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Removability of isolated singularity
for solutions of anisotropic porous
medium equation with absorption term
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Abstract. In this article we obtained the removability result for quasi-
linear equations model of which is

n

w= Y (W )+ F(w) =0, u>0.

i=1
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1. Introduction and main result

In this paper we study solutions to quasilinear parabolic equation in
the divergent form

uy — divA(z, t,u, Vu) + ap(u) =0, (z,t) € Qrp, (1.1)
satisfying a initial condition
u(,0) =0, =€\ {(0,0)} (1.2)

in Qp = Qx(0,7),0 < T < oo, where Q is a bounded domain in
R" n> 2.

The qualitative behaviour of solution to elliptic equations was in-
vestigated by many authors starting from the seminal papers of Serrin
(see [4-8] ). In [1] Brezis and Veron proved that for ¢ > "5 the isolated
singularities of solutions to the elliptic equation
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—Au+u? =0,

are removable. The result on the removability of an isolated singularity
for the following parabolic equation

% — ANu + |u’q_1u = O, (.CU,t) S QT \ {(an)}

was obtained by Brézis and Friedman [2] in the case ¢ > 2 . The
anisotropic elliptic equation with absorption

n
- Z (|, ]pi*zumi)xi + ulu =0
i=1

was studied in [12]. It was proved that the isolated singularity for solution
of the this equation is removable if
n(p—1) n—1

g>—=, 1<p <...<p, <
n—p n—p

For quasilinear elliptic and parabolic equations of special form with
absorption similar questions were treated by many authors. A survey
of their results and references can be found in Veron’s monograph [14].
The removability of isolated singularities for more general elliptic and
parabolic equations with absorption were established in [10] and [11].

We suppose that the functions A = (aq,...,a,) and ag satisfy the
Caratheodory conditions and the following structure conditions hold

A(ﬂ?,t, U,f)f >V Z |u|mi_1|£i‘27
=1

n

m;—1 .
jai(@, tu, ) <wou— =z | D ul™ TGP | i=Tn,  (1.3)
j=1

ao(u) > vif(u),

with positive constants vy, v, and continuous, positive function f(u) and

K
min m; > 1, max m; <1+ P <n, (1.4)

n
where k = n(m —1) +2,d = 2 3 2, and assume without loss, that

my, = max m,;.
1<i<n
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We will write Va,,(Qr) for the class of functions p € C(0,T, L*(12))
with 3 [[ ||™ 1 @, |? dzdt < oo.

i=1Qp

We say that u is a weak solution to the problem (1.1), (1.2) if for
an arbitrary 1 € C!(Q7), vanishing in a neighborhood of {(0,0)}, we
have an inclusion wi) € Vo, (Q27) and for any interval (¢1,t2) C [0,T) the

integral identity
to

2
/ucpdx + / / {—ups + Az, t,u, Vu)Vp + ap(u)p} de dt =0 (1.5)
Q t1 t1 Q

holds for ¢ = (4 with an arbitrary ¢ € Vam(Qr).

We say that solution u to the problem (1.1), (1.2) has a removable
singularity at {(0,0)} if u can be extended to {(0,0)} so that the extension
@ of u satisfies (1.5) with ¢ =1 and @ € V5, (Q7).

Remark 1.1. Condition (1.4) implies the local boundedness of weak
solutions to the equation (1.1) ([3).

The main result of this paper is the following theorem.

Theorem 1.1. Let the conditions (1.3), (1.4) be fulfilled and u be a
nonnegative weak solution to the problem (1.1), (1.2). Assume also that
f(u) =u? and

2
n
then the singularity at the point {(0,0)} is removable.

The rest of the paper contains the proof of Theorem 1.1.

2. Integral estimates of solutions

For 0 < A < n we define the following numbers

1 9 -
24+ (n—AN)(m-—1) Hi()\)_Z—F(n—)\)(m—mi)’ i=1,n.

a3 k1(A)
ox(z, (tmw +Z\x ‘m(M) ,

assume that Dy(r) = {(z,t) : pA(x,t) < r}, DA(Rp) C Qp and for
0 <7 < Ry we set M(r,\) = sup  u(z,t), E(r,\) = {(z,t) €
D (Ro)\Dx(r)
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Qr u(z,t) > M(r,\)}, up(r,t,N) = (u(x,t) — M(r, X))+ and consider
the function ,.(z,t) = n.(px(x,t)), where 5, : Rl — R! is a function
taking the following values: n,(2) = 0if z < r, n(2) = 1 if z > R(r),
n(z) = [(1—¢)Inln ﬂ_l (Inlnl— Inlni), ifr <2 < R(r), here ¢ is a
number from the interval (0, 1) specified in what follows and R(r) defined
by the equality

