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1 Introduction

We treat in this work bi-Hermitian surfaces, by which we mean orientable Riemannian confor-
mal four-manifolds (M, [g]) with a pair of [g]-orthogonal complex structures J+ and J− which
induce the same orientation and are linearly independent, i.e., there is some p ∈ M where
J+(p) 6= ±J−(p). The original motivation is given by a general interest for Riemannian mani-
folds admitting more than one orthogonal complex structure [22, 38, 39, 40].

The case when J± are opposite oriented is also interesting and gives rise to a holomorphic
splitting of the tangent bundle; see [6] for a complete account.

In what follows it will be important to look at possible relations between the two Lee forms
(denoted by β±) of the Hermitian metrics (g, J±). For a general Hermitian surface (M, g, J)
with fundamental (1, 1)-form ω(·, ·) := g(·, J ·) the Lee form is the 1-form uniquely defined by
the relation dω = β ∧ ω. Recall that we are in real dimension four. The 1-form β captures
most of the conformal features of the Hermitian metric: (g, J) is Kähler if and only if β = 0,
conformally Kähler if and only if β is exact and is locally conformally Kähler, abbreviated by
l.c.K., if and only if β is closed.

We will always assume that M is compact and connected; let us recall at this point an
important result of Gauduchon [20] which says in particular that on any compact conformal
Hermitian surface (M, [g], J) there always is a unique metric (up to homothety) in the conformal
class [g] for which the Lee form is co-closed; this metric is usually called the Gauduchon metric
of (M, [g], J). In particular one can take β harmonic if (M, [g], J) is compact l.c.K.

Our main interest is to study the complex structure of the two surfaces S+ := (M,J+) and
S− := (M,J−) under the condition that the first Betti number b1(M) is odd. In other words we
will be concerned with non-Kähler surfaces and it is therefore important to find complex curves
on them. To this end let

T := {p ∈M | J+(p) = ±J−(p)}
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denote the set of points where the two complex structures agree up to sign; it plays an important
role in understanding the complex geometry of the surfaces because it turns out to always be
the zero-set of a holomorphic section of a line bundle:

Proposition 1.1 ([5, 38]). The (possibly empty) set T is the support of a common effective
divisor T ≥ 0 in both surfaces S±.

Before discussing how T can be described as a complex curve inside the twistor space of
(M, [g]) and compute the first Chern class c1(T) using the twistor picture, we have the following

Remark 1.2. From the differential geometric viewpoint, T is the closure of the union of all
smooth surfaces in M which are simultaneously J±-holomorphic.

To see this, let C ⊂ (M, [g], J±) be a smooth surface (real 2-dimensional) which is both
a J+-holomorphic and J−-holomorphic curve and consider the tangent space TpC at any point
p ∈ C. Let V denote this real 2-dimensional subspace of TpM . Because J± are assumed to
be g-compatible the orthogonal complement W is also a J±-complex subspace of TpM ; in each
2-dimensional subspace V and W the two complex structures J± are rotation by 90◦ and induce
the same orientation on TpM if and only if they are linearly dependent a p.

The complex curve T turns out in general to be non-smooth with several irreducible com-
ponents meeting transversally, the smooth open set of each component is a J± holomorphic
curve C as above and T is the closure of the union of all such C.

This observation is relevant to the blow-up construction of Cavalcanti–Gualtieri [12] because
in their case the exceptional divisor E does not belong to the anti-canonical divisor −K, which
is supported precisely on T . This shows that E is a J+-holomorphic curve which is not J−-
holomorphic.

In order to geometrically describe how T turns out to be a complex curve with a natural
structure of a divisor in each surface (M,J±) we now present a twistor approach to bi-Hermitian
metrics in four-dimension – following [38] – which produced new examples with b1 odd [19] as
we shall discuss later.

An orthogonal almost complex structure is the same as a smooth section J : M → Z of the
twistor space Z which is the fiber bundle of all linear complex structures at TpM compatible
with the metric and orientation; in four-dimension, the fiber at p ∈M is the homogeneous space
SO(4)/U(2) ∼= CP1. It is known that Z is an almost complex 6-manifold – let J denote its almost
complex structure – which only depends on the fixed conformal structure [g] and orientation
of M . The integrability of J is equivalent to the fact that J : (M,J) → (Z, J) is an almost
holomorphic map and that its image J(M) =: S is an almost complex submanifold of (Z, J)
which is therefore (tautologically) biholomorphic to the original complex surface: S ∼= (M,J),
see for example [1]. Notice that we make no assumption on the integrability of the twistor almost
complex structure J.

The twistor space Z is also equipped with a natural real structure, namely the anti-holomor-
phic involution σ : Z → Z that sends J 7→ −J ; objects that are σ-invariant are then called
‘real’. For example, setting X := Sqσ(S) we get a ‘real’ submanifold of Z and as M is compact
we can consider its Poincaré dual X∗ ∈ H2

σ(Z,Z) which is a ‘real’ 2-cohomology class, i.e. σ-
invariant. By Leray–Hirsch theorem this space is 1-dimensional generated, over Q, by the first
Chern class c1(Z) so that X∗ = q · c1(Z) for some q ∈ Q.

