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Abstract. The increasing computerization of the society over the last decade led to the increased data volumes stored over the world. The 

need to handle and store these massive amounts of data, arising from diverse sources as scientific records, web pages, or social networks has 
created a new class of application – data intensive applications. Usually designed up to the specific application requirements, one of these 

most challenging questions is choice of the appropriate back-end. The I/O benchmarking tools can easy this decision process. However, 

despite of its high variety, there is a lack of portable and easily adaptable benchmarks that can correspond to the real application behavior. 
The programmable I/O benchmark Parabench tries to close this gap. Its input is based on access patterns, which can be adjusted to the 

application, for which the system is to be used. Our work concentrates on ability of Parabench in mimicking real applications. We describe 

here its capabilities to handle MPI-I/O and POSIX and present a modeling example of a data intensive application from the field of business 
intelligence. 
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1. Introduction 

Today’s applications have to face the issue of constantly and fast growing data amount. According to [11] only 

on the field of data warehouses over the last decade, the largest data warehouse have increased from 5 to 100 terabytes. 

Another prominent example is Google, which data repository stores over 3 billion web pages [15] with the increasing 

tendency [6].  Big demands on storing, managing, and processing data created a new form of high-performance 

computing facility that focuses on data, rather than raw computation, as the core focus of the system. Such data 

intensive systems ([6] calls them data intensive super computer systems) works with massive amounts of data arising 

from such diverse sources as social networks, web pages, online transaction records or scientific data records e.g. from 

the field of medicine. Up to the scenario the I/O if such data intensive application is done via POSIX or parallel I/O 

interfaces. 

One of the important questions while designing a data intensive application is choice of the suitable back-end. 

Cluster file systems are a popular option for the back-end of storing mass data [22]. Choosing an appropriate cluster file 

system for a specific data intensive application regarding its specific I/O requirements is challenging. For example, in 

the database scenario, application has usually to handle update of large datasets, whereas in the field of natural science 

large amounts of data may have been written in massive parallel fashion. The I/O benchmarking tools can easy this 

decision process. Available benchmarks are quite dissimilar [1–5, 13, 14, 19, 21 24, 35]. They vary in access pattern 

coverage, interface support, reporting and timing mechanisms. Considering these design goals we distinguish 

application-based I/O benchmarks and synthetic I/O benchmarks.  

The application-based I/O benchmarks are derived from an application or a group of applications. They allow 

making studies of the architectural system performance under realistic I/O and communication requirements. Being 

very specialized, it can be difficult for non specialists to build and run such benchmarks. Moreover, they may not be 

distributed widely if they reveal sensitive algorithms or data. MADbench [4, 5] is an example for this benchmark group, 

which emulates a scientific cosmology application. Another example is the MPI-IO benchmark NAS BTIO [35]. It is 

derived from the compute benchmark BT that employs a fairly complex domain decomposition called multi-

partitioning. The solution matrix of this calculation process is written to a file after every five time-steps and 
ordered by certain criteria at the end of the operation. Thus, BTIO only examines one workload and a very limited 

number of possibilities of MPI-IO.  

The synthetic I/O benchmarks measure overall I/O system performance using standard or customized I/O access 

patterns. Benchmarks for local and network file systems IOZone [19] and FileBench [13] are the prominent examples 

for the synthetic benchmarks. However, due to lack of parallel implementations, they are not used for on the HPC field. 

Synthetic tools LLNL IOR [1] and b_eff_io [2, 31] support not only POSIX but also MPI-IO. IOR exercises concurrent 

read/write on one file or on separate files (one-file-per-processor). The benchmark is highly parameterized and offers a 
wide variety of access patterns. b_eff_io allows a very precise test configuration by using different parameter groups 

[31]. Its main purpose is to give a limited statement about I/O performance after a defined (usually quite short) time 

period in which production system is used for testing. Even if b_eff_io is a powerful benchmark, it is challenging
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to add new access patterns to its framework. There are some disadvantages in the approach of synthetic I/O. Even if the 

synthetic benchmarking tools are usually easier to build and run than application-based benchmarks, they may not 

accurately replicate specific workloads [5]. Furthermore, every benchmark provides its own pattern set, such that the 

result comparison between them is hardly possible.   

