УДК 544.723 ОКСИДНЫЕ Си-Со-Fe КАТАЛИЗАТОРЫ, НАНЕСЕННЫЕ НА УГЛЕРОДНЫЕ НАНОТРУБКИ, В РЕАКЦИИ ОКИСЛЕНИЯ СО

Е.В. Ищенко¹, В.К. Яцимирский¹, А.Г. Дяченко², И.В. Конгурова¹, Э.В. Прилуцкий³

¹Киевский национальный университет имени Тараса Шевченко ул. Владимирская, 62, 01033, Киев-33 ²Институт химии поверхности Национальной академии наук Украины ул. Генерала Наумова, 17, 03680, Киев-164 ³Институт проблем материаловедения Национальной академии наук Украины ул. Кржижановского,3, 03142, Киев-142

Изучена каталитическая активность, адсорбционные свойства и состояние хемосорбированных частиц на поверхности углеродных нанотрубок, полученных на оксидах никеля, кобальта и железа, с нанесенной активной фазой - оксидной Cu-Co-Fe системой. Катализатор на основе нанотрубок, полученных на оксиде никеля, с 20% каталитически активной оксидной фазой дает полное превращение CO в CO₂ при 47°C. Для этого образца характерны высокие значения удельной поверхности и объема мезопор. Показано, что с поверхности малоактивных образцов H_2O и CO₂ десорбируются при разных температурах, а с поверхности высокоактивных образцов при одинаковой температуре. Отмечено, что при повышении каталитической активности увеличивается количество α_2 -формы CO₂.

Catalytic activity, adsorption properties, and state of surface-chemisorbed particles of carbon nanotubes synthesized on oxides of nickel, cobalt, and iron, with supported oxide Cu-Co-Fe system were studied. The sample consisting of nanotubes synthesized on nickel oxide, with 20 % mass. of active catalytic phase, completely converts CO into CO₂ at 47^oC. The high values of surface area and volume of mesopores were obtained for this active sample. It is shown that H_2O and CO_2 are desorbed from surface of low-active samples at different temperatures whereas those from the surface of high-active samples at identical temperatures. The increase in catalytic activity correlates with the quantity of α_2 - form of CO₂.

Введение

В последнее время большой интерес исследователей в области катализа вызывают углеродные носители. Это связано с синтезом новых аллотропных модификаций углерода, фуллеренов и нанотрубок, которые открывают широкие перспективы развития химии и физики углерода. Использование нанотрубок в качестве носителей для катализаторов в окислительных реакциях определяется их химической стойкостью к агрессивным средам и развитой поверхностью. В работах [1-3] была показана перспективность использования нанотрубок как основы для катализаторов. Реакция окисления СО – это, с одной стороны, экологически важная реакция, а с другой - удобная реакция для изучения закономерностей гетерогенного катализа [4]. В работах [5,6] было показано, что в оксидной Сu-Co-Fe системе образуется активная в реакции окисления CO фаза Cu₂(OH)₃NO₃. Целью данной работы было исследование физико-химических свойств

Химия, физика и технология поверхности. 2006. Вып. 11, 12. С.340-345 340 оксидных Cu-Co-Fe катализаторов, нанесенных на углеродные нанотрубки, в реакции окисления СО.

Экспериментальная часть

Углеродные нанотрубки диаметром 20-30 нм, длиной несколько микрон синтезировались на оксидах никеля, кобальта и железа в температурном интервале 460-520 °С в течение 6 часов в реакционной среде: 98% СО, 1% СН₄, 1% H₂ [7]. Нанесение активной каталитической массы проводили в две стадии. На первой стадии полученные нанотрубки отмывались раствором азотной кислоты и высушивались. Следующим шагом было нанесение активной массы. Рассчитанное количество меди, кобальта и железа растворяли в азотной кислоте и полученным раствором пропитывали углеродные нанотрубки. Количество активной каталитической фазы изменялось от 5 до 45 % масс.

Каталитическая активность образцов в реакции окисления CO измерялась на установке проточного типа при атмосферном давлении с хроматографическим анализом реакционной смеси. Состав реакционной смеси был следующим: 20 % O₂, 2 % CO и 78 % Не. Мерой каталитической активности была температура 100%-го превращения CO в CO_2 (t¹⁰⁰).

Удельная поверхность (S_{yg} .) всех образцов измерялась по низкотемпературной адсорбции аргона. Размер пор был получен из адсорбционно-десорбционных данных по азоту (носитель- гелий) на установке KELVIN 1042 (Costech Microanalytical).