1 =1In" —. 2.1
. R(r) Ty (2.1)
Note that by the evident equalities q%l = (n—A)k(A), q_QmZ_ =(n—
Ari(N), i = 1,n, with X > 0 defined by
2
A=n— 2.2
e (2.9
the Keller—Osserman estimate yields
M(r,\) <427 r > 0. (2.3)

This estimate is received from Theorems 4.1, 4.2 (Appendix) in the case
PL=p2=..=pp=2.

Consider the functions Fi(r, A), Fa(r, A) defined by the following eq-
ualities

RMNr), A >0,
=2 ]
Ine—1 - A=0, qg> 2,
r
Fi(r,A) = 1
Inln—, A=0, ¢=2,
r
_2-a
In a-1, A=0, ¢<2
( RMr), A>0,
g—2my
Ina—m1 — A=0, q¢>2my,
r
FZ(T’)‘) = 1
Inln—, A=0, ¢ =2my,
r
_2mj—gq
( In =™, A=0, ¢ <2m;j.

To simplify the following calculations we will write M(r), E(r),
up(x,t) instead of M(r,N), E(r, \), u,(x,t, A).

Lemma 2.1. Let the assumptions of Theorem 1.1 be fulfilled, then for

q—len and for every 2r < p < % the following estimate holds

every | >
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u

sup / /ha+ (p)dswldx—i-Z// w2 g, [P dadt
2

o<t<T
E(8)x{t} M(£)

//u In @ Yldedt < (Fi(r,\) + Fa(r,\) . (2.4)
(5)

Proof. Testing (1.5) by ¢ = Ing M(B)d}i, using (1.3) and the Young
2

inequality we get

sup / ln+ (B) ds . dx—l—Z// M2y, |2l dedt
2

D<t<T
B(§)x{t} M(§)

3%

//uqm ¢ 1/),,dxdt<fy//uln “p G Vdwdt
5 5)
mi1,.2 U 31/’7" -2
+VZ// W S || Yt

From this, by the Young inequality we obtain

sup / / anr B ds L d:n—f—Z// ™2 g, |2l dedt
(%) =17
B(%)

u | Oyt
ul ln wldxdt < 'y//ln ’
// VD o

2qq:7;ni U 81/}1”
+’y//ln (5)‘8%

E(%)

“dadt =~ (1 + ). (25)

y (2.3) we have

1

SUTT [
Ji+ o <v // In" T — p, #N) 9=t gt
P

DA(R(r)\Dx(r)

n _omy 1 29
_’_,-YZ // ln q—m; ___ p)\ K (N)(g—my) dwdt

i=1 PA
D (R(r)\Dx(r)
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R(r) R(r)
<~ /lnqll ! Az + ’y/ T ! Az <y (Fi(r, A) 4 Fa(r, ).
T : T :
(2.6)
Combining (2.5), (2.6) we obtain (2.4), which completes the proof of the
lemma. O

Define a function u(”)(z,t) and a set E (£,2p) as follows
u'”) (z,t) = min (M (g) — M(2p), u2p(1‘,t)) ,

E (g,2p> —{zcE@2p):u<M (g>}.

Lemma 2.2. Under the assumptions of Lemma 2.1 next inequality holds

// Pludepl dadt < ~ ( ( ) - M(2p))

E(2p)
1
‘ {F3<T,A> (Fy(r.A) + Fa(r, \) 3 F 2<m>}, (27)
where

RMr), A >0, RMr), >0,
Fs(r,\) = Fy(r,\) =
e LR a(n A ml azo

T r

Proof. Testing (1.5) by ¢ = u(P4)l, using (1.3) and the Young inequality
we get

// (”quld:vdt<7// (p)

E(2p) E(2p)

8%

awr

wl Ydadt

n n
L mil
3N /RO IR I
. P

=15 (2p)
=7 (J3+ Js). (2.8)

By the Hélder inequality, (2.3) and Lemma 2.1 the integrals in the
right-hand side of (2.8) are estimated as follows

J3<7(M< //‘3%
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AN N r= ey
<~ (M (2) M(2p)> / In" a1 N Py dxdt
Dx(R(M)\Da(r)

R())