For this reasons there are efforts to develop portable benchmarking tools with adjustable input. This approach 

combines the realism of application code with the convenience of synthetic benchmarks. The file system test program 

BWT [14] is an example of tool with adjustable input. Its parameters for executing tests have to be specified in input 

files and cover the majority of file system access patterns. BWT supports POSIX and limited parallel I/O commands. 

The process coordination for parallel I/O is implemented via barrier using IP multicast. Even in an early stage of 

implementation, BWT provides an approach close to the benchmark presented here [26]. 

The presented in this work benchmarking tool Parabench receives access patterns as input, which can be 

adjusted. Advantages of this approach in comparison to just running the application directly on the cluster are that these 

patterns can be shared without licensing or confidence problems, that might come along with the application code. 

Employment of this tool can also save effort in installing and setting up application as well as potential costs for 

individual test program or test program adjustment. The Parabench code itself has few dependencies; in contrast the 

interesting application might be hard to build on a different cluster. All these advantages are especially useful in testing 

and further comparing a closed source applications like considered here online analytic processor SAP NetWeaver BI 

Accelerator [7, 32].  

The following paper concentrates on I/O benchmarking of data intensive workloads with pattern based 

benchmarking tool Parabench. To make the testing process more comprehensive, we introduce in section 2 benchmarks 

design and explain how we can compose a test program with the Parabench Programming Language. Section 3 

contains a main contribution of this paper, i.e. that our approach does offer an easy and well usable platform for I/O 

benchmarking of data intensive applications. We demonstrate this on example of an application from the field of 

business intelligence. In section 4 we summarize our work and conclude with an outlook on future Parabench 

development. 

2. Parabench  

Design and Deployment. While designing Parabench we focused on development of tool with adjustable access 

pattern input [26], with the goal to use this tool for I/O behavior modeling of a wide range of applications. To make 

access patterns creation more flexible, we designed an own formal language – the Parabench Programming Language 

(PPL). To meet portability demands, we implemented Parabench in the C programming language. The modular design 

of our tool allows its easily extension and upgrade. There are three main components of Parabench: scanner, parser, and 

interpreter (see figure 1). 

The scanner layer reads given input source files written in PPL and reduces the recognized lexical patterns to 

tokens. We use the open source scanner tool Flex [12] to generate a fast and flexible scanner layer for Parabench. The 

parser layer provides grammar parsing of the token stream received from the scanner. As output it generates a parse list 

for the interpreter. To build the parser layer, the open source parser generator Bison [9] is used. Since the interpreting 

program has qualities of a Lookahead-LR-Parser the PPL is defined as a context free grammar. The interpreter layer 

analyses and processes the list received from the parser. We implement the interpretation by using structures from the 

Gnome Library [16]: we used GList as stacks to implement the control flow constructs like loops and group blocks. To 

allow efficient lookups of user defined structures like variables and groups hash tables were used. 

Figure 1 demonstrates the I/O benchmarking process with Parabench. Here we emulate the application I/O; 

however, the composition of any synthetic tests is also possible. The benchmark receives as input files with instruction 

written in PPL. The input files can be easily composed manually. However this option is not acceptable composing 

complex patterns, e.g. while emulating I/O of the real, data intensive applications. For this reasons, we also 

implemented a translator utility outside of the Parabench kernel. This utility is a regular expressions based parser, 

which, after a short setup, is able to convert a large amount of trace formats to the PPL. The input files are processed by 

the Parabench, i.e. scanner, parser, and interpreter and dumped to the result ACSII files. 

Test Composition. The Parabench Programming Language (PPL) allows designing access patterns. To achieve 

this, we implemented three language construct groups: I/O language constructs, control flow language constructs, and 

auxiliary language constructs. Here we show the usage of PPL on some test program examples. The detailed PPL 

specification is done in [26]. 

The I/O language constructs provide a basis for a proper access pattern composition and can be classified into 

POSIX I/O [18] and parallel I/O, for which we use MPI-IO [17, 25]. For both interfaces we differ: explicit file handle, 

when open and close of the file has to be issued manually; implicit file handle, when user just specifies file or folder 

names. The supported I/O commands for POSIX are:  fopen, fclose, fread, fwrite for the explicit file 

handle and read, write, append, rename, create, delete, mkdir, rmdir, lookup, stat for the 

implicit file handle. Listing 1 shows an example for a PPL stress test program for POSIX I/O. The basic I/O commands, 

here for the explicit file handle, are done on a set of created files and repeated $num times. 
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Figure 1: I/O benchmarking process with Parabench 

 

