
Методи та засоби програмної інженерії

© Vladimir A. Shekhovtsov, 2010

288 ISSN 1727-4907. Проблеми програмування. 2010. № 2–3. Спеціальний випуск

УДК 681.03

INTERACTIVE ASSESSMENT OF SIMULATED SERVICE QUALITIES BY

BUSINESS STAKEHOLDERS: PRINCIPLES AND RESEARCH ISSUES

Vladimir A. Shekhovtsov

National Technical University «Kharkiv Polytechnical Institute»

21 Frunze Str., Kharkiv, Ukraine 61002

Phone: +38057 7076474. Fax: +38057-7076520. Email: shekvl@yahoo.com

We present the principles of an approach supporting the stakeholder involvement in a software process for service-oriented systems in a form
of assessing the perceived quality of the software under development in its usage context. This method relies on interactive simulation of

service performance and reliability; simulation models are parameterized by the factors influencing service execution; business stakeholders

experience simulated service qualities in simulated usage contexts and assess this experience; the obtained assessments can be later used
throughout the system lifecycle as a means of control for the quality of the software under development.

Наведено принципи підходу, що підтримує участь зацікавлених осіб у процесі розробки сервіс-орієнтованих програмних систем у

вигляді оцінювання сприйманої якості розроблюваної системи в контексті її використання. Цей підхід спирається на інтерактивне
імітаційне моделювання продуктивності та надійності сервісів; параметрами імітаційних моделей є фактори, що впливають на

виконання сервісів; зацікавлені особи висловлюють своє відношення до значень продуктивності та надійності, отриманих при

взаємодії з імітаційними моделями якості сервісів у рамках виконання імітаційних моделей їх контекстів використання, надані
оцінки можуть бути використані на різних етапах життєвого циклу програмного забезпечення як засоби контролю його якості.

1. Introduction
Collecting the opinions of business stakeholders is recognized in the current software engineering research and

practice as an important part of the software process. For example, software engineering lifecycle standards such as

ISO/IEC 12207 [35] emphasize the need of collecting such opinions in a form of stakeholder requirements by

establishing special Stakeholder Requirements Definition Process to deal with them. This is particularly true for

service-oriented software systems as developing software services require knowledge of their possible uses which is

difficult to obtain without the involvement of their prospective users [25].

Currently in most cases business stakeholders are involved in the development process to express their opinions

of the prospective system’s functionality [53]. It is not the only possible form of involvement, however: another kind is

the involvement through assessments of the quality of the prospective system.

A motivating example is as follows. Suppose the software under development (SUD) is a service-oriented

system intended for business stakeholders. If they will not have a chance to present their opinions regarding the desired

quality of the prospective system early on its development lifecycle these opinions could be easily overlooked and lost.

As a result, the understanding of the desired quality of the system becomes biased towards the view of the IT people:

“the inmates are running the asylum” [10]. This could lead to the stakeholder dissatisfaction with SUD quality late in

the development lifecycle, the loss of confidence in the developers, and the failure of the project [61].

The current problem is that such assessment and its use in the software process in many domains still remains a

poorly investigated, difficult and error-prone task. Several arguments are in favor of this claim:

1. It is not realistic to expect that the business stakeholders can be fully involved in a software development

process if they cannot experience the SUD. Without such experience, they are forced to be speculative in their opinions

e.g. by formulating narrative statements such as “the system should be reliable” and “the system should have good

performance under any load”. Such speculations are not well suited to be a means of control for the quality of the SUD.

2. The process of assessing the SUD quality depends on the anticipated or implemented interaction of the SUD

with its environment. This assessment obviously may be a complex task especially for service-oriented systems. It is

difficult for stakeholders to invent the interaction scenarios “on-the-fly” without appropriate support.

We propose a method motivated by the above problem. It is based on the investigation of the ways to support the

stakeholder involvement in a form of assessing the perceived performance and reliability of the service-oriented SUD in

its usage context. To implement this support, we make service quality assessment mechanisms accessible to the

stakeholders without IT background. On top of these mechanisms, we establish higher-level policies solving particular

requirements engineering and architectural design problems (requirements elicitation, verification, architecture

assessment etc.). In this paper, we describe the concepts of the method and the proposed assessment mechanisms.

2. State of the art
The importance of the problem of involving business stakeholders in the development process as a means of

control for the quality of the produced artifacts was supported by its extensive discussion in the scientific literature. In

this section, we review several categories of methods addressing this problem mostly following the classification of the

methods to represent the quality of the prospective system proposed by Bosch [7], which includes scenario-based

techniques, prototyping, and simulation.

Методи та засоби програмної інженерії

289

Human interaction with stakeholders. Significant number of methods addresses the problem directly by

performing human interaction with stakeholders and collecting their opinions.

Request-centered techniques. These techniques emphasize the way of questioning the stakeholders and

processing their opinions. Social research interaction techniques [15] such as surveys, interviews, brainstorming,

questionnaires or checklists are used to solve this problem [45, 53] together with software engineering-specific

techniques such as CRC cards [4] or user-centered tabular glossaries [22]. The problem with these approaches is that

many of the stakeholders neither are used to nor trained in reasoning about the system in general and its qualities in

particular without having working experience regarding the targeted SUD.

Scenario-centered techniques. Such techniques [9] organize scenarios of stakeholder interaction with a

prospective system; they often rely on request-centered techniques to process the opinions of stakeholders. In the

manual scenario-centered approach, the stakeholders are requested to go through the scenarios (without actual

interacting with the SUD or its executable model) and express their opinions. The techniques of this kind are

extensively used to evaluate software architectures (examples are such methods as ATAM [41] and PASE [86]) or elicit

or analyze quality requirements (examples are Quality Attribute Workshops [2] and SRA tool [27]). Manual scenarios

are best suited for arranging the assessment of qualities which are revealed through complicated interactions (e.g.

security [71]) or development-related quality attributes such as modifiability [44].

There are shortcomings of these techniques as a means of addressing our problem: (1) they do not allow

stakeholders to experience quality with their senses in natural way (scenarios are usually narrative and do not offer

reality-like experience); (2) manual scenarios do not allow studying the dependency between performance-influencing

factors and the observed performance levels [7]; (3) for reliability, the scenarios in most cases cannot replace interaction

with the real system or its executable model as they are able to express it only by example [1].

Traditional prototyping. These techniques use system prototypes as an aid for stakeholders. The notion of

traditional prototype refers to a scaled-down version of the final system running in its intended context [19].

Horizontal prototypes. Early attempts to involve stakeholders in a development process using exemplification

under the title of rapid prototyping were made in the 80ies [51]. In particular, horizontal prototypes (lacking

implemented functionality) were introduced to simulate user interfaces in order to allow stakeholders to experience their

future environment. Such prototypes are still widely used, their usage is often embedded in the system usage scenarios

[72, 75]. The shortcomings of horizontal prototyping as an approach to address our problem are as follows: (1) it cannot

make stakeholders assess measurable software qualities as there is nothing to perceive as measurable in the prototyping

interactions; obtained information is limited to narrative notes; (2) such prototypes are mostly limited to making

stakeholders look at the system via its prospective user interface; this is of less value for service-oriented systems as the

client user interface can be not readily known at the time of development; (3) they are not well suited to taking into

account factors influencing system execution and experimenting with different sets of values for such factors.

