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Abstract. The s2s-OVCA is a cellular automaton (CA) hybrid of the optimal velocity
(OV) model and the slow-to-start (s2s) model, which is introduced in the framework of the
ultradiscretization method. Inverse ultradiscretization as well as the time continuous limit,
which lead the s2s-OVCA to an integral-differential equation, are presented. Several traffic
phases such as a free flow as well as slow flows corresponding to multiple metastable states
are observed in the flow-density relations of the s2s-OVCA. Based on the properties of the
stationary flow of the s2s-OVCA, the formulas for the flow-density relations are derived.
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1 Introduction

Self-driven many-particle systems have provided a good microscopic point of view on the vehicle
traffic [3, 5]. The optimal velocity model [1] gives a description of such a system with a set
of ordinary differential equations (ODE). It is a car-following model describing an adaptation
to the optimal velocity that depends on the distance from the vehicle ahead. Another way of
describing such systems is provided by cellular automata (CA). For example, the elementary
CA of Rule 184 (ECA184) [16], the Fukui–Ishibashi (FI) model [4] and the slow-to-start (s2s)
model [12] are CA describing vehicle traffic as self-driven many-particle systems.

Studies of the self-driven many-particle systems have been wanting a framework that com-
mands a bird’s eye view of both ODE and CA models in a unified manner. Ultradiscretiza-
tion [14], which gives a link between the Korteweg–de Vries (KdV) equation and integrable soli-
ton CA [11], is expected to provide such a framework, for it can be applied to non-integrable sys-
tems, too. As a first step toward such a framework, an ultradiscretization of the OV model [10]
was presented. A specific choice of the OV function enabled the ultradiscretization of the OV
model without any other specialization. We should note that another ultradiscretization of the
OV model with essentially the same OV function as above was derived from the modified KdV
(mKdV) equation, which is an effective theory around the critical point, with specializing its
solutions to traveling wave solutions [7]. The latter ultradiscretization of the OV model depends
on the ultradiscretization of the mKdV equation, which is an integrable soliton equation with
rich accumulation of the studies of integrable discretization and ultradiscretization. The former
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one, on the other hand, has nothing to do with integrability, which indicates a possibility to
expand the scope of the ultradiscretization beyond the integrable models. Thus the two ultra-
discretizations make a clear contrast regarding to integrability. An early search for a CA-type
OV model dates back to 1999 [5, 6], which was done from a phenomenological point of view to
highway traffic.

The former ultradiscretization of the OV model [10] provided a foundation toward a hybri-
dization of the OV model and the s2s model, and it lead to the s2s-OVCA [9] indeed, without
the aid of the integrable models. The s2s-OVCA is a CA-type hybrid of the OV model and
the s2s model. As we shall see, the equation of the s2s-OVCA generally involves three or more
times, or higher order time-differences, in other words. As far as the authors know, difference
equations involving higher order time-differences yet want a thorough study from a point of
view of the ultradiscretization. Besides an interest from the traffic theoretical point of view, an
interest toward a new horizon of the scope of the ultradiscretization motivates us to introduce
and study the s2s-OVCA. As we shall show in Section 2, the s2s-OVCA reduces to an ODE that
is an extension of the OV model in the inverse-ultradiscrete and the time-continuous limits.

It was observed by numerical experiments that motion of the vehicles described by the s2s-
OVCA went to stationary flow in the long run, irrespectively of the initial configuration [9, 15].
It was also observed by numerical experiments that the flow-density relation for the stationary
flow of the s2s-OVCA was piecewise linear and flipped-λ shaped with several metastable slow
branches [9]. Exact expression for the flow-density relation was given by a set of exact solutions
giving stationary flows of the s2s-OVCA [15]. The flipped-λ shaped diagram captures the
characteristic of observed flow-density relations [3, 5]. Some other CA type models that gave
a flipped-λ shaped flow-density relation with a metastable branch was also reported [2]. We
shall explain in Section 3 the flow-density relation of the s2s-OVCA based on the properties of
the stationary flow which was numerically observed [9].