Each fiber L ∼= SO(4)/U(2) ∼= CP1 is also σ-invariant, usually called a ‘real twistor line’, and
turns out to have normal bundle νL/Z ∼= OCP1(1)⊕OCP1(1). Therefore, c1(Z)|L = 4 and because
for each L the two almost complex submanifolds X and L intersect in exactly two points we
conclude that q = 1

2 .
This can be used to compute the first Cherm class of a Hermitian conformal surface (M, [g], J)

from its twistor space Z by adjunction formula to the almost complex submanifold S ⊂ Z. Using
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that S ∼= (M,J) and X = S q σ(S) we get from adjunction that

c1(M,J) = [c1(Z)−X∗]|S =
1

2
c1(Z)|S . (1)

In our case we have a bi-Hermitian structure ([g], J±) from which we get two complex surfaces
in the twistor space Z. We will use the following notation S± := J±(M) and similarly X± :=
S± q σ(S±). Notice again that there is a tautological biholomorphism (M,J±) ∼= S±.

In this notation the set of points T can be identified with either of the following two subsets
in the twistor space: X+ ∩S− or S+ ∩X− ⊂ Z; this exhibits T as an almost complex subvariety
of either S+ and S−; T is therefore a complex curve in each of the two smooth surfaces, in
particular closed in the analytic Zariski topology and nowhere dense [38, Proposition 1.3].

Proposition 1.3. The complex curve T has a natural structure of divisor T in both surfaces S±
given by the property

c1(T) = c1(S±).

In other words, for each compact complex surface (S±) there is a holomorphic line bundle F±
such that

(i) c1(F±) = 0, and

(ii) T = F± −K± where K± is the canonical line bundle of the surface S±.

Proof. In the twistor space Z we have that T ∼= X− ∩ S+ ∼= X+ ∩ S− therefore c1(T) =
1
2c1(Z)|S+ = 1

2c1(Z)|S− and the conclusion follows from (1). �

Remark 1.4. In general, the complex curve T has several irreducible components and it gets
the structure of effective divisor T, with multiplicities, by taking the (only) linear combination
such that c1(T) = c1(J−) = c1(J+). As usual, in what follows T will denote the divisor as well
as the holomorphic line bundle.

Although the two complex structures J+ and J− are in general not biholomorphic, it turns
out that they share common properties. For this reason we use the notation J± to denote either
of them.

As shown in [2], the flat line bundles F+ and F− are also isomorphic because they come from
the same representation of π1(M). In fact, it is important to recall that as flat line bundles on
M they correspond to the 1-form −1

2(β+ + β−) [2] the opposite average of the two Lee forms of
(g, J±)); by [5, p. 420] this turns out to be always a closed 1-form on a compact M . We will then
denote by F the line bundle of zero Chern class F± and we will be looking at the fundamental
equation

T = F −K, (2)

which on each of the two surfaces (M,J±) relates the divisor T to the canonical line bundle K.
We will use the fundamental equation (2) above to understand the complex structures of a bi-

Hermitian surface as well as its Riemannian properties. Denote, as usual, by β± the Lee forms
of the bi-Hermitian surface (M, [g], J±); we next want to consider the following conformally
invariant conditions:

1) β+ − β− = 0;

2) β+ + β− = df ;

3) T = 0.
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The first equality is the hyper-Hermitian condition meaning that J+ and J− span an S2-worth
of complex structures on M like in the hyper-Kähler case. In this situation it was shown by
Boyer [10] that (M,J±) must be a Hopf surface, when b1(M) is assumed to be odd. In this
article we will not be concerned with the hyper-Hermitian case and consider a bi-Hermitian
surface to have exactly two complex structures (up to sign).

The second condition is equivalent to say that J+ and J− have the same Gauduchon metric
in the conformal class [g] and that the sum of Lee forms vanishes β+ + β− = 0, for this metric.

Equivalently, the flat line bundle F is holomorphically trivial or in other words: T = −K.
Indeed, by Gualtieri [25] generalized Kähler structures are in bijective correspondence with
bi-Hermitian structures satisfying T = −K.

Finally, the third condition says that J+ and J− are different (up to sign) at every point;
these are called strongly bi-Hermitian metrics. The equation T = 0 implies c1(S±) = 0 in
H2(M,Z) which, as b1(M) is odd and Kod(S±) ≤ 0, implies that S± is a Kodaira, a Hopf
or a Bombieri–Inoue surface. However it is shown in [4] that only the second possibility can
actually occur. We will explain this point in the next section.

From now on we will indicate by S any of the two surfaces S±. The fundamental equation (2)
says that T is a numerically anti-canonical divisor in S and it turns out that T can have at
most two connected components. Setting t := b0(T ) we obviously have that t = 0 corresponds
to the strongly bi-Hermitian situation, while t = 2 is equivalent to the equation T = −K; this
has been observed in [3] and will be explained in the last section. In Section 3 we construct
a twistor example with t = 1 and illustrate a very interesting, more general result by [3].

We conclude this introduction with a short outline of the rest of the paper.