Состояние хемосорбированных частиц в поверхностном слое катализаторов изучалось термодесорбционным (ТД) методом с масс-спектрометрической регистрацией десорбирующихся частиц. После каталитических исследований образцы сразу переносились в кварцевую кювету масс-спектрометра. ТД спектры снимались на масс-спектрометре МХ7304А с линейным нагревом образца со скоростью 10 К/с.

Результаты и их обсуждение

Сначала была исследована каталитическая активность отмытых азотной кислотой нанотрубок без активной каталитической массы. Для углеродных нанотрубок, полученных на катализаторе NiO, t¹⁰⁰=280 °C, а для углеродных нанотрубок на Co₂O₃ t^{100} =230 °С. Необходимо отметить нетипичное поведение углеродных нанотрубок, полученных на оксиде железа. Получить температуру 100 %-го превращения СО в СО₂ не удалось. При достижении образцами 70 % -го превращения СО при 370-380 °С наблюдается резкое возрастание количества СО, что превышает заданное в реакционной среде более, чем на 10 %. Также в этих условиях фиксируется мгновенное увеличение температуры на 100 °C при выключенном внешнем нагревании. Аналогичное явление наблюдается на втором и третьем подъемах температуры. После окончания эксперимента внутри изучаемого образца зафиксировано красное пятно. Можно предположить, что в углеродных нанотрубках во время реакции синтеза - образуются карбонилы железа разного состава, которые во время каталитического эксперимента разлагаются с большим выделением СО при скачкообразном повышении температуры. На это указывают ТД спектры, снятые после первого и второго подъемов температуры. На ТД спектре четко зафиксированы CO (m/e =28) и Fe (m/e =56) в интервале 60-120 $^{\circ}$ C (рис. 1).

Характерная зависимость степени превращения CO в CO_2 от температуры для углеродных нанотрубок с нанесенной активной фазой представлена на рис. 2. На этой зависимости наблюдается гистерезис «против часовой стрелки», который можно объяснить присутствием на поверхности образцов слабо связанного водорода [8]. Активности (t^{100}) всех изученных катализаторов представлены в табл. 1.

Самую высокую активность показал образец, состоящий из углеродных нанотрубок, полученных на оксиде никеля, с 20 % масс. активной фазы (t¹⁰⁰=47°C). Также высокую активность показали образцы, состоящие из углеродных нанотрубок, полученных на оксиде кобальта, и, соответственно, с 15 % масс. ($t^{100}=95$ °C) и 10 % масс. ($t^{100}=98$ °C) активной фазы. Ранее в работах [5, 6] было показано, что в оксидной Cu-Co-Fe системе при строго определенных соотношениях металлов образуется фаза Cu₂(OH)₃NO₃, которая оказывается благоприятной для увеличения каталитической активности образцов. Эта фаза является устойчивой до 180 °C, выше этой температуры она полностью превращается в CuO.

Рис. 1. ТД спектр углеродных нанотрубок, синтезированных на Fe₂O₃: *1* - CO (m/e= 28), 2 – Fe (m/e=56)

Таблица 1. Состав катализаторов, их (t^{100}) и удельная поверхность (S_{yg})

Количество нанесенной каталитически активной фазы на углеродные нанотрубки, синтезированные на разных оксидах, % масс			+ ¹⁰⁰ °C	S _{уд.} , м ² /г	
NiO	Co ₂ O ₃	Fe ₂ O ₃	ι, C	До реакции	После реакции
5	-	-	207	3,4	27,6
10	-	-	215	80,0	112,0
15	-	-	174	1,8	80,0
20	-	-	47	20,2	102,3
25	-	-	182	12,5	113,0
45	-	-	188	18,3	24,7
-	5	-	198	31,8	35,6
-	10	-	98	8,3	37,4
-	15		95	11,4	20,8
-	20	-	120	21,5	44,6
-	25	-	180	14,1	36,6
-	45	-	160	10,9	33,5
-	-	5	194	15,0	36,9
-	-	10	183	14,4	46,6
-	-	15	128	21,8	44,7
-	-	20	175	3,3	40,5
-	-	25	168	8,9	35,4
-	-	45	145	35,4	39,4

Данные удельной поверхности образцов представлены в табл. 1. У образцов, состоящих из нанотрубок, получен-ных на оксиде никеля, удельная поверхность после работы в реакционной среде резко возрастает. У самого активного образца $S_{yg.}=102,3$ м²/г. Для нанотрубок, полученных на оксидах кобальта и железа, значения удельной поверхности также увеличиваются после работы в реакционной среде, но не так резко. Для этих образцов значения удельной поверхности не превышают 47,0 м²/г.