2 s2s-OVCA and its inverse ultradiscretization

The s2s-OVCA is given by a set of difference equations below

xn+1
k = xnk + min

( n0

min
n′=0

(
xn−n

′

k+1 − x
n−n′
k − 1

)
, v0

)
, (1)

where the integers n0 ≥ 0, v0 ≥ 0 and xnk , k = 1, 2, . . . ,K, are the monitoring period, the top
speed and the position of the car k at the n-th discrete time. Note that the definition of the

symbol
N

min
k=0

is

N
min
k=0

(ak) := min(a0, a1, a2, . . . , aN ).

The equation (1) is called an ultra-discrete equation in the sense that it is a difference equation
which is piecewise linear with respect to the dependent variables xnk . The s2s-OVCA includes
the ECA184 (n0 = 0, v0 = 1) [16], the FI model (n0 = 0) [4] and the s2s model (n0 = 1,
v0 = 1) [12] as its special cases.

Since the second term in the right hand side of equation (1) gives the speed of the car k
at the time n, the s2s-OVCA describes many cars running on a single lane highway in one
direction, which is driven by cautious drivers requiring enough headway to go on at least for n0

time steps before they accelerate their cars. The equation (1) also means that the car slows
down immediately when its headway becomes less than its velocity. Thus the monitoring pe-
riod n0 describes asymmetry between acceleration and deceleration of the cars. It is said that
the acceleration times are about five to ten times larger than the braking times [5].
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Without loss of generality, we can assume that the cars are arrayed in numerical order,
x0

1 < x0
2 < · · · < x0

K , which is also assumed throughout below. Then the number of empty cells
between the cars k and k + 1 for any k is always non-negative, i.e.,

xnk+1 − xnk − 1 := ∆xnk − 1 ≥ 0. (2)

It is obvious that the inequality holds for n = 0. We assume that the inequality holds up to
some n, as the induction hypothesis. The induction hypothesis as well as the definition of min
assure the inequality

0 ≤ min
( n0

min
n′=0

(
∆xn−n

′

k − 1
)
, v0

)
≤ ∆xnk − 1 (3)

for any k. Using equation (1), we get an expression of ∆xnk as

∆xn+1
k − 1 = ∆xnk − 1 + min

( n0

min
n′=0

(
∆xn−n

′

k+1 − 1
)
, v0

)
−min

( n0

min
n′=0

(
∆xn−n

′

k − 1
)
, v0

)
= min

( n0

min
n′=0

(
∆xn−n

′

k+1 − 1
)
, v0

)
+
[
∆xnk − 1−min

( n0

min
n′=0

(
∆xn−n

′

k − 1
)
, v0

)]
. (4)

The inequality (3) and the equation (4) show that the inequality (2) holds for n + 1. The
inequality (2) means that both overtake and clash are prohibited by the s2s-OVCA.

We should note that the s2s-OVCA is obtained from a difference equation by a limiting proce-
dure named ultradiscretization [14], which generates a piecewise-linear equation from a difference
equation via the limit formula

lim
δx→+0

δx log

( N∑
k=0

bke
ak/δx

)
= max(a0, a1, a2, . . . , aN ) =:

N
max
k=0

(ak), (5)

where arbitrary numbers bk must be positive. The equation (5) is rewritten as

lim
δx→+0

δx log

( N∑
k=0

bke
−ak/δx

)−1

=
N

min
k=0

(ak),

for min(a0, a1, a2, . . . , aN ) = −max(−a0,−a1,−a2, . . . ,−aN ).
For the sake of convenience in the calculation below, we introduce two parameters, x0 and δt,

in the s2s-OVCA

xn+1
k = xnk + min

( n0

min
n′=0

(
∆xn−n

′

k

)
− x0, v0δt

)
=: xnk + vu

opt(∆effx
n
k)δt, (6)

where ∆effx
n
k := minn0

n′=0

(
∆xn−n

′

k

)
. The parameters x0 and δt are the length of a cell, which

corresponds to the space occupied by a single car or the length of a car itself in the shortest
case imaginable, and the discrete time-step, respectively. For simulation of highway traffics,
the length of a cell x0 and the discrete time-step δt are usually chosen as x0 = 7.5 m and
v0 = 5× x0

δt [5]. But we do not consider specific values of the parameters in the s2s-OVCA and
regard them as generic. The two parameters x0 and δt were set to be unity in equation (1).
Introduction of x0 into the inequality (3) gives

∆xnk − x0 ≥ 0 (7)

for any n and k, which is shown by induction with the aid of an inequality

0 ≤ min
( n0

min
n′=0

(
∆xn−n

′

k − x0

)
, v0δt

)
≤ ∆xnk − x0
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and an expression of ∆xnk derived from equation (6)

∆xn+1
k − x0 = min

( n0

min
n′=0

(
∆xn−n

′

k+1 − x0

)
, v0

)
+
[
∆xnk − x0 −min

( n0

min
n′=0

(
∆xn−n

′

k − x0

)
, v0

)]
that correspond equations (3) and (4), respectively.