In Section 2 we present some preliminary results from [2, 4, 5, 38] and a technical lemma.
We then explain a result of Apostolov and Dloussky, which asserts that the minimal model of
a bi-Hermitian S with b1(S) odd can only be a Hopf surface or a Kato surface.

In Section 3 we discuss the case of Hopf surfaces which admit bi-Hermitian metrics of all kinds,
i.e. with all possible values of t = 0, 1, 2. The first two cases are due to Apostolov–Dloussky and
Apostolov–Bailey–Dloussky.

Section 4 is devoted to study Kato surfaces. We divide them into two main types: Kato
surfaces with branches and without. The second type is best known and we have a description
of all possible anti-canonical divisors on them. This gives important information concerning
existence of bi-Hermitian metrics. For example: there is no bi-Hermitian metric whatsoever
if the minimal model is a general Enoki or half Inoue surface. On the positive side, the first
bi-Hermitian metrics on Kato surfaces were constructed explicitly by LeBrun [32] on parabolic
Inoue surfaces; we present in this section a brief outline of a twistor construction due to Fujiki–
Pontecorvo of bi-Hermitian metrics on hyperbolic and parabolic Inoue surfaces [19]. Because
these metrics are anti-self-dual they satisfy t = 2 [38].

Finally, we show that the situation is fairly satisfactory for blown-up hyperbolic Inoue surfaces
because they do admit bi-Hermitian metrics whenever they can; furthermore t = 2 always in
this case. The situation for intermediate Kato surfaces, i.e. with branches, is still open: there
are no examples of bi-Hermitian structures, as far as we know.

2 Preliminary results

The main tool for our study of bi-Hermitian surfaces of non-Kähler type is the fundamental
equation (2); we start this section with the following useful result of Apostolov about the fun-
damental line bundle F :

Proposition 2.1 ([2, Lemma 1], [4, Proposition 2]). Let (M, [g], J±) be any compact bi-Hermi-
tian surface. Then the flat line bundle F comes from a real representation of the fundamental
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group π1(M). Furthermore, with respect to any J+-standard metric, we have

deg(F ) = − 1

8π

∫
M
‖β+ + β−‖2.

In particular, the degree of F is non-positive and deg(F ) = 0 if and only if F is holomorphically
trivial if and only if the sum of Lee forms β+ + β− is an exact 1-form for (one and hence) any
metric in the conformal class.

Remark 2.2. Notice that in general, the degree of a holomorphic line bundle L computes the
volume (with sign) of a virtual meromorphic section with respect to a fixed Gauduchon metric,
i.e. with ∂∂̄-closed fundamental (1, 1)-form, otherwise the degree would not be well defined.

In the special case c1(L) = 0, the sign of deg(L) is independent of the chosen Gauduchon met-
ric by a general result [34] and therefore only depends on the representation of the fundamental
group π1(M).

In order to deal with non-minimal surfaces we now introduce the following notation: we let
S0 denote the minimal model of any of S := (M,J±) with blow-down map b : S → S0. Then, F0

will denote the unique real flat line bundle on S0 such that F = b∗(F0), because π1(S) = π1(S0);
while b∗ : Div(S)→ Div(S0) will be the natural projection and K0 the canonical bundle on S0.
The following simple observation, see also [13], will be repeatedly used:

Lemma 2.3. Let (M, [g], J±) be a bi-Hermitian surface and let S0 denote the minimal model of
any of S := (M,J±). Using the notations introduced above, let T0 := b∗(T). Then the following
hold:

i) T0 = F0 −K0 is an effective divisor on S0;

ii) S is obtained by blowing up S0 at points lying on T0, in particular t = b0(T) = b0(T0);

iii) F0 = 0 if and only if F = 0, otherwise F0 has negative degree on S0.

Proof. This is a standard argument [2, 13, 19, 38]. For simplicity we prove it for a one point
blow-up S of S0 with exceptional divisor E. In this case the adjunction formula reads −K =
−b∗K0−E [24, p. 187]. We can add F to both sides of the equation to get F−K = F−b∗K0−E;
taking b∗ gives the first statement i).

Next we compare the total transform b∗T0 with the proper transform T̃0. By adjunction
formula again, b∗T0 = b∗F0 − b∗K0 = F −K + E; on the other hand, we always have b∗T0 =
T̃0 + mE where m is the multiplicity of the blown-up point p along T0; we conclude that
T = T̃0 + (m− 1)E. This shows that T is effective only when m ≥ 1, i.e. p ∈ T0, and therefore
they have the same number of connected components.

It remains to prove part iii) of the statement. First of all, it is clear that F0 is torsion if and
only if F is torsion which however implies F = 0 and therefore F0 = 0.

On the other hand, since S admits a bi-Hermitian metric, it will be shown below and inde-
pendently of this lemma that S and therefore S0 are class-VII surfaces. In this case the degree
map H1(R+)(∼= R+) → R is isomorphic, modulo torsion, [34, Proposition 3.1.13] so that for
both F and F0 they are trivial if and only if their degree is zero. We are left to show F 6= 0
implies deg(F0) < 0.