Vertical prototypes. Such prototypes implement some part of the system functionality in deeper (up to complete)

detail. They can be used to make stakeholders experience operational software qualities (such as performance) and

assess such qualities. They are also not very suitable for our problem due to the following limitations (discussed in e.g.

[7]): (1) creating and maintaining such prototypes requires programming skills; (2) running prototype realistically

requires access to the target system including its hardware and human users, otherwise the stakeholder experience will

differ from the reality; (3) it is difficult to experiment with the vertical prototype trying out the different sets of factors

influencing software qualities (doing “what-if” analysis) as such experiments are usually too costly and cannot be

performed by non-programmers; (4) the solutions elaborated for such prototypes cannot be easily reused; (5) it is not

possible to “compress” or “expand” the time during the execution of prototype; it complicates realistic exposing of the

system reliability as it usually requires running in compressed time to reveal the relevant quality values.

«Live» prototyping. Several research-based [29, 39] and industrial (iRise studio, Axure RP etc.; the survey is in

[54]) tools extend the rapid prototyping technique by allowing non-programmers to build and execute interactive

software imitations (called “simulations” in their documentation) to get stakeholder’s feedback.

By simulation, their authors mean an imitation of system behaviour visible through its user interface. To

implement such imitation, they provide interactive user interface animations (similar to those used by rapid prototyping)

driven by the proposed scenarios of SUD behaviour. The only difference from the traditional rapid prototyping is that

these animations are “live”: the imitated program displays an anticipated user interface allowing stakeholders to play

with its visible elements making it show other elements according to the predefined navigational scenario, formulate

requirements while looking at this interface, and attach them to its visible elements. As with rapid prototyping, the

elicited information is limited to narrative notes. Underlying the animation is an interpreter of the language for

specifying scenarios (either proprietary [54] or based on standard notation such as statecharts [29, 39]).

These tools are not directly suitable for our research problem because they implement different type of

stakeholder involvement. Their purpose is to make stakeholders think about the system functionality while looking at

some version of the behaviour of its user interface. To solve our research problem, however, it is necessary to make

stakeholders think about the system quality while perceiving the numerical values of its attributes. This reflects the

fundamental difference between functional and quality requirements: whereas the functional requirements are

specifications of the anticipated systems behaviour (mostly in the narrative form as e.g. in the use case specifications),

the quality requirements are qualities that the product must have accompanied with quantified criteria for measuring

those qualities: “If you cannot quantify and measure a [non-functional] requirement, it is not really a requirement” [61].

Методи та засоби програмної інженерії

290

Another problem with these tools is that they are rather inflexible. As their output is limited to textual (free-
form) requirements their applicability is limited to the problem of requirements elicitation. The problem of stakeholder
involvement in a software process is wider than that: it is desirable to be able to involve business stakeholders into more
extended set of activities, such as requirements verification, requirements negotiation or software architecture
evaluation. These tools also do not target service-oriented systems.

Simulation-based techniques. These techniques use simulation in a sense of “the process of designing and
creating a computerized model of a real or proposed system for the purpose of conducting numerical experiments” [42]
to model service qualities in a way that can be used to support stakeholder involvement.

Service-level simulations. Some solutions simulate qualities of the particular software services or their
underlying components. Performance prototyping technique [31] allows performance simulations for the components to
be integrated into real-life environment as alternative for prototypes, other service performance solutions include
MOSES approach [12] based on UML 2 service representation, [16] implementing context-dependent discrete-event
service performance simulation, [3] using two-level representation of service performance. Service reliability
simulations are proposed in [24, 28], service error distribution is also simulated in [48]. The results of such simulations
are used to guide the evaluation of the software architecture [7, 26], requirements validation etc. The specific problem
with such simulations is that they are supposed to be used in standalone mode without explicit integration into the usage
processes.

Process-level simulations. Such solutions support quality simulations in context of usage scenarios (in a sense of
scenario-centered techniques) or complete business processes. Simulated scenarios [18, 30] are elaborated by analysts
to reveal particular quality characteristics. Business process simulation solutions are numerous (e.g. [36, 64]) but not
much of them produce numerical quality values. Among these solutions, UML-Ψ tool [50] simulates performance of the
processes described by annotated UML diagrams, [20, 21] augments BPM process definitions (expressed in e.g. BPMN
[8]) with information necessary to simulate performance, [73] enhances BPEL [84] programs with Java language blocks
implementing performance and reliability simulation. The specific problem with such simulations is that they are aimed
at process-aware applications [17] executed by BPM engines (where the process is a part of the SUD), so they treat
services as “black boxes” lacking detailed control on their models. As a result, they are less suited to our problem where
processes provide the usage context for the SUD treated as a set of services. Good idea would be to combine service-
level and process-level simulation models into a coherent model being able at the same time to address them separately.

There are also common problems with the current simulation solutions: (1) they, as a rule, are designed for use
by the persons with the IT background – not by business stakeholders; (2) many of them are not interactive [81]: the
results are available after the run is finished; there are, however, approaches to running business processes interactively
mostly based on task modeling [76]; (3) they mostly address particular quality attributes without paying attention to the
inter-attribute tradeoffs.

3. Problem statement
Investigating the state of the art in the area of stakeholder participation in software process activities reveals the

research problems to be addressed by the method. We describe these problems in logical sequence by formulating the
corresponding research questions.

The overall research question that motivates the development of the method is: How to involve business
stakeholders into the software development process as a means of control for the quality of the produced artifacts? As
the concept of software quality is broad, we plan to focus on two specific quality characteristics: performance (treated
as service latency) and reliability. These operational quantitative characteristics are well suited for representation by
simulation and the number of contexts for their assessment is more manageable in comparison with e.g. security (which
requires extensive set of complicated scenarios to be assessed in full). We also focus on service-oriented systems as the
specific category of software under development. As a result, the main research question this method trying to answer is
(RQ) How to involve business stakeholders into the development process for service-oriented software systems as a
means of control for the performance and reliability of the produced artifacts?

As an idea of addressing this research question, we propose to use interactive simulation of service performance
and reliability possessing the following features:

1. Service performance and reliability simulations are parameterized by the factors influencing execution of
service-oriented systems and executed interactively in the context of system usage;

2. Business stakeholders experience simulated service performance and reliability in simulated usage contexts
corresponding to their roles and assess this experience using specific scale;

3. The obtained assessments are used as a basis for software lifecycle activities such as requirements elicitation,
verification, and negotiation and as a means of control for software lifecycle decisions.

