
Методи та засоби програмної інженерії

© N.A. Sydorov, N.N., Sydorova, I.B. Mendzebrovsky, 2018

ISSN 1727-4907. Проблеми програмування. 2018. № 1 55

UDC 502:004.45 (075.8)

N.A. Sydorov, N.N. Sydorova, I.B. Mendzebrovsky

SOFTWARE ENGINEERING ONTOLOGIES

CATEGORIZATION

Software engineering is an own scientific and practice aria with an own structure, terminology, products, pro-

cesses and resources. The software product is a knowledge-based product and it is the result of the knowledge-

based actions. In this research, categorization of ontologies in software engineering are presented. The known

criterion (process, domain, structure) are used for the categorization of ontologies but two criterion (process

and domain) was modified. The process criterions is looked in the connection whit time period and the prede-

velopment time added to time period. The domain criterions is making whit help of the representation of soft-

ware engineering world in the form of domains. The ontologies are involved in representing knowledge of

three types of the software engineering domains. In the first, the application domain, the focus is on under-

standing the customer needs and what the software product must do. In the second, the implementation do-

main, the focus is on understanding how the software product must behave and respond to the customer needs.

In the third, the problem domain, the focus is on understanding the software engineering problems, which can

be during software life cycle processes of the software product. Our research goal is to develop categorization

of the software engineering ontologies on the base of adding known criterion. Ontological representation of

software engineering knowledge; categorization; domain analysis; object-oriented programming; ontology-

driven utilizing of programming styles. Categorization of the software engineering ontologies. The results of

case study, using ontologies by categorization are presented. Had developed categorization of ontologies, it is

possible exactly to define types of software engineering ontologies and its places into software processes. This

is demonstrating on the examples of the case studies.

Key words: software engineering, programming, ontology, categorization, domain analysis, programming

style.

1. Introduction

The software engineering is an own

scientific and practice aria with an own struc-

ture, terminology, products, processes and

resources. The software product is a

knowledge-based product and it is the result

of the knowledge-based actions. Therefore,

the knowledge is main component of software

engineering, and representing, proceeding and

using of differently knowledge play great role

in software engineering. There are three types

of domains in the software engineering – the

application domain, the problem domain and

the implementation domain. The knowledge

from these domains are used in the software

engineering during the software processes of

the software product life cycle. Nowadays the

ontologies are the best means for representa-

tion and proceeding of the software engineer-

ing knowledge.

2. Analysis of latest research and

publications

Ontology is a model of the world part,

which is known in software engineering as a

domain (Sidorov, 2007). Typically, the model

is represented by a set of objects, properties

that are associated with objects, relations be-

tween objects and regulations that describe

management. Nowadays ontologies are wide-

ly used in software engineering for two rea-

sons. Firstly, an ontology is a means of repre-

senting the knowledge that is used both in the

development and maintenance processes of

the software, as well as in its utilizing (Ruiz

et. al. 2006). Secondly, one can automate the

utilizing of the knowledge in software by rep-

resenting an ontology formally, with the help

of languages or descriptive logic (Dentler

2011, Baader, Calvanese,&Guinness, 2003).

In software engineering, the application of

ontologies was first classified in 10 direc-

tions, in "Software Engineering Body

Knowledge". Understanding the role of ontol-

ogies in the context of software engineering,

development environments and technologies,

as well as cases of specific application are

given in (Ruiz et. al. 2006). The UML exten-

sion and its application for graphic represen-

tation of ontologies in software engineering

are given in (Wongthongtham, et. al. 2009).

Методи та засоби програмної інженерії

56

In view of only one type software engineering

domain (the application domain) and two

temporal dimensions (development time and

run time (Guarino 1998)), the one categoriza-

tion of ontologies in software engineering was

developed and established on the utilizing of

ontologies in software life cycle processes

(Happel, Seedorf 2006). The logically catego-

rization of software engineering ontologies

presented on this results in (Dentler 2011,

Baader, Calvanese,& Guinness, 2003). But

the categorization is bulky and inaccurate as it

uses only one type of the software engineer-

ing domains and two temporal dimensions. In

our research, two types of the software engi-

neering domains (implementation domain,

problem domain) are added, and additional

the temporal dimension – pre-development

time is introducing.

3. Purpose and objectives

of the research

In this research, the ontologies

categorization in software engineering are

presented. The first focus categorizing

ontologies is making on the representation of

software engineering world in the form of

domains. The ontologies are involved in

representing knowledge of three types of

domains. Firstly, the application domain, the

focus is on understanding the customer needs

and what the software product must do.

Secondly, the implementation domain, the

focus is on understanding how the software

product must behave and respond to the

customer needs. Thirdly, the problem

domain, the focus is on understanding the of

software engineering problems, that can be

during the software life cycle. The second

focus categorizing ontologies is making on

the software life cycle time periods. The

software life cycle includes the three time

periods – predevelopment, development and

run. The research hypothesis is as the

domain view can assistance in understanding

the role of ontology in the software

engineering. The research goal is to present

utilizing ontologies in software engineering

in whole and on the examples of the case

studies of authors.