For this purpose, let ω be the Kähler form of a Gauduchon metric on the minimal model S0.
As is well-known [24, p. 186] there exist small neighborhoods U ⊂ V of E in S such that the line
bundle [E] admits a Hermitian metric whose Chern form ρ has support in V , is semi-positive
in U and is positive definite when restricted to each tangent space of E. This immediately
implies that ω̃ε := b∗ω+ ερ is everywhere positive definite for any small constant ε and therefore
is the Kähler form of a Gauduchon metric on S with respect to which we can compute degrees

deg(F ) =

∫
S
c1(F ) ∧ ω̃ε =

∫
S
c1(F ) ∧ b∗ω + ε

∫
S
c1(F ) ∧ ρ = deg(F0) + ε

∫
S
c1(F ) ∧ ρ.
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Therefore, if by contradiction deg(F0) > 0 we can find ε small such that deg(F ) > 0 which is
absurd. �

Notice that, the divisor T0 on the minimal model may not, in general, come from a bi-
Hermitian metric on S0. It will also be shown that the number of its connected components can
only be 0, 1 or 2 and that all these possibilities actually occur.

We now present the following important result; the first alternative was proved in [2, 4] and
the second one in [13].

Proposition 2.4. Let (M, [g], J±) be a bi-Hermitian surface with b1(M) = odd and let S0 denote
the minimal model of any of S := (M,J±). Then there are two possibilities:

i) b2(S0) = 0 and S0 is a Hopf surface, or else

ii) b2(S0) > 0 and S0 is a Kato surface.

In particular, M is diffeomorphic to (S1 × S3)#mCP2 with m = b2(M); or is a finite quotient
of S1 × S3.

Proof. We start by showing that the Kodaira dimension must be negative [2]. Suppose not,
from the fundamental equation (2) we have deg(K) = deg(F )−deg(T) ≤ 0 because deg(F ) ≤ 0
and T ≥ 0. Therefore it is enough to prove that the degree of K cannot vanish. In fact
deg(K) = 0 is equivalent to say that deg(F ) = 0 = T and therefore equivalent to K = 0. By
Kodaira classification it is now enough to exclude that a Kodaira surface can admit bi-Hermitian
metrics.

For this purpose we present a slightly different argument from Apostolov’s original proof.
Let ω+ denote the fundamental (1, 1)-form of any Hermitian structure (M, g, J+) on a Kodaira
surface (M,J+) and let Ω = γ+ − iδ+ be a holomorphic section of the trivial canonical bundle
with the property that γ+ ∧ γ+ = δ+ ∧ δ+ = ω+ ∧ ω+ = vol(g).

Then ∂Ω = 0 implies that the real and imaginary parts γ+ and δ+ are self-dual closed
symplectic forms since ∂γ+ = ∂δ+ = 0 ∈ Λ3,0 = 0 and d = ∂ + ∂ by the integrability of J+.

Therefore, whenever (M,J+) is a Kodaira surface, both (M, δ+) and (M,γ+) provide Thur-
ston examples of a compact symplectic manifold which is not Kählerian [45]. Recall that the
topological invariants are: b1(M) = 3 while the Euler characteristic and the signature both
vanish.

The Kodaira complex structure is not tamed by the Thurston symplectic structures and it
was noticed by Salamon [39] that the relation among them is that they define an almost hyper-
Hermitian structure {J+, I+,K+} containing one complex and two symplectic structures: in
fact I+ and K+ are tamed by γ+ and δ+, respectively.

Assume now by contradiction that there is another g−orthogonal complex structure J−. With
the same procedure as above we produce two more self-dual symplectic forms γ− and δ− but be-
cause b+(M) = 2 we would get that they are linear combination with constant coefficients of γ+
and δ+; this however would imply that the angle function between J+ and J− is also constant,
forcing J+ and J− to span a hyper-Hermitian structure on M [1, Proposition 2.5]; this is however
impossible because such structures can only live on Hopf surfaces, by a result of Boyer [10].

We have shown so far that deg(K) < 0 and this certainly implies Kod(S) = −∞ – i.e. S
belongs to class VII in Kodaira classification of complex surfaces. However, deg(K) < 0 also
implies by Lemma 2.3 that deg(K0) < 0 on the minimal model S0. We conclude that S0 can-
not be a Bombieri–Inoue [9, 27] because Teleman [42] shows that these surfaces have canonical
bundle of positive degree. Therefore b2(S0) = 0 implies S0 is a Hopf surface by a theorem of
Bogomolov [8], later clarified by [33, 41].

It remains to discuss the case b2(S) > 0; by the main result of [13] is enough to show that T0 is
a non-trivial divisor on S0. In fact, if by contradiction T0 = 0 we will have c1(K0) = c1(F0) = 0
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so that c21(S0) = 0 but this equation implies b2(S0) = 0 on class VII surfaces because b1 = 1 and
b+2 = 0. �

3 Hopf surfaces

A Hopf surface is a compact complex surface whose universal cover is C2 \ {0}. The aim of
the section is to show that they admit a surprising abundance of bi-Hermitian metrics, with all
possible values of t = 0, 1, 2.

It was shown in [38] that any conformally-flat metric [g] on a Hopf surface M admits two
ortogonal complex structures J+ and J−. Therefore (M, [g], J±) becomes a bi-Hermitian surface
with anti-self-dual metric. In particular T = −K consists of two disjoint smooth elliptic curves
of multiplicity 1 so that t = 2.