§7<]\4(§)—M(2p))/ln_qzl % A<y (JW(g)—M(Q@)Fg(r, A). (2.9)

r

Similarly

D=

n

Ji <~ (M (g) - M(2p)) ZH; ;(//) ™2y, [l dadt
= =g

(et

Ldx dt) - M(Qp)) X

N|=

n 1 —mi(n—AX
X (Fi(r,\) + Fa(r, M) %Z< // In—2 —p)\ - N’mdmdt

=LA\DAR\DAr
R(r) 2
<~ (M (g) . M(2p)> (Fy(r,\) + Fy(r, \))? / 1n—2§ ALz
< (M (8) = M@0)) (Fi(r\) + Fa(r, X)) FZ(rA).  (2.10)

Combining (2.8)—(2.10) we arrive at the required (2.7), this proves
the lemma. O

2.1. Pointwise estimates of solutions

Similarly to [13], using the De Giorgi type iteration, we prove the
following estimate

(M(p) — M(2p)mHm™s
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Since ug, < M () — M(2p) for (z,t) € Dxr(Ro) \ Dy (5) by the Hélder
inequality and Lemma 2.2 we get

n+2

(M(p) — M(2p)'+m+m"5

m - _2 \ %
<o (3) (o () o 3o (5)7)
1=1

wA@uhmwﬁﬁ (2.11)

N|=

BN + (E ) + Bl A,
In the inequality (2.11) we will pass to the limit as » — 0. By (2.1)
the following relations are valid for A =0

a=2 1 1 a=2__ 1
Fi(r,0)Fy(r,0) = Ine 1~ In"t— =Ina 1 ° —, it g > 2,
r T

R(r)
—2m 1 1 —2m 1
F5(r,0)Fy(r,0) = In'cm - In—* R0 — I o it ¢ > 2my,

1 g=2 g=2my

choose ¢ from the condition max (5, =1 g—m ) < € < 1, now passing

to the limit as » — 0 in (2.11) we obtain for any p < %
M(p) — M(2p) <0,
iterating last inequality we get for any p < %
M(p) < M(Ro),

this proves the boundedness of solutions.

3. End of the proof of Theorem 1.1

Let K be a compact subset in €2, and £ = 0 in 992 x (0,7, such that
¢€=1for (z,t) € K x (0,T). Testing (1.5) by ¢ = u&?,, ¥ = 1., using
conditions (1.3), the Young inequality, the boundedness of u and passing
to the limit r — 0 we get

n T T
sup /qux—l—Z//umi1|uxi]2dxdt+//uq+1dxdtS’y. (3.1)
0<t<T P
K 0 K 0 K

Testing (1.5) by ¢, where ¢ is an arbitrary function which belongs

o
to Vo m(€Qr), using (3.1), the boundedness of solution, and passing to
the limit » — 0, we obtain the integral identity (1.5) with an arbitrary

o
0 € Vom() and ¢ = 1. Thus Theorem 1.1 is proved.
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4. Appendix

Let (z(9,¢© ))GQT, for any 7,01,60o,...,0, > 0, 9—(91,...,9 ) we

define Qg ,(z(@,t©) .= {(z,t) : |t — tO] < 7, |a; —x O <0, i =T,n}
and set
M@,7):= sup u,0(0,7):= sup I(u),
QG,T(x(O)vt(O)) QQ,T(m(O)yt(O))
BO.7) = sup D), 0w = [ pls)dsp(s) =)
Qo,r (x(O)()

0

We say that nondecreasing continuous function ) satisfies the condi-
tion (A) if for any ¢ € (0, 1) there exists ug(e) > 1 such that

P(eu) < e'P(u), (4)
with some g > 0 and for all u > wug(e).

Theorem 4.1 ([9)). Let the conditions (1.3), (1.4) be fulfilled and u be
a nonnegative weak solution to equation (1.1), assume also that f €
CYRL) and ffw)y > 0. Let (z9,t0) ¢ Qp, fir 0 € (0,1), 7 €
(0, min(65", t©, T—t)), 6; € (0,6,) forie I ={i=T1,n:mip;—1) <
Mn(pn — 1)} and 0; = 6, fori € I' = {i = T,n : mi(p; — 1) =
mn(pn, — 1)}, then there exist positive numbers cg,co depending only on
N, V1, V2, M, ...,My,P1,-..,Pn Such that either

u(@ @t < (7 lppn)mn<pn D1 +Z 191% mn(pn—n—mm—n (4.1)
iel’
or

®(0b,07) < cg(1 — )"0, Pn5(0, 7)M™ P19, 7). (4.2)
On the other hand, if I' is empty, i.e. mi(py — 1) =ma(ps —1) =--- =
My (pn, — 1), then either
u(@®, 1) < (7=1gPn ) mnlon DT, (4.3)
r (4.2) holds true.

