vector
in terms of the operator t21(u) is given by

〈0|ν12(ū) = µN
N∑
i=0

∑
ū→{ūI,ūII}

( ρ

κ+

)N−i
WN
i (ūI|ūII)〈0|t21(ūII).
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Cergy-Pontoise post doctoral fellowship. R.A.P. is supported by Sao Paulo Research Foundation
(FAPESP), grants # 2014/00453-8 and # 2014/20364-0. We also thank the referees for their
constructive remarks.

References

[1] Avan J., Belliard S., Grosjean N., Pimenta R.A., Modified algebraic Bethe ansatz for XXZ chain on the
segment – III – Proof, Nuclear Phys. B 899 (2015), 229–246, arXiv:1506.0214.

[2] Baseilhac P., Koizumi K., Exact spectrum of the XXZ open spin chain from the q-Onsager algebra repre-
sentation theory, J. Stat. Mech. Theory Exp. 2007 (2007), P09006, 27 pages, hep-th/0703106.

[3] Batchelor M.T., Baxter R.J., O’Rourke M.J., Yung C.M., Exact solution and interfacial tension of the
six-vertex model with anti-periodic boundary conditions, J. Phys. A: Math. Gen. 28 (1995), 2759–2770,
hep-th/9502040.

[4] Baxter R.J., Exactly solved models in statistical mechanics, Academic Press, Inc., London, 1982.

[5] Belliard S., Modified algebraic Bethe ansatz for XXZ chain on the segment – I: Triangular cases, Nuclear
Phys. B 892 (2015), 1–20, arXiv:1408.4840.
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