For some special conformally flat Hopf surface, J+ belongs to a hyper-Hermitian structure
{I+, J+,K+} and in some of these cases the same holds for J− – i.e. some very special Hopf
surfaces have two hyper-Hermitian structures. The divisor T is zero in this case.

More in general, for bi-Hermitian metrics with t = 0 there is a complete result of Apostolov–
Dloussky which says that such metrics exist if and only if any of (M,J±) is a Hopf surface whose
canonical bundle comes from a real representation of the fundamental group [4]. For sometime
these were the only examples of bi-Hermitian metrics with F 6= 0.

More recently however, the first examples of bi-Hermitian metrics with t = 1 have been
constructed in [3], again on Hopf surfaces.

The techniques are very interesting and general: the aim is to construct a bi-Hermitian metric
with a connected divisor T = F − K. The ingredient for doing it is a l.c.K. metric which we
can think of as a twisted Kähler metric with values in a flat line L (the degree of which will
automatically be positive).

Assuming that it is possible to take L = −F , one can contract a holomorphic section of T
with the l.c.K. (1, 1)-form to obtain a tensor field which is in fact an infinitesimal deformation
of the complex structure, trivial along T. It is shown in [3] that this defines a true deformation
and the deformed complex structure as well as the original one are both orthogonal with respect
to a Riemannian conformal metric. This circle of ideas was used in [23] to show that a surface
of Kähler type is bi-Hermitian if and only if admits holomorphic anti-canonical sections.

We can now give a twistor proof of the existence of bi-Hermitian metrics with t = 1, for some
very special Hopf surfaces.

Proposition 3.1. Let S be a Hopf surface which is an elliptic fiber bundle over CP1. Then S
admits a bi-Hermitian metric with t = 1.

Proof. The usual Vaisman metric on S is l.c.K., conformally flat and hyper-Hermitian because
S → CP1 is a smooth bundle [38]. In order to find the twisting l.c.K. line bundle L we can use
its twistor space Z as follows. The hyper-Hermitian structure naturally defines a holomorphic
projection Z → CP1 so that the normal bundle of the image X of the l.c.K. metric in Z is trivial.
On the other hand – because the twistor fibration induces an isomorphism of fundamental
groups and therefore of flat line bundles – the twisting line bundle L can also be read–off from
the twistor space. In fact, by the main result of [37] X = −1

2KZ − L, therefore the triviality
of the normal bundle X|X implies 2L = −(KZ)|S on the Hopf surface. By adjunction formula
we then get 2L = −KS . Now, if E denotes any fiber of the elliptic fibration S → CP1 we have
−KS = 2E so that L = E. The machinery of [3] therefore yields a bi-Hermitian metric with
T = F −K = −L−K = −E + 2E = E, in particular t = 1. �

The above is just the easiest example of the following general result which uses the fact that
every Hopf surface is l.c.K. [21].
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Theorem 3.2 ([3]). Hopf surfaces admits bi-Hermitian metrics with t = 1. T is supported on
an elliptic curve which can have arbitrary (positive) multiplicity.

Furthermore, bi-Hermitian metrics on blown-up Hopf surfaces were constructed by LeBrun,
using a hyperbolic ansatz for anti-self-dual metrics with circle symmetry [32]; by Kim–Ponte-
corvo [31] using twistor methods and more recently by a general construction of Cavalcanti–
Gualtieri [12].

In [19] anti-self-dual bi-Hermitian structures with T = −K are constructed on any blown-up
Hopf surfaces, blown-up hyperbolic Inoue surfaces and blown-up parabolic Inoue surfaces St
which are obtained via a small deformation (St,−Kt) of ‘anti-canonical pairs’ (S,−K), where S
is any hyperbolic Inoue surface.

4 Kato surfaces

A minimal non-Kähler surface of Kodaira dimension −∞ and positive second Betti number
is said to belong to class VII+0 . All known examples are so called Kato surfaces which were
introduced in [30] and by defintion are compact complex surfaces S admitting a global spherical
shell: there is a holomorphic embedding φ : U → S, where U ⊂ C2 \ {0} is a neighborhood of
the unit sphere S3, such that S \ φ(U) is connected.

The following statement summarizes some of the main results about Kato surfaces

Theorem 4.1 ([13, 15, 30]). For a surface S in class V II+0 the following conditions are equiv-
alent and they imply that S is diffeomorphic to (S1 × S3)#nCP2.

1. S is a Kato surface.

2. S contains b2(S) rational curves.

3. S admits a divisor D = G−mK with c1(G) = 0 and m ∈ Z+.

A divisor of the form D = G − mK with c1(G) = 0 is called a NAC (numerically anti-
canonical) divisor in the terminology of Dloussky [13] because its Chern class is a multiple of
the anti-canonical class. It is known that D is automatically effective on S ∈ VII+0 . The smallest
m ≥ 1 for which a NAC divisor exists is called the index of the Kato surface S.

There are recent important results about Kato surfaces going in different directions; concer-
ning their Hermitian geometry Brunella proved the following strong result

Theorem 4.2 ([11]). Every Kato surface admits l.c.K. metrics.