Since we have the inequality (7) for the headway ∆xnk−x0, the effective headway ∆effx
n
k−x0

is also always non-negative, ∆effx
n
k − x0 ≥ 0, for any k. With the aid of the identity

min(A,B) = A−max(0, A−B) = max(0, A)−max(0, A−B)

for any A ≥ 0, the optimal velocity function vu
opt(x)δt := min(x− x0, v0δt) in the s2s-OVCA is

expressed as

vu
opt(x)δt = max(0, x− x0)−max(0, x− x0 − v0δt),

for any x > 0. It is given by the ultradiscrete limit δx→ +0 of a function

vd
opt(x)δt = δx log

 1+e(x−x0)/δx

1+e−x0/δx

1+e(x−x0−v0δt)/δx

1+e−(x0+v0δt)/δx

 ,
which is an inverse-ultradiscretization of the optimal velocity function vu

opt. Note that we have

introduced arbitrary coefficients so as to make vd
opt(0) = 0. In a similar way to the above

calculation, an inverse-ultradiscretization of the effective interval ∆u
effx

n
k is also obtained as

∆d
effx

n
k := δx log

(
n0∑
n′=0

e−∆xn−n
′

k /δx

n0 + 1

)−1

.

Therefore an inverse-ultradiscretization of the us2s-OVCA is given by xn+1
k = xnk+vd

opt(∆
d
effx

n
k)δt,

which is explicitly written as

xn+1
k = xnk + δx

{
log

[
1 +

( n0∑
n′=0

e−(∆xn−n
′

k −x0)/δx

n0 + 1

)−1]
− log

(
1 + e−x0/δx

)
− log

[
1 +

( n0∑
n′=0

e−(∆xn−n
′

k −x0−v0δt)/δx

n0 + 1

)−1]
+ log

(
1 + e−(x0+v0δt)/δx

)}
. (8)

In other words, the s2s-OVCA is given by the ultradiscrete limit δx→ +0 of the above difference
equation (8).

Since equation (8) is rewritten as

xn+1
k − xnk
δt

= δx

{
− 1

δt

(
log

[
1 +

( n0∑
n′=0

e−(∆xn−n
′

k −x0−v0δt)/δx

n0 + 1

)−1]

− log

[
1 +

( n0∑
n′=0

e−(∆xn−n
′

k −x0)/δx

n0 + 1

)−1])

+
log
(
1 + e−(x0+v0δt)/δx

)
+ log

(
1 + e−x0/δx

)
δt

}

= v0

(
1 +

n0∑
n′=0

e−(∆xn−n
′

k −x0)/δx

n0 + 1

)−1

− v0

(
1 + ex0/δx

)−1
+O(δt),
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the above difference equation (8) goes to an integral-differential equation in the continuum limit
δt→ 0 as follows

dxk
dt

= v0

(
1 +

1

t0

∫ t0

0
e−(∆xk(t−t′)−x0)/δxdt′

)−1

− v0

(
1 + ex0/δx

)−1
, (9)

where t0 := n0δt,
dxk
dt = lim

δt→0

xn+1
k −xnk
δt and

lim
δt→0

n0∑
n′=0

e−(∆xn−n
′

k −x0)/δx

n0 + 1
=

1

t0

∫ t0

0
e−(∆xk(t−t′)−x0)/δxdt′.

In terms of an optimal velocity function and an effective distance

vopt(x) := v0

(
1

1 + e−(x−x0)/δx
− 1

1 + ex0/δx

)
,

∆effxk(t) := δx log

(
1

t0

∫ t0

0
e−∆xk(t−t′)/δxdt′

)−1

,

the above integral-differential equation is expressed as

dxk
dt

= vopt

(
∆effxk(t)

)
.