Образец	$\mathbf{S}_{\text{уд.}},\mathbf{M}^2/\Gamma$	Микр	опоры	Мезопоры				
		V, mm ³ /γ	${ m S}_{ m yg.},{ m M}^2/\Gamma$	V, mm ³ /γ	$S_{yд.}, M^2/\Gamma$			
Углеродные нанотрубки, полученные на оксиде никеля								
Необработанный	41,0	-	-	96,2	41,0			
Обработанный	66,2	2,5	7,1	166,8	59,1			
HNO ₃								
Малоактивный	85,2	7,0	19,9	142,4	65,3			
Активный	102,3	7,7	21,9	230,0	80,4			
Углеродные нанотрубки, полученные на оксиде кобальта								
Необработанный	39,4	1,2	3,4	55,5	36,0			
Обработанный	56,3	3,5	10,0	67,7	46,3			
HNO ₃								
Малоактивный	31,3	1,2	3,4	43,3	27,9			
Активный	20,8	1,4	4,0	33,1	16,8			

Таблица 2. Структурно-адсорбционные характеристики нанотрубок, синтезированных на оксидах никеля и кобальта.

В табл. 2 представлены значения удельной поверхности и объема пор, полученные из адсорбционно-десорбционных данных по БЭТ. Как видно из полученных значений обработка нанотрубок азотной кислотой приводит к их раскрытию [9]. У нанотрубок, полученных на оксиде никеля, микропоры появляются только после обработки азотной кислотой, а объем мезопор увеличивается в два раза. Нанесение активной фазы на нанотрубки приводит к дальнейшему увеличению значений как объема, так и удельной поверхности и микропор, и мезопор. Причем для самого активного образца (20 % масс. активной фазы) объем мезопор составляет 230,0 мм³/г, а удельная поверхность мезопор – 80,4 м²/г. Обработка азотной кислотой нанотрубок, полученных на оксиде кобальта, увеличивает объем микропор в два раза, а мезопор всего на 12,2 мм³/г. Нанесение активной фазы на эти нанотрубки приводит к уменьшению как объема, так и удельной поверхности и микропор, и мезопор. Таким образом, увеличение значений объема и удельной поверхности для активного образца наблюдается только для нанотрубок, полученных на оксиде никеля. Значения удельной поверхности и объема пор нанотрубок, полученных на оксиде кобальта в 2-3 раза меньше, чем на оксиде никеля.

Со всех изученных образцов были сняты ТД спектры. На ТД спектрах зафиксированы пики H₂O и CO₂. Характерные ТД спектры представлены на рис. 3 та 4. Десорбционные пики H₂O имеют симметричный вид. Это указывает на то, что на поверхности этих образцов существуют OH-группы, из которых при десорбции образуется молекула H₂O [8]. По значениям температуры десорбции можно выделить такие формы: β_1 - до 100°C, β_2 - 100-200°C, β_3 - 200-300°C (рис. 3, 4). Для малоактивных образцов на ТД спектрах зафиксированы только формы воды с температурой максимумов десорбции до 200°C (рис. 4). Для высокоактивных образцов зарегистрированы β_1 -, β_2 - и β_3 -формы воды (рис. 3). Пики CO₂ на ТД спектрах асимметричные, что свидетельствует о молекулярной десорбции с поверхности. В табл. 2 представлены данные ТД исследований для наиболее характерных образцов каждой серии. По температурам максимумов десорбционных пиков (T_m) можно выделить такие формы CO₂: α_1 - до 110°C, α_2 - 110-200°C, α_3 -200-300 °C, α_4 - выше 300°C. Для малоактивных образцов (рис. 4) зафиксированы α_1 -, α_3 -, α_4 -формы CO₂. Для высокоактивных катализаторов (рис. 3) на фоне этих форм CO₂ зарегистрирована α_2 -форма CO₂.

Рис. 3. ТД спектр образца, состоящего из углеродных нанотрубок, полученных на оксиде никеля, и 20% масс. активной каталитической фазы: *1*- H₂O; *2* – CO₂; *3* – O₂.

Рис. 4. ТД спектр образца, состоящего из углеродных нанотрубок, полученных на оксиде железа, и 15% масс. активной каталитической фазы: *1*- H₂O; *2* – CO₂; *3* – O₂.

Таблица 3. Состав катализаторов, их каталитическая активность (t¹⁰⁰) и температуры максимумов десорбции CO₂ (T_m) с поверхности образцов.