The reasons of selecting the simulation as an approach to the stated problem are as follows. It is free from the
problems of horizontal or “live” prototyping as it can really offer the possibility to model the measurable (quantitative)
quality attributes of the system under development in its environment. It is also free from the shortcomings of vertical
prototyping as [55]: (1) simulations can be made configurable by non-programmers; (2) no access to the target system is
required; (3) experimenting with simulation (trying different values for the factors influencing qualities of the target
system) is easier and less expensive (in some situations separate prototype can be necessary for every major
configuration); (4) simulation solutions can be reused as the same model can be instantiated to simulate different usage
contexts; (5) software reliability can be simulated; (6) simulation offers the control over the model time: it is possible to
compress or expand it. On the other hand, known problems with simulation solutions (outlined above) need to be
addressed.

Методи та засоби програмної інженерії

291

After establishing the basic idea of a solution, we formulate more specific research questions. We start from the
basic notion of service quality as we need to establish its conceptual representation (covering both performance and
reliability) for the purpose of the project. The corresponding question is: (RQ-1) How to conceptualize service
performance and reliability in a way most suitable for their assessment by business stakeholders?

Prior to addressing the simulation, we plan to investigate the ways of assessment of quantified service qualities
by business stakeholders. The corresponding question is: (RQ-2) How to establish the interaction procedures allowing
business stakeholder to experience and assess quantified service performance and reliability?

To address this question, we need to obtain the knowledge of the current practice in this field so we formulate
more specific research question: (RQ-2.1) What is the current practice for business stakeholders to perceive and assess
service performance and reliability? After gathering this knowledge, we need to formalize it in a way suitable for reuse
by addressing another more specific research question: (RQ-2.2) How to formalize and reuse common practices of such
assessment?

The reason of conducting this research prior to investigating simulations is that stakeholder perception of
qualities does not depend on their origin so we can use “mock-up” quality values before simulations are available. On
the other hand, while working on simulations, it is desirable to be able to test them via assessment interactions.

Main research question related to the simulation of service performance and reliability is (RQ-3) How to
simulate service performance and reliability in a way compatible with common practices of their assessment by
business stakeholders? To address this question, we need to understand the factors that influence real-world service
performance and reliability and should be taken into account in simulations (such as hardware capabilities, network
bandwidth, peak user load etc); this leads to the specific research questions (RQ-3.1) Which factors influence service
performance and reliability? After that, we need to make use of the gained knowledge in simulation-related context by
addressing the question: (RQ-3.2) How to make simulations of service qualities depend on these factors? After we
understand the influencing factors the next step is to develop the formal simulation models for performance and
reliability in a way suitable for reuse; this leads to the specific research question (RQ-3.3) How to formalize and reuse
simulation solutions for service performance and reliability?

After establishing approaches for simulating and assessing separate service qualities we plan to establish
integrated service-level quality assessment mechanisms by addressing the research question (RQ-4) How to combine
service performance and reliability simulation solutions with the corresponding assessment procedures to establish
service-level mechanisms for interactive assessment of simulated service qualities?

After establishing service-level mechanisms, we plan to investigate the idea of providing them to business
stakeholders in simulated usage contexts; this leads to the research question (RQ-5) How to integrate simulation and
assessment of service qualities into service usage contexts? To make stakeholders experience usage contexts we plan to
simulate business processes providing these contexts; this leads to the research question (RQ-5.1) How to simulate
service usage processes with integrated service-level simulation and assessment mechanisms?

Addressing the process-level research questions leads to elaborating mechanisms defined at the level of the
particular simulation session where a particular stakeholder in a particular role participates in a particular simulated
usage process. To reveal all the stakeholder opinions, the final assessment mechanism needs to gather assessment data
out of all the necessary usage processes, roles and stakeholder sessions; we plan to investigate the idea of such
mechanism by addressing the research question (RQ-6) How to make mechanism of process-driven assessment of
simulated service qualities gather all necessary assessments?

4. Description of the proposed approach
In this section, we describe in detail the proposed approach for answering the stated research questions. The

preliminary research leading to this approach was presented in [40, 69].
General methodology issues. The research is based on model-driven [33, 58] and ontology-based [32] software

engineering methodologies. Ontologies are used to describe the knowledge resulting from the investigation of the
problem space. Mechanisms addressing research questions in a solution space have underlying prescriptive models;
every model is defined by a metamodel. To elaborate this set of basic notions, conceptual modeling and system analysis
methodologies need to be applied; the treatment of system analysis follows the approach of M.Z.Zgurovsky and
N.D.Pankratova [88]. For dissemination, metamodels and ontologies need to be expressed using both practice-oriented
(e.g. UML, OWL) and formal (e.g. set theory, description logic) notations. As a result, a complete formal description of
the approach has to be obtained.

Modeling service quality attributes. To address the research question RQ-1 we provide the definition of quality
for proposed method and the means of conceptualizing the service quality attributes. We use Quality-Aware Predesign
Model for Services QAPM-S [70] for this purpose (extending it to satisfy the needs of the method).

QAPM-S models service operations with the notion of operation-type (defining the operations, their actors and
objects/parameters; these parameters are modeled with the notion of thing-type generalizing attributes, entities or
values) [52]; it also uses tabular model representation (called glossary) which is well understood by stakeholders [22]. It
models service quality as a hierarchy of quality characteristics [38], represents the facts that quality characteristics
influence each other and that stakeholders perceive qualities differently, follows aspect-oriented paradigm [56] in
representing service quality and functionality as separate concerns.

Interactive stakeholder assessment of quantified qualities. This stage of research addresses the question RQ-2.
The relevant research has to be conducted in two steps corresponding to RQ-2.1 and RQ-2.2: gathering knowledge
related to the stakeholder perception of qualities and developing formal interaction models of quality assessments.

Методи та засоби програмної інженерії

292

Stakeholder perception of quantified qualities. To address the question RQ-2.1, it is necessary to investigate the

principles of stakeholder perception of performance and reliability and the relevant representation/assessment scenarios.

For this purpose, it is necessary to establish field studies involving, in particular, interviews and surveys, working with

paper and user interface prototypes. The methodologies used in these studies are information perception and

visualization [14, 83], usability engineering and human-computer interaction applied to software engineering [68, 78],

social scaling [13, 15] etc. The results should describe the relevant knowledge by means of the ontology of stakeholder

quality perception. It organizes gained knowledge and can be used for elaborating interaction procedures. This

knowledge can be useful by itself to better understand people’s needs with respect to the assessments of numerical

software qualities.

Interaction models for quality assessments. Based on this knowledge, we can address the question RQ-2.2 by

formalizing the ways of making stakeholders experience and assess numerical quality values by means of process

models for quality visualization and end-user interactive assessment. For every quality characteristic the corresponding

interactive assessment model IAM needs to be elaborated. It describes the IAE mechanism which:

1. receives the numerical quality value as an input (the mechanism does not depend on its source);

2. makes the stakeholder experience this quality according to this value: (a) visually e.g. by displaying the

control board with a number of visual failure alerts to represent particular level of reliability; (b) by other means e.g. by

making the stakeholder wait for the time related to the particular latency;

3. involves the stakeholder in an interaction related to an assessment of his/her experience; in this case: (a)

appropriate research will be performed to choose scales for these assessments [13, 15]; (b) trade-off dependencies

among qualities can be used as assessment hints, e.g. the request for the latency assessment could include the hint that

improving the latency negatively affects reliability;

4. receives the assessment value from the stakeholder and returns this value as an output.