But Kato surfaces are important mainly because they are the only known examples of surfaces
in class-VII0+. A strong conjecture of Nakamura [36, Conjecture 5.5] says that there should be
no other examples in this class. We only point out here that there is recent important progress
in this direction by A. Teleman [43, 44].

Because on any bi-Hermitian surface T is a NAC divisor with m = 1 we are led to study
these Kato surfaces. For doing this we divide them into classes according to the intersection
properties of the b2 rational curves.

First of all, each Kato surface has a cycle C of rational curves; we then consider two broad
classes: Kato surfaces with no branch – also called extreme – that is, every rational curve belongs
to some cycle C; and surfaces with branches – also called intermediate – in this case the maximal
curve consists of the union of one cycle with chains of rational curves intersecting it transversally
at a single point [35].

We will only be concerned about unbranched Kato surfaces which we are now going to describe
in more detail. These surfaces can be divided into two subclasses; for simplicity we consider
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their characterizations due to Nakamura [35] in terms of the configuration of complex curves on
them, rather than their original definitions due to Inoue [28] and Enoki [17].

We start by considering the class of Enoki surfaces, containing parabolic Inoue surfaces. The
characterizing property of these surfaces is that the unique cycle C has self-intersection zero:
C2 = 0, which (as b2 6= 0) is the same as saying that every irreducible component of C has
self-intersection number −2. Because the intersection form is negative definite on any surface of
class VII+, it follows that C = 0 in H2(M,Z). We can now state the following important result
of Enoki

Theorem 4.3 ([17]). A surface S ∈ VII+0 has a divisor D of zero self-intersection if and only
if S is an Enoki surface and D = mC is a multiple of the cycle of rational curves in S.

Enoki surfaces are exceptional compactifications of affine line budles in the sense that the
complement S \C is always an affine line bundle over an elliptic curve. In the special case that
this bundle has a section the Enoki surface S is special because it contains an elliptic curve E;
such special Enoki surfaces are called parabolic Inoue surfaces, it turns out that they are the
only surfaces in class VII+0 containing one (and in fact only one) elliptic curve E; because the
anti-canonical bundle −K = E + C it follows that E2 = −b2(S). We will use the following
terminology: a general Enoki surface is an Enoki surface which is not parabolic Inoue.

The other class of Kato surfaces without branches is that of hyperbolic Inoue surfaces, these
are the only Kato surfaces with two cycles of rational curves and are also called even Hirzebruch–
Inoue surfaces. In the special case when these cycles are isomorphic – in particular their com-
ponents have the same intersection numbers in the same cyclic order – the hyperbolic Inoue
surface has a fix-point-free involution whose quotient is a Kato surface called half Inoue surface,
or also odd Hirzebruch–Inoue surface. Finally, every unbranched Kato surface falls into one of
these classes.

We can now start reporting about bi-Hermitian metrics on them, most of the results below
can also be found in [3, Appendix A].

The first examples are due to LeBrun [32] who used his hyperbolic ansatz to produce anti-
self-dual Hermitian metrics with S1-action on parabolic Inoue surfaces. It was noticed later on
that these metrics are actually bi-Hermitian with t = 2 [38].

Let us notice here that the hyperbolic ansatz can only work in this case because by [38] the
isometric action is automatically holomorphic but by a result of Hausen [26] parabolic Inoue
surfaces are the only Kato surfaces which can admit holomorphic S1-action.

The other known examples are again anti-self-dual and came from the twistor construction
of Fujiki–Pontecorvo [19] which we are now going to briefly describe.

We started from a Joyce twistor space, that is the twistor space Z of a (S1 × S1)-invariant
self-dual metric on the connected sum mCP2 of complex projective planes [29]. These twistor
spaces were studied by Fujiki [18] who showed that there are (m+ 2) invariant twistor lines and
each of them is the transverse intersection of a pair of elemetary divisors S+, S− – this merely
means that their intersection number with a twistor line equals 1.

As explained in the introduction a bi-Hermitian metric produces two pairs of disjoint complex
hypersurfaces in the twistor space Z which turns out to be a complex 3-manifold precisely when
the metric is anti-self-dual [7]. In order to obtain these desired configuration of hypersurfaces
we therefore blow up two invariant twistor lines and obtain a smooth complex 3-fold Z̃ with two
pairs of disjoint hypersurfaces. Even though Z̃ is not a twistor space anymore, this is the starting
point of a method introduced in [16] in order to construct the twistor space of a connected sum.

Following this method and its relative version [31] we now carefully identify the resulting two
exceptional divisors in Z̃ and consider the resulting quotient space Ẑ which is a ‘singular twistor
space’ containing a Cartier divisor Ŝ consisting of two pairs of disjoint singular hypersurfaces.
Ŝ is in fact an anti-canonical divisor in Ẑ.
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The general theory of [16] and [31] then predicts that if there exist smooth and ‘real’ de-
formations (Zt, St) of the singular pair (Ẑ, Ŝ) then Zt is a smooth twistor space containing an
effective anti-canonical divisor St having 4 irreducible components, pairwise disjoint, and each
component meets every twistor line in exactly one point. In other words any smooth deformation
will yield exactly the twistor data of a bi-Hermitian anti-self-dual structure on the connected
sum. The existence of a real structure on the deformation is a consequence of the general theory.