Since the effective distance ∆effxk(t) goes to ∆xk(t) in the limit below

∆xk(t− t0) = lim
h→t0

δx log

(
1

t0 − h

∫ t0

h
e−∆xk(t−t′)/δxdt′

)−1

,

this integral-differential equation is an extension of the Newell model [8]

dxk
dt

= vopt

(
∆xk(t− t0)

)
, (10)

which is a car-following model dealing with retarded adaptation to the optimal velocity deter-
mined by the headway in the past.

Replacement of t with t+t0 in equation (10) and the Taylor expansion of ẋk(t+t0) = vk(t+t0)
yield

vopt(∆xk(t)) = vk(t+ t0) = vk(t) +
dvk
dt
· t0 +

1

2

d2vk
dt2
· t20 + · · · ,

which is equivalent to

dvk
dt

+
1

2

d2vk
dt2
· t0 + · · · = 1

t0

(
vopt(∆xk(t))− vk(t)

)
. (11)

The equation of motion of the OV model

dvk
dt

=
1

t0

(
vopt(∆xk(t))− vk(t)

)
is given by neglecting the higher order terms in the left hand side of the equation (11).

The discussion shown above in this section shows how the inverse ultradiscretization and the
time continuous limit connect the s2s model and the Newell model, which approximates the OV
model, through the s2s-OVCA.
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Figure 1. The spatio-temporal pattern (left) and the flow-density relation (right) of the s2s-OVCA [9].

3 Flow-density relation

Fig. 1 gives typical examples of the spatio-temporal pattern showing jams and the flow-density
relation of the s2s-OVCA [9]. In the numerical calculation, the periodic boundary condition is
imposed and the length of the circuit L, which is the same as the number of all the cells, is fixed
at L = 100. The maximum velocity v0 and the monitoring period n0 are v0 = 3 and n0 = 2.
The number of the cars K in the spatio-temporal pattern is set at K = 30.

The spatio temporal pattern shows the trajectories of the cars. As we can see, irregular
motion of cars is observed in the early stage of the time evolution, 0 ≤ n ≤ 30, where n is the
time. But after that, the flow of the cars become stationary in the sense that length of the jam
is almost constant and that cars with intermediate speeds appear only temporarily.

The flows Q in the flow-density relation are computed by averaging over the time period
800 = ni ≤ n ≤ nf = 1000,

Q :=
1

(nf − ni + 1)L

K∑
k=1

nf∑
n=ni

vnk , vnk := xn+1
k − xnk , (12)

in which the traffic is expected to be stationary in the above mentioned sense. The car density ρ
is given by ρ := K

L . As we have mentioned before, the flow-density relation of the s2s-OVCA is
piecewise linear and flipped-λ shaped with several metastable slow branches.

The flow-density relation shown above is derived by admitting the features of the flow of
the s2s-OVCA. Namely, the flow of the s2s-OVCA goes to one of the stationary flows in the
long run. The stationary flows consist of the free flow in which all the cars run at the top
speed v0 and the slow flows that always contain slow cars running at the minimum speed v∞min,
0 ≤ v∞min < v0, which remains constant. Formation of the line of slow cars corresponds to that of
traffic jam. In the slow flows, lengths of the jams are almost constant and fluctuate periodically.
Our previous paper [15] gives a set of such stationary flows.

First we shall deal with the free flow and its flow-density relation. Since all the cars run at the
top speed, vnk = v0, ∀ k, all the headways respectively remain constant, ∆xn+1

k = ∆xnk ≥ v0 + 1,
∀ k. Hence the flow Q is also constant in the future. Using the definition of the flow (12) with
ni = nf = n, we have

Q =
1

L

K∑
k=1

v0 = ρv0,

which gives the straight line in the flow-density relation with a positive inclination that is equal
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Figure 2. The formula for the flow-density relation of the s2s-OVCA [15].

to the top speed v0. For example in Fig. 2, the flow-density relation of the free flow which is
labeled with v = 3 is Q = 3ρ, since v0 = 3 in this case.