We aim at facilitating reuse of such models by establishing the IAML library storing IAMs for different quality

characteristics. The modeling techniques to be used for these models include conceptual user interface modeling [58]

and model-based user interface design (MB-UID) [59].

Parameter-dependent simulation of particular service qualities. We address the research question RQ-3 by

establishing the procedures for parameterized simulation of service qualities. These procedures are responsible for

composition and execution of simulation models.

Simulation parameters. To address the question RQ-3.1 it is necessary to investigate the factors influencing

service qualities (we define the notion of simulation parameters for these factors). As the parameters are related to the

real-world problem being simulated, we establish the parameter ontology, where all the knowledge about the factors

influencing service qualities is collected (e.g. their types, interdependencies, character of the influence on the model

etc.). This ontology needs to be consulted while developing parameter-related simulation modules following ontology-

based simulation modeling technique [5]. To address the question RQ-3.2, it is necessary to create a parameter slot in a

simulation model for every necessary parameter; prior to the execution of this model, the parameter value is expected to

be specified for every slot; these values influence the execution. It is also necessary to take into account possible

fuzziness of the parameter values to reflect incomplete knowledge of the factors.

Main simulation structure. The implementation of this structure follows the research on simulation modeling of

service-oriented architectures [3, 74, 77] in that we start from the simulation conceptual model [62] for this structure

with entities representing different parts of the SOA infrastructure (processing and storage hardware, network and

software infrastructure). We consider agent-oriented simulation technique [57] and its applications to SOA simulation

[74] as a means of instantiating this model as the set of communicating agents representing the above entities. Another

research alternative is discrete-event simulation ([42], its application to SOA is in e.g. [16]); these two techniques could

also complement each other. These approaches are better suited for modeling software systems than continuous

techniques such as system dynamics [49].

Composing the simulation models. Simulating particular service quality characteristic requires the particular set

of solutions to be introduced into the simulation model. On the other hand, making simulations depend on the particular

parameter also requires specific set of solutions to be implemented. To address research question RQ-3.3, for every

selected quality characteristics and parameter, we elaborate the set of simulation model solutions best suited for its

support and package it into the simulation module (obtaining the set of quality-related and parameter-related modules).

Separate research directions need to be pursued to establish simulation models for performance and reliability.

For performance, it is necessary to make the module implement the set of modeling procedures implementing actions

specific to service performance [6, 74, 89]. They should rely on a formal representation of performance (we plan to

investigate Colored Petri Nets [85] or their extension of Queuing Petri Nets [43] for this purpose) and utilize software

performance ontology (e.g. [46]). For reliability, the module needs to implement the set of fault injection procedures

[48] (taking into account error propagation [60] and other reliability-influencing issues) depending on selected fault and

failure models [11]; these procedures should rely on service dependability ontology [47].

After the simulation modules are available, we can develop the rules managing their composition to form service

quality simulations. Implementing this composition can be complicated as the particular parameter could influence the

simulation of several qualities whereas the particular quality simulation could depend on several parameters. In addition,

dependencies inside the sets of qualities and parameters as expressed in QAPM-S and parameter ontology need to be

considered as well (for example, simulating the reliability can depend on the simulated latency).

Методи та засоби програмної інженерії

293

Such complicated crosscutting relationships among the modules could be the case for the separation of concerns
inside the simulation conceptual model according to the aspect-oriented paradigm (aspect-oriented simulation modeling
- AOSM). This way, both support for the quality characteristic and parameter dependency can be viewed as separate
simulation concerns. The corresponding quality-related and parameter-related modules can be independently developed
as aspects representing the separated concerns (latency simulation aspect, reliability simulation aspect, network
bandwidth parameterization aspect etc.). For example, fault injection procedures implemented by reliability simulation
aspect could contain “hooks” for possible extensions by other aspects without revealing any information about the
character of such aspects (following the obliviousness principle of aspect-orientation).

We choose to follow the asymmetric aspect-oriented modeling approach [67] where the aspects crosscut the
main simulation structure which is preserved as the structure of the resulting simulation. The weaving of the simulation
aspects into this structure is shown on Fig.1. For example, the composition rule could connect fault injection procedures
implemented by the reliability aspect to particular external variables defined by aspects responsible for user load and
latency (populating the “callback” hooks defined for all these three aspects) and then weave the resulting load-
dependent and latency-dependent fault injection procedures into the simulation models for the hardware and software
infrastructure. The application of the aspect-oriented approach to the service quality modeling is novel; existing AOSM
techniques are specific to other domains [34, 79].

hardware

infra-

structure

class

software

infra-

structure

class
user load

aspect

network

bandwidth aspect

reliability aspect
latency

aspect

Base structure

Simulation model

hardware

infrastructure

class

software

infrastructure

class

Quality-related aspects

Parameter-related aspects

Fig. 1. Weaving the simulation model

This investigation follows the research on assessment interaction models, so we can immediately test simulation
results via the assessment interfaces. During the execution, every service quality simulation accepts the set of values for
all the parameters it depends on, and produces the value (or the set of values) for the simulated quality, so we just
replace mock-up quality sources with simulation modules.

To facilitate reuse of simulation solutions according to the research question RQ-3.3 we aim at creating QAL and
PAL aspect libraries storing simulation aspects corresponding to selected qualities and parameters and the library of
infrastructure simulation solutions (ISL). These simulation support libraries are supposed to be used for implementing
simulation of the complete services (described below). To validate the results of the research at this stage (i.e.
simulation models), we follow the research on simulation models verification and validation (e.g. [66]).

To implement proof-of-concept software support for quality simulations and for service-level execution
mechanisms, we use Java API for the state-of-the art simulation tools (AnyLogic (http://www.xjtek.com) being the main
choice and OMNet++ Java extension (http://www.omnetpp.org) the main alternative).

Standalone assessment of simulated service qualities. We address research question RQ-4 by elaborating IAS
mechanisms (interactive assessment of services) aimed at an assessment of simulated service qualities at the level of the
particular service. Fig.2 depicts the outline of IASC (composition) and IASE (execution) mechanisms.

Composing the service simulation. IASC inputs include QAPM-S representation of the set of qualities of interest
to be simulated and assessed (it can be a subset of the available qualities) and the set of necessary parameters. To get
the integrated quality simulation model QSM, we perform a composition of the simulation aspects corresponding to the
qualities of interest and the necessary parameters on top of the base simulation structure (all obtained from simulation
support libraries). The parameter slots are created for all the necessary parameters. Also, we select the set of interactive
assessment models from IAML for the qualities of interest and integrate them with QSM. The resulting service-level
simulation and assessment model IASM becomes the IASC output. At this stage of the project, it is transferred to IASE
for standalone execution (as shown on Fig. 2).