Listing 1: Exemplary PPL test program for POSIX I/O 

define param "num" $num "10000" 

$env = "./env-posixio-test"; 

$file = "file.dat";          

mkdir($env);         

 

print "POSIX-IO stress test START"; 

 

time["POSIX-IO stress test"] { 

        repeat $i $num write("$env/$file-$i", 1024); 

        repeat $i $num append("$env/$file-$i", 1024); 

        repeat $i $num read("$env/$file-$i"); 

        repeat $i $num lookup("$env/$file-$i"); 

        repeat $i $num mkdir("$env/dir-$i"); 

        repeat $i $num rmdir("$env/dir-$i"); 

        repeat $i $num stat("$env/$file-$i"); 

        repeat $i $num create("$env/$file-$ia"); 

        repeat $i $num delete("$env/$file-$ia"); 

} 

print "POSIX-IO stress test STOP"; 

 

For the parallel I/O we support pfopen, pfclose, pfread, pfwrite for the explicit, and pread, pwrite 

for the implicit file handle. In patterns we can specify file data accessible for each process, which is internally realized 

by an MPI File view set on the file according to the pattern specification. Currently the array data type (i.e. each process 

gets a chunk of data in round-robin manner) and individual file pointers are implemented.  

To realize the parallel I/O access patterns, we implemented the construct define pattern. It requires 

following parameter values: identifier name, number of iterations, number of elements, and the level of parallelism. The 

supported levels of parallelism, shown in figure 2, are level 0 (non-collective calls, contiguous data access), level 1 

(collective calls, contiguous data access), level 2 (non-collective calls, non-contiguous data access) and level 3 

(collective calls, non-contiguous data access).  

The control flow language constructs are repeat, barrier and group. With construct define groups, 

process groups can be defined and therefore create more complex test programs. We distinguish between disjoint and 

overlapping groups. By providing the option D in the pattern definition disjoint groups can be created. This means, that 

no other groups overlap, and ungrouped processes are not part of the defined group. To limit code execution of certain 

processes to a defined group, the group statement is used. The barrier construct allows group specific process 

synchronization. The repeat statement enables execution of code blocks in a loop and reduces replication in the test 

specification.  

The auxiliary language constructs are time and print. The time statement measures the wall clock time of 

the enclosed code block. To ease evaluating measurement results, a text label can be assigned to each time command. 

The print construct outputs text on standard output.  
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Listing 2 exemplifies the usage of all language construct groups on example of a small test program for the 

parallel I/O. Here we create a two disjoint process groups “writers” and “readers”, for which two parallel patterns are 

defined with 10 iterations, 100*1024*1024 elements per process, and different levels of parallelism. This patterns are 

applied on two different files (file-lvl2.dat and file-lvl2.dat) stored in $env directory. We archive 

process synchronization by means of barrier; time measurements are done by means of time command, which is 

put before the particular I/O command.  

 

 
         Figure 2: Supported levels of parallelism 

 

Listing 2: Exemplary PPL test program for parallel I/O 

define groups {"writers":D, "readers":D }; 

define pattern {"pattern-lvl2", 10, (100*1024*1024), 2}; 

define pattern {"pattern-lvl3", 10, (100*1024*1024), 3}; 

 

$env = "./env-mpiio-test"; mkdir($env); 

 

print "MPI-IO test START"; 

  

group " writers" { 

time ["write"] repeat 10 append ("$$rank",10*1024*1024); 

time ["pwrite-lvl2"] pwrite ("$env/file-lvl2.dat", "pattern-lvl2"); 

time ["pwrite-lvl3"] pwrite("$env/ file-lvl3.dat", "pattern-lvl3"); 

 

} 

 

barrier; 

 

group "readers" { 

$fh = fopen ("$$rank", "r+"); 

time ["read"] repeat 100 fread ($fh , 10*1024*1024) ; 

fclose ( $fh); 

time ["pread-lvl2"] pread ("$env/file-lvl2.dat", "pattern-lvl2"); 

time ["pread-lvl3"] pread ("$env/file-lvl3.dat", "pattern-lvl3"); 

} 

 

print "MPI-IO test STOP"; 

 
Concluding, by means of the Parabench Programming Language we can easily compose any I/O test programs. 