Next we shall consider the slow flows and their flow-density relations. Let us see a specific
solution of the s2s-OVCA starting from the following initial configuration

0: 1 2 3   4       5  6 7 8 9       0    . (13)

Note that the number 0 at the leftmost shows the time. The digits and the blank symbols  

in the above configuration mean the indices of the cars and the empty cells, respectively. Thus
the number of the cars K is 10 and the length of the circuit L is 38 in this case. We set the
monitoring period n0 at 2. The speed of the cars 4, 9 and 0 is 3, which is the top speed v0 of
this case. The speed of the car 5 is 2, whose headway is also 2. All the other cars’ speeds are 1,
whose headways are also 1 except for the car 3. Thus the headways of the cars in tha past have
nothing to do with the motion of the cars in the future except for the car 3. The headway of
the car 3 at the time −1 is set to be 1.

Out of the above initial configuration (13), the equation (1) generates flow of vehicles as
follows

0: 1 2 3   4       5  6 7 8 9       0    ,

1:  1 2 3     4      5 6 7 8   9       0 ,

2: 0 1 2 3       4    5 6 7 8     9      ,

3:  0 1 2   3       4  5 6 7 8       9   ,

4:   0 1 2     3      4 5 6 7   8       9 ,

5:  9 0 1 2       3    4 5 6 7     8     ,

6:   9 0 1   2       3  4 5 6 7       8  .

Note that the minimum speed of the cars v∞min is 1 in the flow above. We notice that the
configuration at the time 3 is obtained by moving all the cells of the initial configuration one
cell rightward as well as changing the car indices k to k−1 modulo 10. The configuration at the
time 6 is also obtained by doing the same shifts and changes of car indices to the configuration
at the time 3. In this sense, the above flow is a periodic motion of cars whose period is 3 in this
case. The length of the jam, or the number of the cars running at the minimum speed, is thus
almost constant. Intermediate speeds also appear but only temporarily. That is why we call
them stationary flows of the s2s-OVCA. Roughly speaking, the slow flow we shall deal with is
the stationary flow of the type shown above. The density of the cars ρ and the average flow Q
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Two cells are the same under PBC.

Figure 3. The slow flow of the s2s-OVCA. Cars in the cells drawn by dashed lines are omitted except

for the car 1 at the time n+ n0 + 1.

over the period, or the n0 + 1 = 3 steps, are calculated as

ρ =
K

L
=

5

19
,

Q =
1

(n0 + 1)L

K∑
k=0

n0∑
n′=0

vn
′
k =

6 + 3 + 3 + 5 + 9 + 4 + 3 + 3 + 3 + 9

3× 38
=

8

19
,

which will be verified with the formula we shall derive shortly.
Let us consider such slow flows as we have seen above as the specific solutions in a more

general manner. Fig. 3 shows configurations of a slow flow at times n and n + n0 + 1. Since
we employ the periodic boundary condition, two cells containing the car K are identified. As
a property of the slow flow, we assume that the slow flow is periodic in the sense that the
configuration at the time n + n0 + 1, which is shown in the box in Fig. 3, is given by the
rightward displacement of the entire configuration at the time n in the box by n0v

∞
min − 1

cells. The flow provided by this displacement of the entire configuration in n0 + 1 time steps is
n0v∞min−1
n0+1 ρ. For example, the rightward displacement mentioned above for the slow flow in Fig. 3

is 2 × 1 − 1 = 1, which agrees with the observation before. The set of stationary flows given
in [15] has the property of the slow flow we here assume.

Here we should note that the leftward displacement of the car K by L cells, namely whole
the circuit length, which is fictitiously introduced to make the shifted initial configuration from
the real configuration at the time n0 + 1 in the sense that the numerical order of the car arrays
is maintained. In order to compensate the underestimation of the flow brought about by this
leftward displacement, we have to add the flow corresponding to the rightward displacement of
the car K by L cells in n0 + 1 time steps, 1

(n0+1)L · L = 1
n0+1 . Thus the flow of the slow flow

with the minimum speed v∞min is given by

Q =
n0v

∞
min − 1

n0 + 1
ρ+

1

n0 + 1
, 0 ≤ v∞min < v0. (14)

For example, substitution of ρ = 5
19 , n0 = 2 and v∞min = 1 into equation (14) yields

Q =
2× 1− 1

2 + 1
× 5

19
+

1

2 + 1
=

8

19
,

which agrees with the flow Q = 8
19 for the slow flow given above as an specific solution. The

formula (14) agrees with the flow-density relation given by numerical experiments, as we can
see in Fig. 2. Three branches labeled with v = 2, 1 and 0 are the flow-density relations with
the minimum speeds v∞min = v in Fig. 2. Roughly speaking, the traffic that forms the branch
corresponding to v∞min consists of groups of cars running at the top speed v0 and other groups
of cars running at the minimum speed v∞min, as the specific solution evolving from the initial



s2s-OVCA and Flow-Density Relation 9

configuration (13) has shown. A set of specific solutions that correspond to the branches in the
fundamental diagram is given in [15].