Service user

Assess-

ment

Simu-

lation

particular
service

Compo

sition

IASC: composition IASE: execution

IAML: assessment

model library

IAM

selection

PAL, QAL, ISL: simulation

support libraries

In
te

g
ra

ti
o

n

Parameter values

Parameter

definitions

QAPM-S: qualities

to assess

Simulated

qualities

Assessments

IASM

selected

IAMs

QSM

particular
run

Fig. 2. Mechanisms for interactive assessment of simulated service qualities

Методи та засоби програмної інженерії

294

Executing and assessing the service simulation. IASE is responsible for execution of both simulation and

assessment interaction submodels of IASM. The input for every IASE run is the set of parameter values corresponding

to the IASM parameter slots. As a result of the run, the set of simulated values for the qualities of interest is obtained

and presented to the service user for assessment via IAE mechanisms described by interaction models integrated into

IASM. The IASE outputs are this set of simulated qualities and the set of assessment results.

Service-level assessment example. Suppose we develop the CheckOrder service and plan to make users as sess

its latency and reliability which depend on network bandwidth and user load. In this case IASC inputs are the qualities

of latency and reliability and the parameters of bandwidth and load. The resulting model IASM(CheckOrder) is

composed from simulation model QSM(CheckOrder) (based on simulation aspects for latency, reliability, bandwidth

and load) and the interaction models for latency and reliability. IASE accepts IASM as the model to execute and, for its

run, obtains the parameter values for bandwidth and load. The outputs for the run are the values for simulated latency

(e.g. 0,5 sec) and reliability (e.g. 99.4%) and their assessments (e.g. the latency score of 8 out of 10).

IASC and IASE can be useful by themselves if the analyst just wants to ask stakeholders to assess the qualities

of the particular service or the list of services without burdening oneself with establishing detailed usage processes.

Process-driven assessment of simulated service qualities. We address research question RQ-5 by elaborating

IAP mechanisms (interactive assessment of processes) aiming at interactive assessment of simulated service qualities in

context of usage processes at the level of the particular process. Fig.3 depicts the outline of IAPC (composition) and

IAPE (execution) mechanisms. They rely on IASC and IASE dealing with individual services.

IASC(s2)

IASC(s3)

IAPC: composition

SIMC(a1)

IAPE: execution

particular usage process

Participant

 in a role r1

particular role and run

Participant

 in a role r2

IASE(s2)

IASE(s3)

SIME(a1)

Role

model

Assessment and

ineraction sets

QAPM-S: quality

characteristics

Parameter

definitions

Parameter

values

Interaction set
Assessment set

for r1

Assessment set

for r2

Simulated

qualities

Assessments

BPrM: model

of usage process

activity a1

activity a2

service s2
activity a3

service s3

IASM for s3

IASM

for s2

SIM for a1

IAPM

if role

r1 or r2

if role r1

if role r2

SIM for a1

IASM
for s2

IASM
for s3

Fig. 3. Interactive assessment of simulated service qualities in context of usage processes

Composing the process simulation. IAPC forms the simulation model of the usage process making it ready for

interactive assessment of service qualities. It accepts the following inputs:

1. The control flow model (CFM) for the usage process conforming to the network BPM notation such as

BPMN, process chains [80], Colored Petri Nets etc. (in the scope of this project we restrict the accepted notations to

those supported by the chosen BPM simulation tool). It is possible to use existing process model repositories such as

APROMORE [63] for storing and retrieving such models.

2. The role model for the usage process which includes: (a) the set of roles defined for process participants

(clerk, manager etc); (b) different sets of interaction activities for different roles; such activities make participants affect

the state of the process simulation (e.g. by selecting execution paths, specifying values to be used for subsequent

decisions etc); these interactions advance the model time; (c) different sets of assessment activities for different roles;

such activities correspond to the services of interest to be simulated and assessed by stakeholders; assessments do not

change the state of the process simulation (e.g. the model time has to remain the same as the simulation needs to be

“paused” while the stakeholder thinks over the assessment); (d) the sets of qualities of interest and necessary parameters

defined for every service of interest.

3. The flow simulation model (FSM) including all the extensions necessary to implement the process

simulation beyond those presented in a role model (according to e.g. the techniques presented in [65, 82]); to simplify

this model, all except interaction and assessment activities are treated as black boxes.

While composing the integrated model IAPM for the process, IASC mechanism is invoked for every service of

interest. It creates the IASM model for this service which is then integrated into IAPM (this is the case for a2 and a3

activities on Fig.4). For every interaction activity, SIMC mechanism for constructing the interaction model is invoked

and the resulting SIM model (depending on the type of activity) is also integrated into IAPM (see the activity a1 on

Fig. 4). SIMC prototype handling several basic interaction types will be established alongside IAPC.

The resulting model contains (1) the simulation logic defined by CFM and FSM (for the process) and simulation

submodels of different IASM models (for the services of interest); (2) the assessment logic defined by interaction

submodels of these models; (3) the interaction logic defined by the SIM models for all interaction activities.

Методи та засоби програмної інженерії

295

Executing and assessing the process simulation. The IAPM is executed by IAPE. Every run is presented to the

stakeholder belonging to the particular role (on Fig.3 two stakeholders of the roles r1 and r2 are shown interacting with

IAPE; in the scope of the project, we restrict ourselves with a single-user mode when every run involves exactly one

stakeholder; the multi-user mode can be investigated as a project extension). The input for every run of IAPE is the set

of parameter values for all the parameter slots defined for the services of interest.

During the run, the following actions are performed:

1. The basic simulation flow is managed by the model derived from the usage process CFM;

2. When the logic of the run requires invoking an activity representing the service of interest, the simulation of

its qualities and the assessment interaction logic are handled by IASE invoked for its IASM (on Fig.3, this is the case

for a2 and a3 representing s2 and s3). IASE inputs are parameter values for all the slots of this service.

3. When this logic requires interacting with the simulation, the logic of this interaction is handled by the SIME

mechanism invoked for the corresponding SIM (this is the case for a1 on Fig.3). SIME prototype performing several

basic interactions is expected to be elaborated alongside IAPE; we plan it to utilize available interaction modeling

techniques similar to those used for IAM.

The selection of actions could be different for different roles (on Fig.3, role r1 interacts with activities a1 and a2,

whereas role r2 interacts with a1 and a3). The outputs for IAPE run include the set of all simulated quality values for all

the services of interest and the set of corresponding assessment results.