Because we started by identifying two exceptional divisors in the same Z̃ the resulting 4-
manifold is actually a self-connected sum, diffeomorphic to (S1 × S3)#mCP2 which is the
diffeomorphism type of a Kato surface, as desired.

The deformation theory of the constructed singular pair (Ẑ, Ŝ) is governed by the local Ext
sheaves and global Ext groups of ΩẐ(log Ŝ) which is the sheaf of germs of holomorphic 1-form

having at worst logarithmic poles along Ŝ. We then showed existence of smooth deformations of
the pair by proving the vanishing of both Ext2(ΩẐ(log Ŝ)) and H2(ΘẐ(− log Ŝ)), this last sheaf

being holomorphic vector fields on Ẑ which are tangent to Ŝ, along Ŝ.
In this construction the various choices of original (S1 × S1)-action on mCP2 and of pairs of

invariant twistor lines we started with allow us to obtain every hyperbolic Inoue surface as an
irreducibile component of St. We can finally state our main result

Theorem 4.4 ([19]). Every properly blown up hyperbolic Inoue surface admits families of bi-
Hermitian anti-self-dual structures. The same result holds for some parabolic Inoue surfaces. In
particular, t = 2 for all these metrics.

Remark 4.5. Properly blown up means that we are only allowed to blow up points which are
nodes of (the anti-canonical cycle) −K.

Furthermore, a variation of the construction gives existence of families of anti-self-dual Her-
mitian metrics on every properly blown up half Inoue surface. These surfaces however cannot
admit bi-Hermitian metrics as will soon be clear.

The above were the first examples of l.c.K. metrics without symmetries on Kato surfaces.

Now that we have an existence result we can describe the situation for bi-Hermitian metrics
on unbranched Kato surfaces; this is made possible by the fact that all their NAC divisors can
be described. A useful consequences of Enoki theorem is that the rational curves on a Kato
surface form a bases of H2(S,Q) unless S is Enoki. In particular a NAC divisor D = G−K is
unique or else the surface is Enoki.

As usual, the statements below hold for any one of the two complex surfaces S = (M,J±).

Proposition 4.6. There are no bi-Hermitian metrics at all if the minimal model of S is a general
Enoki or half Inoue surface.

Proof. By Lemma 2.3 it is enough to show that the minimal model contains no NAC divisors
of index 1: D = G − K. We start by considering a general Enoki surface, it is known in
this case that −K = C + Ê where C is the unique cycle and Ê is a line bundle without
meromorphic sections. The second cohomology H2(S,Z) is spanned by the Chern class c1(Ê)
and the irreducible components of the cycle C which however are subject to the relation C =
0 ∈ H2(S,Z). If there was a NAC divisor D = G−K on a general Enoki surface we would have
D−C = G+ Ê. But this equation is impossible in cohomology because C is the maximal curve
so that c1(D−C) is spanned by the irreducible components of the cycle while c1(G+Ê) = c1(Ê)
which is linearly independent from the components of C. This argument shows that there is no
NAC divisor on a general Enoki surface.

Suppose now that the minimal model is a half Inoue surface. In this case −K = C + L
where C is the unique cycle and L is a non-trivial line bundle of order 2. Then the unique NAC
divisor is C which however does not satisfy the fundamental equation (2) C = F −K because
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the degree of F should vanish if and only if F is the trivial line bundle, while the degree of L
vanishes – since 2L = OS – even though L is non-trivial. �

We can use this techniques to show the following result stated in the introduction

Proposition 4.7. Let M be a compact four manifold with odd first Betti number. A bi-Hermi-
tian surface S satisfies T = −K if and only if T is disconnected, if and only if t = 2. Therefore
its minimal model S0 is either (a finite quotient of) a diagonal Hopf surface; or a parabolic Inoue
surface or a hyperbolic Inoue surface.

Proof. One direction was proved in [5]. Therefore, suppose that T is disconnected we need
to prove T = −K. By Lemma 2.3 the minimal model S0 has a disconnected NAC divisor
T0 = F0 −K0 with deg(F0) ≤ 0 and is enough to show deg(F0) = 0.

First of all, S0 cannot be a Kato surface with branches because it is shown in [14] that any
NAC divisor is supported on the maximal curve which is connected. Therefore S0 is either
a Hopf or an unbranched Kato surface with a disconnected NAC divisor T0 = F0 − K0 and
of course t = 2 otherwise S0 is an elliptic Hopf surface with vol(T0) bigger than vol(−K0),
which is impossible. Suppose S0 is a Hopf surface, if it has a disconnected divisor it must be
a diagonal one in which case −K0 = E1 + E2 is a union of two elliptic curves with multiplicity
one. Because T0 is an effective and disconnected divisor T0 = aE1 + bE2 with a, b ≥ 1. The
conclusion is that F0 = (a−1)E1+(b−1)E2 has positive degree unless a = b = 1 so that F0 = 0,
as wanted.