Количество нанесенной каталитически активной фазы на углеродные нанотрубки, синтезированные на разных оксидах, % масс			t ¹⁰⁰ , °C	T _m , °C			
NiO	Co ₂ O ₃	Fe ₂ O ₃		α_1	α_2	α_3	$lpha_4$
10	-	-	215	100	_	220	320
20	-	-	47	100	180	270,	400,570
-	15		95	100	190	250	450,640
-	20	-	120	100	-	290	-
-	-	15	128	90	_	215	360,600,700
-	-	20	175	90	-	225	360,560,735

С поверхности малоактивных образцов H_2O и CO_2 десорбируются при разных температурах (рис. 4), а для высокоактивных образцов (рис. 3) - при одинаковых. Аналогичная картина наблюдалась и для активного Cu-Co-Fe массивного катализатора [4, 5]. При повышении каталитической активности с поверхности десорбируется большее количество α_2 -формы CO_2 .

Выводы

При изучении углеродных нанотрубок, синтезированных на Fe₂O₃, было зафиксировано резкое спонтанное нагревание образцов с выделением достаточно большого количества СО, что можно объяснить деструкцией карбонилов железа во время проведения реакции окисления СО. Также проведенные исследования показали, что образец, состоящий из нанотрубок, полученных на оксиде никеля, и 20 % масс. активной каталитической фазы полностью превращает СО в СО₂ при 47 ^оС. У этого образца также зафиксированы высокие значения удельной поверхности и объема мезопор. Показано, что с поверхности малоактивных образцов H₂O и CO₂ десорбируются при разных температурах, а с поверхности высокоактивных образцов - при одинаковой температуре. Аналогичный результат был получен раньше и для активного Cu-Co-Fe массивного катализатора. Отметим также, что при повышении каталитической активности увеличивается количество α_2 -формы CO₂.

Полученные данные показывают перспективность использования в качестве носителей оксидных Cu-Co-Fe катализаторов реакции окисления CO углеродных нанотрубок, синтезированных на NiO и Co₂O₃. На этих носителях получены каталитические системы, которые 100 % превращают CO в CO₂ при температурах ниже 100 °C.

Литература

- 1. Downs W.B. and Baker R.T.K. Novel carbon fiber carbon filament structures // Carbon. 1991. V. 29, N 8. P.1173-1179.
- 2. Marjolein L. Toebes, Jos A. van Dilen, Krijn P. de Jong. Synthesis of supported palladium catalysts// J. Mol. Catal. A: Chemical. 2001. V. 173. P.75.-98.
- 3. Раков Э.Г. Химия и применение углеродных наноторубок // Усп. химии. 2001. Т. 70, № 10. С.934-971.
- Planeix J.M., Coustel N., Coq B., Brotons V., Kumbhar P.S., Dutartre R., Genestre P., Bernier P., Ajayan P.M. Application of Carbon Nanotubes as Supports in Heterogeneous Catalysis // J. Am. Chem. Sos. - 1994. - V. 116. - P.7935-7936.
- 5. Гончарук В.В., Камалов Г.Л., Ковтун Г.О., Рудаков Е.С., Яцимирский В.К Катализ. Механизмы гомогенного и гетерогенного катализа, кластерные подходы Киев: Наук. думка, 2002. 540 с.
- Яцимирский В.К., Максимов Ю.В., Суздалев И.П., Ищенко Е.В., Захаренко Н.В., Гайдай С.В. Физико-химические свойства и каталитическая активность оксидных Fe-Co-Cu катализаторов в реакции окисления СО // Теорет. и эксперим. химия. - 2003. - Т. 39, № 3. - С.185-189.
- 7. Яцимирський В.К., Іщенко О.В., Гайдай С.В. Fe-Co-Cu оксидні каталізатори в реакції окиснення СО // Хімія, фізика та технологія поверхні. 2004. Вип.10. С.128-131.
- Нестеренко А.М., Колесник Н.Ф., Ахматов Ю.С., Сухомлин В.И., Прилуцкий О.В. Особенности фазового состава и структуры продуктов взаимодействия NiO и Fe₂O₃ с окисью углерода // Изв. АН СССР. Металлы. - 1982. - № 3. - С.12-17.
- 9. Яцимирский В.К., Ищенко Е.В., Гайдай С.В. Температурный гистерезис в реакции окисления СО на сложных оксидных катализаторах // Теорет. и эксперим. химия. 2005. Т. 41, № 5. С.323-327.
- 10. Елецкий А.В. Углеродные нанотрубки и их эмиссионные свойства // Усп. физ. наук. 2002. Т. 172, № 4. С.401-438.