Process-level assessment example. Suppose the task is to make order and bookkeeping clerks assess the services

of the order processing system in the context of order processing. In the CFM for the ProcessOrder usage process

CheckOrder activity (with performance as the quality of interest) in accessible to order clerks whereas CheckPayment

activity (for it, we are interested in reliability) is accessible to bookkeeping clerks; both these activities are backed by

services of interest. These activities are assessment activities for the respective roles. On the other hand,

AskForCanceling activity accessible to order clerks is not backed by a service and serves only to drive the simulation; it

is an interaction activity for this role. IAPC forms the IAPM by combining CFM(ProcessOrder) and

FSM(ProcessOrder) with IASM(CheckOrder), IASM(CheckPayment) and SIM(AskForCanceling) and transfers it to

IAPE for execution. When the simulation logic for the order clerk-driven run passes through CheckOrder, IASE

executes the corresponding IASM and obtains the performance assessment from the clerk as described in an example

for this mechanism; the same happens to reliability of CheckPayment during the run driven by bookkeeping clerk. In

case of passing through AskForCanceling its SIME asks the order clerk to decide what to do next.

Implementing the process simulation. We address research question RQ-5.1 by investigating an approach to

simulation which can be implemented by following existing simulation solutions defined for network-based BPM (such

as BPMN-supporting OXProS [23] or CPN Tools [37]). We propose to evaluate several possible ways to implement

this integration. One possibility is to implement solution in spirit of [3] which uses an implementation of process chains

for the control flow simulation and OMNet++ code to implement service simulations with a resulting model deployed

on OMNet++ engine. This way, IAPE could run process chains simulation code while IASE – service simulation code

(both backed by OMNet++ or AnyLogic). Another approach is to use an idea of [23] which performs template-based

conversion of BPMN diagram into Colored Petri Nets (CPN), this way, BPMN-based CFM can be converted into CPN

representation, augmented with Java-based service simulation code and run via CPN tools or OXProS engine.

Iterative assessment mechanism. We address research question RQ-6 with the iterative IIA mechanism

(iterative interactive assessment) which explores different variants of usage processes, roles and runs. The invariants for

all iterations are the set of services under development (corresponding to the chosen variant of SOA) and the QAPM-S

instance defined for this set. The iterations are as follows: the outer (composition) loop is by process (selecting different

usage processes for the services and composing simulation models with IAPC), the inner (execution) loops are by role

(selecting different roles and, as a result, exploring different subsets of services accessible for the role) and then by

simulation run (making different runs for different users acting in the chosen role). The results are obtained on the every

iteration of the inner loop. As a result, for every service of interest, we obtain simulated quality values and their

assessments in all its key usage contexts.

Cost management. Modular structure of the solutions allows for flexible management of the implementation

and deployment costs as different level of detail can be selected depending on the permissible cost. At the service level,

the cheapest option is to build simulation models out of the predefined aspects and interaction models according to the

selected set of qualities and influencing factors (the configuration is reduced to specifying qualities and factors of

interest). If the cost is not an issue, however, it is possible to prepare custom quality simulations for every service of

interest or combine predefined and custom simulation aspects. At the process level, the configurations vary from

making stakeholders work directly with services, to introducing simple “task list” interfaces for service simulations,

then to relying to available predefined processes (e.g. from APROMORE repository [63]) and to building custom

processes for the problem at hand. This flexibility offers cost management advantages compared to other solutions. For

example even the most complete process-based solutions such as [20, 21] are built in top-down fashion, as a result,

complete process model needs to be built in any case; other techniques are even less flexible. Another kind of cost

advantages are related to the choice of simulation over other quality modeling techniques such as prototyping [7, 55].

Методи та засоби програмної інженерії

296

5. Conclusions and future research
In this paper, we elaborated the concepts for the mechanisms of tool-supported stakeholder assessment of

simulated service performance and reliability in service usage contexts represented by simulated business process

models. We presented service-level and process-level mechanisms, examples of their usage, and possible directions of

their implementation. The development of these mechanisms should rely on research in such fields as human-computer

interaction, social sciences, information visualization, discrete and agent-based simulation of performance and

reliability.

Novelty of the proposed approach. After comparison with state-of-the-art stakeholder involvement techniques

we state that the proposed mechanisms possess the unique combination of features:

1. They rely on simulation models able to express quantified quality attributes; to form service simulations,

such models are integrated using novel aspect-oriented approach;

2. They allow interactive participation in simulations by business stakeholders; such participation is based on

formal interaction models elaborated as a result of studies of real interactions in field settings;

3. They integrate the simulations of service qualities (in particular, performance and reliability) into the

simulations of service usage processes and make these simulations accessible to stakeholders acting in particular roles

so that a set of services available for assessment depends on the role.

Future research directions. In this paper, we limited ourselves to the description of the assessment mechanisms.

These mechanisms form the foundations for the higher-level policies intended to address particular problems of

requirements engineering and architectural design. In particular, requirements elicitation policy to get the threshold

values for quality requirements out of stakeholder assessments and simulated quality values, requirements verification

policy to compare external requirements with requirements elicited via assessment mechanisms, requirements

negotiation policy inspired by systemwise optimization by V.M.Glushkov [87] to mutually adjust the resources of the

organization and the needs of stakeholders. These policies will be the subject of future research.

The ultimate future goal of the proposed method is to establish a lifecycle simulation support by asking the

stakeholders to make assessments of simulated qualities reflecting the current state of the software under development

as the development progresses with a purpose to make these assessments drive the development.

1. Amyot, D., Eberlein, A. An Evaluation of Scenario Notations and Construction Approaches for Telecommunication Systems Development //
Telecommunication Systems. – 2003. – Vol. 24. – N 1. – P. 61-94.

2. Barbacci, M., Ellison, R., Lattanze, A., et al. Quality Attribute Workshops (QAWs), Third Edition. – Carnegie Mellon University. – 2003.

3. Bause, F., Buchholz, P., Kriege, J., Vastag, S. A Framework for Simulation Models of Service-Oriented Architectures // In SIPEW 2008. – LNCS,
Vol. 5119. – 2008. – P. 208–227.

4. Bellin, D., Suchman-Simone, S. The CRC Card Book. – Addison-Wesley. – 1997.

5. Benjamin, P., Patki, M., Mayer, R. Using ontologies for simulation modeling // In WSC'06. – 2006. – P. 1151-1159.

6. Bertolino, A., De Angelis, G., Polini, A. A QoS Test-Bed Generator for Web Services // In ICWE'07. – LNCS, Vol. 4607. – Springer. – 2007.

– P. 17-31.

7. Bosch, J. Design and Use of Software Architectures. – Reading: Addison-Wesley. – 2000.

8. Business Process Model and Notation (BPMN) Version 1.2. –. OMG. – 2009.

9. Carroll, J.M. (ed.). Scenario-Based Design. – Wiley. – 1995.

10. Cooper, A. The Inmates are Running the Asylum. – Sams. – 2004.

11. Cortellessa, V., Grassi, V. Reliability Modeling and Analysis of Service-Oriented Architectures // In Baresi, L., Nitto, E.D. (eds.): Test and Analysis of

Web Services. – Springer. – 2007. – P. 339-362.

12. Cortellessa, V., Pierini, P., Spalazzese, R., Vianale, A. MOSES: MOdeling Software and platform architEcture in UML 2 for Simulation-based

performance analysis // In QoSA 2008. – LNCS, Vol. 5281. – Springer. – 2008. – P. 86-102.