We can now assume that S0 is an unbranched Kato surface with effective and disconnected
NAC divisor T0 = F0 −K0. Now, a general Enoki has no NAC divisors, the only NAC divisor
of a half Inoue surface is the cycle C which is connected and so we are left with parabolic and
hyperbolic Inoue surfaces which both have effective −K0; but in this case F0 = T0 + K0 is
a divisor and satisfies the hypothesis of Enoki theorem so that S0 is a parabolic Inoue surface
with F0 = nC leading to T0 = nC +C +E = (n+ 1)C +E. But n < 0 because F0 has negative
degree therefore T0 effective implies n = −1 in which case T0 = E is connected. �

We now come back to existence of bi-Hermitian metrics and consider hyperbolic Inoue sur-
faces; in this case the situation is fairly clear (and best possible):

Proposition 4.8. Let S0 be an arbitrary hyperbolic Inoue surface and suppose S is a blow up
of S0. Then every bi-Hermitian metric on S satisfies t = 2. Furthermore, such metrics exist if
and only if S is obtained by blowing up points on the anti-canonical divisor of S0.

Proof. The anti-canonical divisor of S0 is effective: in fact −K = C1+C2 is the maximal curve
consisting of the union of two cycles. This is the only NAC divisor with m = 1 by uniqueness
and using Lemma 2.3 this proves the first part of the statement.

To prove the second part, recall that anti-self-dual bi-Hermitian metrics were constructed
in [19] on every properly blown up hyperbolic Inoue surface. Therefore using the result of [12] –
which says that generalizad Kähler metrics persist by blowing up smooth points of −K – we
get such metrics on any S obtained by blowing up points on the anti-canonical divisor of its
minimal model.

It is important to notice that we get all possible blow ups because the anticanonical divisor
of a hyperbolic Inoue surface is reduced; therefore the exceptional curve obtained by blowing up
a smooth point will not belong to the anticanonical divisor of the blown up surface. �

A similar but weaker existence result holds for bi-Hermitian metrics with T = −K on blown
up parabolic Inoue surfaces, with an additional reality condition. It remains to be seen whether
there are bi-Hermitian metrics with t = 1 on parabolic Inoue surfaces and on intermediate
(i.e. branched) Kato surfaces.



12 A. Fujiki and M. Pontecorvo

Acknowledgements

We thank the referee for several suggestions which led to significant improvements in the expo-
sition.

References

[1] Alekseevsky D.V., Marchiafava S., Pontecorvo M., Compatible complex structures on almost quaternionic
manifolds, Trans. Amer. Math. Soc. 351 (1999), 997–1014.

[2] Apostolov V., Bihermitian surfaces with odd first Betti number, Math. Z. 238 (2001), 555–568.

[3] Apostolov V., Bailey M., Dloussky G., From locally conformally Kähler to bi-Hermitian structures on non-
Kähler complex surfaces, arXiv:1307.3660.

[4] Apostolov V., Dloussky G., Bihermitian metrics on Hopf surfaces, Math. Res. Lett. 15 (2008), 827–839,
arXiv:0710.2266.

[5] Apostolov V., Gauduchon P., Grantcharov G., Bi-Hermitian structures on complex surfaces, Proc. London
Math. Soc. 79 (1999), 414–428.

[6] Apostolov V., Gualtieri M., Generalized Kähler manifolds, commuting complex structures, and split tangent
bundles, Comm. Math. Phys. 271 (2007), 561–575.

[7] Atiyah M.F., Hitchin N.J., Singer I.M., Self-duality in four-dimensional Riemannian geometry, Proc. Roy.
Soc. London Ser. A 362 (1978), 425–461.

[8] Bogomolov F.A., Classification of surfaces of class VII0 with b2 = 0, Math. USSR-Izv. 10 (1976), 255–269.

[9] Bombieri E., Letter to Kodaira, 1973.

[10] Boyer C.P., A note on hyper-Hermitian four-manifolds, Proc. Amer. Math. Soc. 102 (1988), 157–164.

[11] Brunella M., Locally conformally Kähler metrics on Kato surfaces, Nagoya Math. J. 202 (2011), 77–81,
arXiv:1001.0530.

[12] Cavalcanti G.R., Gualtieri M., Blowing up generalized Kähler 4-manifolds, Bull. Braz. Math. Soc. (N.S.)
42 (2011), 537–557, arXiv:1106.1481.

[13] Dloussky G., On surfaces of class VII+0 with numerically anticanonical divisor, Amer. J. Math. 128 (2006),
639–670, math.CV/0406387.

[14] Dloussky G., Oeljeklaus K., Vector fields and foliations on compact surfaces of class VII0, Ann. Inst. Fourier
(Grenoble) 49 (1999), 1503–1545.

[15] Dloussky G., Oeljeklaus K., Toma M., Class VII0 surfaces with b2 curves, Tohoku Math. J. 55 (2003),
283–309, math.CV/0201010.

[16] Donaldson S., Friedman R., Connected sums of self-dual manifolds and deformations of singular spaces,
Nonlinearity 2 (1989), 197–239.

[17] Enoki I., Surfaces of class VII0 with curves, Tôhoku Math. J. 33 (1981), 453–492.
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