The maximum density ρmax(v∞min) that allows the minimum speed to be v∞min is

ρmax(v∞min) =
1

v∞min + 1
. (15)

The flow Q(ρmax(v∞min)) corresponding to the maximum density ρmax(v∞min) is then given by

Q(ρmax(v∞min)) = ρmax(v∞min)v∞min. (16)

Since the two equations (15) and (16) holds at the same time, they leads to Q(ρmax(v∞min)) +
ρmax(v∞min) = 1. Thus all the end points of the branches must be on the line

Q+ ρ = 1. (17)

The branching point, or the minimum density, of the flow-density relation of the slow flow
corresponding to the minimum speed v∞min is determined by the intersection of the flow density
relations of the free flow and the slow flow

ρmin(v∞min) =
1

n0(v0 − v∞min) + v0 + 1
. (18)

In Fig. 2, the branching points corresponding to v∞min = 2, 1 and 0 are encircled with small circles,
which agree with the above formula (18). The density of the cars ρ needs to be sufficiently large
so as to form the slow flow with the minimum speed v∞min. The branching point gives the lower
bound of such density.

Since the s2s-OVCA (1) is a deterministic CA, the initial configuration determines the final
state. Its numerical simulation is very robust against, or more precisely speaking, free from
numerical errors. Thus all the stationary flows including the free flow and the slow flows
beyond the minimum density ρmin(v∞min) are stable in the numerical simulation. That is why
we were able to obtain the flow-density relation with several “metastable” states consisted by
the free flow and the slow flows beyond the minimum density, as was shown in Figs. 1 and 2.
Though these metastable states are robust against numerical errors in simulation, but they are
generally unstable against perturbation, which gives a reason of their name. For example, when
one gives a perturbation to the headways that is equal to the minimum speed v∞min in the groups
of cars running at the minimum speed v∞min, a car with a velocity that is less than v∞min appears.
And such a perturbed car generally becomes a seed of a group of cars running at a velocity
slower than v∞min, which eventually slows down whole the traffic. That is why we call these
states metastable, except for the slow line with v∞min = 0, which we cannot make slower.

When the monitoring period n0 is zero, all of the slow flows (14) goes to the line of the end
points of the metastable branches (17). Thus the monitoring period plays an essential role in
the formation of the metastable states in the flow-density relation. Thus it could be determined
by comparing the flow-density relation of the s2s-OVCA and observed ones.

4 Summary

We have shown an inverse ultradiscretization from the s2s-OVCA (1) to an integral-differential
equation (9), which is an extension of the Newell model (10). Since the Newell model [8] and
the s2s-OVCA [9] are extended models of the OV [1] and the s2s models [12] respectively, the
s2s-OVCA is interpreted as a CA-type hybrid of the OV and the s2s models.

Using the features of the stationary flows observed in the numerical experiments, we have
derived the flow-density relations of the stationary flow of the s2s-OVCA. The flow-density
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relations of the s2s-OVCA were numerically obtained [9] and then derived by use of a set of
stationary flows [15].

Since the s2s-OVCA is a deterministic CA, the model is suitable for a simulation with a much
bigger system size than the length of the circuit, L = 100, in our numerical simulation. We
expected that it would be sufficient to capture the characteristics of stationary flows of the s2s-
OVCA on the circuit, which is determined by the density of cars and initial configuration. In
order to observe finite-size effects of open boundaries, for example, we expect that the s2s-OVCA
will be a good tool.

The s2s-OVCA has several types of monotonicity in its time evolution, which extend the
results shown for the n0 = 1 case [13]. We expect that the monotonicity determines the relaxation
to the stationary flow from the initial configuration as well as the property of the stationary flow
we assume here. We hope that results on the relaxation to stationary flows and the monotonicity
in the time evolution of the s2s-OVCA will be reported soon.
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