13. DeVellis, R.F. Scale Development: Theory and Applications. – Sage Pubs. – 2003.

14. Diehl, S. Software visualization: visualizing the structure, behaviour, and evolution of software. – Springer. – 2007.

15. Drew, P., Raymond, G., Weinberg, D. Talk and Interaction in Social Research Methods. – Sage Pubs. – 2006.

16. Driss, M., Jamoussi, Y., Jezequel, J.-M., et al. A Discrete-Events Simulation Approach for Evaluation of Service-Based Applications // In Proc.

ECOWS’08. – IEEE. – 2008. – P. 73-78.

17. Dumas, M., Van der Aalst, W., ter Hofstede, A. (eds.). Process-Aware Information Systems. – Wiley-IEEE. – 2005.

18. Egyed, A. Dynamic Deployment of Executing and Simulating Software Components // In Component Deployment. – LNCS, Vol. 3083. – Springer. –

2004. – P. 113-128.

19. Floyd, C. A Systematic Look at Prototyping // In Approaches to Prototyping. – Springer. – 1984. – P. 1-17.

20. Fritzsche, M., Gilani, W., Fritzsche, C., et al. Towards utilizing model-driven engineering of composite applications for business performance analysis

// In ECMDA-FA'08. – 2008. – P. 369-380.

21. Fritzsche, M., Picht, M., Gilani, W., et al. Extending BPM environments of your choice with performance related decision support // In BPM 2009. –

LNCS, Vol. 5701. – 2009. – P. 97-112.

22. Galle, D., Kop, C., Mayr, H.C. A Uniform Web Service Description Representation for Different Readers // In Proc. ICDS'08. – IEEE CS Press. –

2008. – P. 123-128.

23. Garcia-Banuelos, L., Dumas, M. Towards an Open and Extensible Business Process Simulation Engine // In Proc. CPN'09. – 2009.

24. Gokhale, S.S., Lyu, M.R., Trivedi, K.S. Reliability Simulation of Component-Based Software Systems // In Proc. ISSRE’98. – 1998. – P. 192-201.

25. Graham, I. Requirements Modelling and Specification for Service Oriented Architecture. – Wiley. – 2009.

26. Grassi, V., Mirandola, R., Sabetta, A. Filling the gap between design and performance/reliability models of component-based systems: A model-driven

approach // The Journal of Systems and Software. – 2007. – Vol. 80. – P. 528–558.

Методи та засоби програмної інженерії

297

27. Gregoriades, A., Sutcliffe, A. Scenario-Based Assessment of Nonfunctional Requirements // IEEE Trans. Software Eng. – 2005. – Vol. 31. – N 5. – P.

392-409.

28. Grishikashvili Pereira, E., Pereira, R. Simulation of fault monitoring and detection of distributed services // Simulation Modelling Practice and Theory.

– 2007. – Vol. 15. – P. 492–502.

29. Harel, D., Politi, M. Modeling Reactive Systems with Statecharts. – McGraw-Hill. – 1998.

30. Haumer, P., Heymans, P., Jarke, M., Pohl, K. Bridging the Gap Between Past and Future in RE: A Scenario-Based Approach // In Proc. RE'99. – IEEE
CS Press. – 1999. – P. 66-73.

31. Hennig, A., Hentschel, A., Tyack, J. Performance Prototyping - Generating and Simulating a Distributed IT-System from UML Models // In Proc.
ESM’2003. – IEEE. – 2003.

32. Hesse, W. Ontologies in the Software Engineering process // In Proc. EAI'05. – Ceur-WS.org, Vol. 141. – 2005.

33. Hesse, W., Mayr, H.C. Modellierung in der Softwaretechnik: eine Bestandsaufnahme // Informatik Spektrum. – 2008. – Vol. 31. – N 5. – P. 377-393.

34. Ionescu, T.B., Piater, A., Scheuermann, W., et al. An Aspect-Oriented Approach for Disaster Prevention Simulation Workflows on Supercomputers,

Clusters, and Grids // In Proc.DS-RT 2009. – 2009. – P. 21-33.

35. ISO. ISO/IEC 12207:2008, Information technology – Software life cycle processes. –. – 2008.

36. Jansen-Vullers, M., Netjes, M. Business process simulation – a tool survey // In CPN Tools Workshop. – 2006.

37. Jensen, K., Kristensen, L.M. Coloured Petri Nets. – Springer. – 2009.

38. Jureta, I.J., Herssens, C., Faulkner, S. A Comprehensive Quality Model for Service-Oriented Systems // Software Quality Journal. – 2009. – Vol. 17. –

N 1. – P. 65-98.

39. Jwoa, J.-S., Cheng, Y.C. Pseudo software: A mediating instrument for modeling software requirements // Journal of Systems and Software. – 2009,

in press.

40. Kaschek, R., Kop, C., Shekhovtsov, V.A., Mayr, H.C. Towards Simulation-Based Quality Requirements Elicitation: A Position Paper // In REFSQ 2008.

– LNCS, Vol. 5025. – Springer. – 2008. – P. 135-140.

41. Kazman, R., Barbacci, M., Klein, M., Carriere, S.J. Experience with Performing Architecture Tradeoff Analysis // In Proc. ICSE'99. – ACM. – 1999.

42. Kelton, W.D., Sadowski, R.P., Sadowski, D.A. Simulation with Arena. – McGraw-Hill. – 2004.

43. Kounev, S. Performance Modeling and Evaluation of Distributed Component-Based Systems using Queueing Petri Nets // IEEE Trans Soft Eng. –

2006. – Vol. 32. – N 7. – P. 486-502.

44. Lassing, N., Bengtsson, P., Bosch, J., Vliet, H.V. Experience with ALMA: Architecture-Level Modifiability Analysis // Journal of Systems and

Software. – 2002. – Vol. 61. – N 1. – P. 47-57.

45. Lauesen, S. Software requirements: Styles and techniques. – Addison-Wesley. – 2002.

46. Lera, I., Sancho, P.P., Juiz, C., et al. Performance assessment of intelligent distributed systems through software performance ontology engineering

(SPOE) // Software Qual J. – 2007. – Vol. 15. – P. 53-67.

47. Looker, N., Gwynne, B., Xu, J., Munro, M. An Ontology-Based Approach for Determining the Dependability of Service-Oriented Architectures // In

WORDS’05. – 2005. – P. 171- 178.

48. Looker, N., Xu, J., Munro, M. Determining the dependability of Service-Oriented Architectures // Intl J of Simulation and Process Modelling. – 2007. –

Vol. 3. – N 1-2. – P. 88 - 97.

49. Mårtensson, F., Jönsson, P., Bengtsson, P., et al. A Case Against Continuous Simulation for Software Architecture Evaluation // In Proc. ASM'03. –

2003. – P. 97-105.