Theorem 4.2 ([9]). Let the conditions (1.3), (1.4) be fulfilled, u be a
nonnegative weak solution to (1.1), f € CY(RL) and f'(u) > 0. Let 0

be the parabolic boundary of Qr, assume also that  lim  u(z,t) = 400
(z,t)—>BQT

and with some 0 < a <1 and ¢ > 0 there holds

o(u) < cu®.
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Let Y(u) = u*1®m(u) satisfies condition (A). Let (20, t(0) € Qp
and 8p = dist(z("),99Q). Fizr € (0,min(pP, ) T—t0)) and 6; € (0, p)
for i € I', then there exists a positive number cig depending only on
Ny V1, V2, My eeey M, D1y -, P and ¢, such that either (4.1) holds, or

®(u(z®, 1)) < 10 PrumePntal(0) 1)), (4.4)

On the other hand if I is empty, i.e. mi(p1 —1) = ma(py — 1) = ... =
1

My (pn — 1) and Y(u) = u~ ®marntea=1(u) satisfies condition (A), then

either (4.3) holds, or (4.4) holds true.

Acknowledgements

This work is supported by grant of Ministry of Education and Science
of Ukraine (project number is 0115 U 000 136) and it is based on the re-
search provided by the grant support of the State Fund For Fundamental
Research (project number is 0116U007160).

References

[1] H. Brezis, L. Veron, Removable singularities for some nonlinear elliptic equa-
tions // Arch. Rational Mech. Anal., 75 (1980), No. 1, 1-6.

[2] H. Brezis, A. Friedman, Nonlinear parabolic equations involving measure as initial
conditions // J. Math. Pures Appl., 62 (1983), 73-97.

[3] I. M. Kolodij, On boundedness of generalized solutions of parabolic differential
equations // Vestnik Moskov. Gos. Univ., 5 (1971), 25-31.

[4] J. Serrin, Local behaviour of solutions of quasilinear equations // Acta Math.,
111 (1964), 247-302.

[5] J. Serrin, Singularities of solutions of nonlinear equations // Proc. Sympos. Appl.
Math., Vol. XVII, Amer. Math. Soc., Providence, RI, 68-88, 1965.

[6] J. Serrin, Remouvable singularities of solutions of elliptic equations // II. Arch.
Rational Mech. Anal., 20 (1965), 163-169.

[7] J. Serrin, Remowvable singularities of solutions of elliptic equations // Arch. Ra-
tional Mech. Anal., 17 (1964), 67-78.

[8] J. Serrin, Isolated singularities of quasi-linear equations // Acta Math., 113
(1965), 219-240.

[9] M. O. Shan, I. I. Skrypnik, Keller-Osserman a priori estimates and the Harnack
inequality for quasilinear elliptic and parabolic equations with absorption term [/
Nonlinear Anal. [to appear].

[10] L. I. Skrypnik, Local behaviour of solutions of quasilinear elliptic equations with
absorption // Trudy Inst. Mat. Mekh. Nats. Akad. Nauk Ukrainy, 9 (2004), 183—
190.

[11] 1. I. Skrypnik, Remowvability of isolated singularities of solutions of quasilinear
parabolic equations with absorption // Mat. Sb., 196 (2005), No. 11, 141-160;
English transl. in Sb. Math., 196 (2005), No. 11, 1693-1713.



360 REMOVABILITY OF ISOLATED SINGULARITY FOR SOLUTIONS...

[12] 1. I. Skrypnik, Remowvability of an isolated singularity for anisotropic elliptic
equations with absorption // Mat. Sb., 199 (2008), No. 7, 85-102.

[13] I. I. Skrypnik, Removability of isolated singularity for anisotropic parabolic equa-
tions with absorption // Manuscr. Math, 140 (2013), 145-178.

[14] L. Veron, Singularities of Solution of Second Order Quasilinear Equations, Pitman
Research Notes in Mathematics Series, Longman, Harlow, 1996.

CONTACT INFORMATION

Maria Alekseevna Vasyl” Stus Donetsk National University,
Shan Vinnytsia, Ukraine
E-Mail: shan_maria@ukr.net