Knowing particular I/O behavior we are able to design more complex tests, which can be used for studying and 

benchmarking of any application. 
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3. Evaluation 

To demonstrate testing capability of Parabench we performed tests, which reflect behavior of data intensive 

workload, i.e. I/O emulation of a real, data intensive application. The application I/O tests were performed on two 

cluster file systems. The test environment was the cluster of the Research Group Parallel and Distributed Systems 

(PVS) at the Heidelberg University. It is a 32 Bit Ubuntu 8.04 cluster, consisting of 8 nodes with commodity-of-the-

shelf (COTS) components and Gigabit Ethernet interconnect. For a qualitative evaluation precise hardware details are 

unnecessary and thus spared. 

Testing OLAP Engine I/O. The tests with real patterns were based on the I/O of an exemplarily online analytic 

processing (OLAP) engine. For better understanding, we explain here its main features and access patterns more in 

detail. 

OLAP systems have to handle growing volumes of time-critical data and reliably deliver fast response times for 

complex or ad hoc queries. The SAP NetWeaver BW Accelerator (BWA) [7, 32] is a prominent example of an in-

memory column-oriented OLAP engine for use in business warehouse and business intelligence applications (see  

figure 3). BWA can be considered as a data intensive application: running on a large cluster it is able to load and 

process up to 25 TB of data [8]. Due to it architectural features specific for the main memory processing like high data 

compression, usage optimized data structures, column-orientation, OLAP engines like BWA can achieve desirable 

performance. Distributed server architecture allows parallel processing, scalability, reliability, and load balancing. 

There are several possibilities how BWA stores data: network attached storage (NAS) with NFS [30], storage area 

network (SAN) with a cluster files systems like GPFS [33], or the integrated distributed persistence layer [27] with 

software based fault tolerance. The last persistency option runs without central storage installation, just over the node 

local file system. To analyze the engines I/O behavior, i.e. its access patterns, we used the distributed persistence setup, 

because there is a separate data server process traces, which are easy to handle [27]. 

 

Figure 3: OLAP engine architecture [27] 

All the basic operations in the BWA – creation, deletion, and indexing – are done on the index level. This is the 

minimum logical unit of the application [27]. Being hierarchically organized in namespaces, indexes contain: content 

files with transactional data, temporary index files with uncompressed indexes, attribute files or index columns, and 

configuration files. The index size varies up to the data model, application semantic and is limited by the aggregated 

size of the RAM in the cluster (indexes up to 2.9 TB are already used [8]). 

At index creation, the initial index directory structure is built; index configuration files are created and modified. 

During index deletion, application configuration data is deleted, and particular directories and files are removed. Thus, 

there are operation on data and metadata while index creation and deletion. During the indexing, index is filled with 

data, which is first stored in temporary files. Afterwards this data is compacted. At the same time temporary data is read 

in parallel and written to the attribute files or columns used for the further querying. The application persistence calls 

are realized through three internal interfaces build on the top of POSIX: bufferedFiles (prefix bf) for attribute, 

temporary and configuration files, contentStore (prefix cs) for content files, and storageLocation for 

handling persistency on index level.  
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Figure 4 demonstrates the I/O calls distribution for index create, index delete, and indexing operations. While 

index create and index delete operation there are mainly metadata calls. While indexing a read operation dominates. 

Large amount of writes reflects the first phase of indexing, where data is written to the temporary files. 

 
 

Figure 4: I/O calls distribution by percentage during index create (left above), index delete (right above)  

and indexing (below) operations 

To evaluate the I/O performance of described application regarding a particular file system, it has to be installed 

on a cluster, where the particular file system is running. There are some challenges in this option. There are licensing 

and confidence problems relating to the proprietary application code. Second, the engine, certified only for a couple of 

file systems, possibly does not run on some recently developed systems properly and we may have to adjust it first. 

Finally, it is a challenge in installing engine itself and its required dependencies. Using Parabench this challenges can 

be resolved. We extracted described I/O patterns from the data server [27] traces of the engine, converted them without 

modifying these order to the PPL and composed tests for the OLAP basic operations index create, index delete and 

indexing. 