50. Marzolla, M., Balsamo, S. UML-PSI: the UML Performance SImulator // In Proc. QEST’04. – IEEE. – 2004.

51. Mayr, H.C., Bever, M., Lockemann, P.C. Prototyping Interactive Application Systems // In Budde, R., Kuhlenkamp, K., Mathiassen, L. (eds.):
Approaches to Prototyping. – Berlin: Springer-Verlag. – 1984. – P. 105-121.

52. Mayr, H.C., Kop, C. Conceptual Predesign - Bridging the Gap between Requirements and Conceptual Design // In Proc. ICRE '98. – IEEE CS Press. –
1998. – P. 90-100.

53. McManus, J. Managing Stakeholders in Software Development Projects. – Butterworth-Heinemann. – 2004.

54. Memmel, T., Gundelsweiler, F., Reiterer, H. Prototyping Corporate User Interfaces - Towards a Visual Specification of Interactive Systems // In Proc.

IASTED-HCI 2007. – 2007.

55. Miller, M.J., Pulgar-Vidal, F., Ferrin, D.M. Achieving Higher Levels of CMMI Maturity Using Simulation // In Proc. WSC'02. – IEEE. – 2002.

– P. 1473-1478.

56. Moreira, A., Araújo, J., Brito, I. Crosscutting quality attributes for requirements engineering // In SEKE'02. – 2002. – P. 167-174.

57. North, M.J., Macal, C.M. Managing Business Complexity: Discovering Strategic Solutions with Agent-Based Modeling and Simulation. – Oxford

Univ. Press. – 2007.

58. Pastor, O., Molina, J.C. Model-Driven Architecture in Practice. – Springer. – 2007.

59. Paternò, F. Model-based Design and Evaluation of Interactive Applications. – Springer. – 2000.

60. Popic, P., Desovski, D., Abdelmoez, W., Cukic, B. Error Propagation in the Reliability Analysis of Component based Systems // In Proc. ISSRE’05. –
IEEE. – 2005.

61. Robertson, S., Robertson, J. Mastering the Requirements Process, 2nd ed. – Addison-Wesley. – 2006.

62. Robinson, S. Conceptual modelling for simulation // J Operational Research Society. – 2008. – Vol. 59. – N 3. – P. 278-290.

63. Rosa, M.L., Reijers, H.A., van der Aalst, W., et al. APROMORE: An Advanced Process Model Repository. – QUT Reprints. – 2009.

64. Rozinat, A., Wynn, M., van der Aalst, W., et al. Workflow simulation for operational decision support // Data & Knowl Eng. – 2009. – Vol. 68.
– P. 834–850.

65. Rücker, B. Building an Open Source Business Process Simulation Tool with JBoss jBPM. – Stuttgart UAS. – 2008.

66. Sargent, R.G. Verification and Validation of Simulation Models // In Proc. WSC'08. – 2008. – P. 157-169.

67. Schauerhuber, A., Schwinger, W., Kapsammer, E., et al. Towards a Common Reference Architecture for Aspect-Oriented Modeling // In Proc. 8th Intl.

Workshop on AO Modeling. – 2006.

68. Seffah, A., Gulliksen, J., Desmarais, M.C. (eds.). Human-Centered Software Engineering. – Springer. – 2005.

69. Shekhovtsov, V., Kaschek, R., Zlatkin, S. Constructing POSE: a Tool for Eliciting Quality Requirements // In Proc. ISTA 2007. – LNI, Vol. P-107. – GI.

– 2007. – P. 187–199.

70. Shekhovtsov, V.A., Kaschek, R., Kop, C., Mayr, H.C. Relational service quality modeling // In J.Suzuki (ed.) Developing Effective Service Oriented

Architectures: Concepts and Applications in Service Level Agreements, Quality of Service and Reliability. – IGI Global. – 2010, in press.

71. Sindre, G., Opdahl, A.L. Eliciting security requirements with misuse cases // Req. Eng. – 2005. – Vol. 10. – N 1. – P. 34-44.

Методи та засоби програмної інженерії

298

72. Sutcliffe, A., Ryan, M. Experience with SCRAM: a scenario requirements analysis method // In Proc. ICRE'98. – IEEE CS Press. – 1998. – P. 164-171.

73. Tewoldeberhan, T., Janssen, M. Simulation-based experimentation for designing reliable and efficient Web service orchestrations in supply chains //
El.Commerce Res. and Apps. – 2008. – Vol. 7. – P. 82–92.

74. Thanheiser, S., Liu, L., Schmeck, H. SimSOA: an approach for agent-based simulation and design-time assessment of SOC-based IT systems // In
Proc.ACM Symp. on Applied Computing. – ACM. – 2009. – P. 2162-2169.

75. Tolstedt, J.L. Prototyping as a means of requirements elicitation // In Proc. SAE International Off-Highway Congress. – SAE Technical Paper Series,
Vol. 2002-01-1466. – 2002.

76. Trætteberg, H., Krogstie, J. Enhancing the Usability of BPM-Solutions by Combining Process and User-Interface Modelling // In Proc. POeM'08. –
LNBIP, Vol. 15. – Springer. – 2008. – P. 86-97.

77. Tsai, W.T., Cao, Z., Wie, X., et al. Modeling and Simulation in Service-Oriented Software Development // Simulation. – 2007. – Vol. 83. – N 1. –

P. 7-32.

78. Tullis, T., Albert, W. Measuring the User Experience. – Morgan Kaufmann. – 2008.

79. Um, I.-S., Lee, H.-C., Cheon, H.-J. Determination of Buffer Sizes in Flexible Manufacturing System by using the Aspect-oriented Simulation // In Proc.

ICCAS'07. – IEEE. – 2007. – P. 1729-1733.

80. van der Aalst, W. Formalization and verification of event-driven process chains // Inf Soft Tech. – 1999. – Vol. 41. – N 10. – P. 639-650

81. van der Aalst, W., Nakatumba, J., Rozinat, A., Russell, N. Business process simulation: how to get it right? – TU Eindhoven. – 2008.

82. Waller, A., Clark, M., Enstone, L. L-SIM : Simulating BPMN Diagrams With A Purpose Built Engine // In Proc. WSC'06. – 2006. – P. 591-597.

83. Ware, C. Information Visualization: Perception for Design. – Morgan Kaufmann. – 2004.

84. Web Services Business Process Execution Language (WS-BPEL) Version 2.0. –. OASIS. – 2007.

85. Wells, L. Performance analysis using coloured Petri nets // In MASCOTS’02. – 2002. – P. 217–221.

86. Williams, L.G., Smith, C.U. PASA: A Method for the Performance Assessment of Software Architecture // In Proc. 3rd Workshop on Software

Performance. – 2002.

87. Глушков, В.М. О системной оптимизации // Кибернетика. – 1980. – № 5. – С. 89–91.

88. Згуровский, М.З., Панкратова, Н.Д. Системный анализ: Проблемы, методология, приложения. – К: Наук. думка. – 2005. – 743 с.

89. Менаске, Д., Алмейда, В. Производительность Web-служб. Анализ, оценка и планирование. – К: Диасофт. – 2003.