Two cluster file systems were chosen for the evaluation: the parallel file system OCFS2 [28] and the object 

based distributed file system Ceph [34]. The goal was to see the influence of different file system design approaches on 

the I/O performance of chosen application. As a shared disk cluster file system, OCFS2 has to run on SAN/NAS or 

iSCSI. Because the PVS-cluster does not provide central storage, its abstraction from the cluster node devices with 

Network Block Device (NBD) [29] was created. OCFS2 provides symmetric file system architecture, i.e. every installed 

node has services for data and metadata processing. We made a comparable setup on Ceph. There is one monitor, one 

metadata server (MDS) and one object storage device (OSD) on each node. Testing OLAP I/O, we reserved first four 

nodes of the PVS cluster for exclusively acting as I/O nodes, whereas the remaining four nodes were used as client 

nodes. In the following, we call the I/O nodes as servers and the nodes, where the Parabench tool was started, as 

clients.  
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Table shows received results while basic index operations (index create, index delete and indexing) for setup 

with four servers and two clients per server. For the indexing operation, we also investigated the performance 

dependency for read and write operations of a single client (s.read and s.write) on different client-server setups, 

see figure 5. All tests were performed with 500 indexes. The results show, Ceph performs better on writes but 

significantly worse during metadata operations, in particular during index delete. The reason for this could be 

synchronization effort between distributed MDS (for every ODS one MDS was used). The default Ceph setup provides 

only one MDS. The lower write performance of OCFS2 could be explained by the overhead of the NBD, which 

combines the distributed hard drives in the cluster to one logical volume. By tuning file system setup, e.g. usage of 

central storage for OCFS2 and asymmetric metadata management for Ceph, we may get better results.  

This evaluation shows the capability of the benchmarking tool Parabench in modeling such a complex patterns 

as OLAP engines and in providing a basis for performance analysis and performance optimization. In this stage of 

benchmark development there are still some questions regarding the validity of the presented simulation. The 

benchmark validity for comparison of two or more different file systems regarding this specific I/O load is given 

implicitly by following facts: test patterns in PPL are executed in the same order with same parameters, the same 

amount of data was written with the same client number. To evaluate difference between real application I/O and I/O 

simulation by Parabench, we need to repeat our tests on a cluster, certified and verified for the BWA application. Here 

we plan to determine the confidence interval of deviance to real application and evaluate impact of possible error 

sources like access pattern definition or access pattern processing. 

 
Table.  Index create, delete, indexing operations: 500 indexes, 4 servers, 2 clients per server 

 

Op Qnty 

Ceph OCFS2 

Time [ms] 
MiB/s 

Time [ms] 
MiB/s 

avg min max avg min max 

index create 

delete 8000  0.033 0.028 1.188 

21.79 

0.049 0.032 0.286 

12.3 mkdir 4000 3.870 0.521 56.283 1.585 0.471 144.903 

rename 8000 0.809 0.626 106.685 0.164 0.103 88.64 

write 25000 0.105 0.016 7.435 0.185 0.015 229.701 

index delete 

delete 26000 1.249 0,025 80.840  0.284 0.032 108.633  

rmdir 5000 200.485 105.498 1303.360  0.364 0.106 91.671  

indexing 

s.read  (1) 40000 0.029 0.026 0.133 3.79 0.037 0.028 14.434 3.08 

s.write (1) 84000 0.032 0.021 0.274 2.01 0.021 0.011 2.329 2.97 

c.throughput  
(2) 

 22.11  13.55 

(1)  
s = single client       

(2) 
c = complete 

 

 

4. Conclusion and Future Work 

In this work we presented the pattern based I/O benchmark Parabench. On example of a data intensive 

application we could demonstrate the convenience and usability of the developed tool. Already in this stage of 

implementation, Parabench allows convenient simulation of application I/O. Thereby test case modeling can be done 

either by automatic extraction of the access pattern or by manual pattern definition. In case of closed source applications 

we can additionally benefit of Parabench advantages and do not take care of licensing or confidence problems that 

come along with the proprietary code of tested applications. 

The next important step in Parabench development is its extensive tests on the cluster, where the particular 

application is running. Based on these results, we will evaluate the proximity of the Parabench I/O simulation to the 

real application I/O, identify and prioritize improvement needs.  

Furthermore, there are plenty opportunities for future development, which makes this approach even more 

compelling. First is extension of the pattern support for the true parallel I/O, which is mandatory for emulation more 

complex access patterns. Second is improvement of the current parse tree structure and language grammar. This would 

enable options for later more complex language constructs and therefore emulation of more complex application. We 

also plan an additional tool with ability for post processing and visualization of the benchmark results, and a graphical 

interface, which helps while pattern composing and validate input.  
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Figure 5: s.read and s.write performance on Ceph and OCFS while indexing  

with different client-server setups 
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