4. Categorization of ontologies

The categorization of ontologies was

introduced on the base of two categories

(Happel, Seedorf 2006): a domain and soft-

ware process time period. In our research

also, its categories are using. But our cate-

gorization is built on the connection terms

time period, domain, and software process

as in (Blum 1994): the essence of the soft-

ware process is the progression from identi-

fication of the need in some application

domain to the creation of a software product

in implementation domain that responds to

that need. Thus, the software process in-

volves two domains: the application do-

main, where a task is to be solved, and the

implementation domain, where software-

based solution to that task is to be executed

(application software is created). In our re-

search, the third domain is using. It is called

the problem domain, where the software

engineering problems are to be solved. For

example, the new method or (and) technol-

ogy is (are) need for solving of tasks from

application or (and) implementation do-

mains. Considering the temporal dimension

(Guarino 1998) and pre-development time

dimension added, in our research, three the

temporal dimensions are looking – pre-

development time, development time, and

run time. The main actions during pre-

development time are actions of domain

analysis (Prieto-Diaz 1990, Mendzebrov-

skiy 2017). For the implementation domain

and the application domain, these actions

are fulfilled on the legacy software prod-

ucts. To finish the categorization of ontolo-

gies will use the structure dimension catego-

ry (Guarino 1998), when the ontology can

be used as part of software environment or

part of software product (software arti-

fact/information resource). In view of ap-

proaches of using ontologies in the software

engineering (Happel, Seedorf 2006) and

processes of the software life cycle (Si-

dorov, 2007), the following categorization

of ontologies was proposed in this research

(Fig. 1).

Методи та засоби програмної інженерії

57

Software engineering
ontologies

Process Domain Structure

Pre
Develop

ment
Time

Process
es

Ontolog
ies

Develop
ment
Time

Process
es

Ontolog
ies

Run
Time

Process
es

Ontolog
ies

Applicat
ion

Domain
Ontolog

ies

Implem
entation
Domain
Ontolog

ies

Problem
Domain
Ontolog

ies

Environme
nt

Ontologies

Software
Ontologies

 Figure 1. The categorization of the software engineering ontologies

The proposed categorization uses of

three categories – the software process (it is in

time periods), the software engineering do-

main, and the software structure (Fig. 1).

Thus, in that research, the software engineer-

ing ontologies are divided on the software

engineering processes ontologies (pre-

development time processes ontologies, de-

velopment time processes ontologies, run

time processes ontologies), on the software

engineering domain ontologies (application

domain ontologies, implementation domain

ontologies, problem domain ontologies), and

software structure ontologies (environment

ontologies, software product ontologies). The

software engineering domains ontologies can

be created during pre-development time, they

are called pre-development time ontologies,

consist of reusable components and they can

be used into development-time and run time

software engineering processes of the soft-

ware life cycle. The software development

approaches was described in (Happel, Seedorf

2006). In (Sydorov, Mendzebrov-

sky&Sydorova 2017), the ontology-driven

pre-development approach is introducing.

Ontology-driven pre-development subsumes

the usage of ontologies at pre-development

time (during domain analysis) that describe

the software engineering domains.

5. Case study

In this part of the article will present

the results of case study, using ontologies by

introduced categorization. Into 4.1 section,

the examples of pre-development time pro-

cesses ontologies are presented. Into 4.2 sec-

tion, the examples of run time processes on-

tologies for developer and user are presented.

Domain analysis ontologies. Software

reuse can be improved by identifying objects

and operations for a class of similar software

products, i.e., for a certain domain. In the con-

text of software engineering, domains are

application, implementation and problem are-

as. Examples of domains are airline reserva-

tion (application domain), the airline reserva-

tion software system (implementation do-

main), and green software problems of the

airline reservation software system (problem

domain). The scope of a domain can be cho-

sen arbitrarily, either broad, e.g., banking, or

as narrow as simple text editing. Usually

broad domains are built on top of several nar-

row domains. Domain analysis is the activity

that discovers and formally describes the

commonalities and variability within a do-

main (Sydorov, Mendzebroskiy&Malin

2009). The domain engineer captures and

organizes this information in a set of domain

models with the end of making it reusable

when creating new software product. The

output of domain analysis is a domain model:

an explicit representation of knowledge about

the domain. For the formal representations of

the domain analysis results can be utilized

ontologies. In case study domain model is a

description of objects, properties and relations

in domain and consists of the following

(Bondarenko. et. al. 2009): domain language,

competencies and skills repository, software

Методи та засоби програмної інженерії

58

engineering education template. The main

problem of domain analysis is creating the set

of tools for automation utilizing of the con-

crete domain analysis method (Mendzebrov-

skiy 2017). The method of domain analysis is

depending from domain characteristics and

domain analysis goals. In (Mendzebrovskiy

2017) was proposed approach for automation

creating domain analysis tools on the base of

the MS Office platform. In context of ap-

proach two methods was proposed. The first

method is called “in small”, when the separate

process of domain analysis is automated with

help of MS Office tool, for example, MS Vi-

sio is using for representing ontologies dia-

grams whit the help of UML

(Wongthongtham et. al. 2009). The second

method is called “in large”, when the all pro-

cesses of domain analysis are automated with

help of all tools of the MS Office. Provision

of domain analysis using the developed tools

is considered on the example of educational

application domain for the specialty "Soft-

ware engineering". The competences of a

specialist are considered as reusable compo-

nents. The application domain includes, but is

not limited to, existing knowledge recom-

mendations in the field under consideration

(Bondarenko. et. al. 2009, Sydorova 2012),

existing education system, and the legislation.

The result of domain analysis is a list of com-

petencies and disciplines, as well as a reusa-

ble template for the "Software engineering"

education standard in Ukraine. Considering

the activity of a specialist (bachelor) and the

domain view in the context of software engi-

neering, a general ontology is considered in

three aspects (Fig. 2). The bachelor (domain

expert) learns the task from an application

domain and creates the pre-development time

processes ontologies for software product.

He (her), having studied the applica-

tion domain and interacting with the custom-

er, implements software processes that are

aimed at the development of a software prod-

uct in the implementation domain. The soft-

ware product will be used in the application

domain. If a bachelor has problems related to

the implementation of software processes, he

(her) solves them within the problem domain.

A bachelor implements software processes,

creating a software product for the application

domain. That is why, he should have

knowledge of the application domain (to be

the application domain expert) (Fig. 3), and

interacting with the subjects (customers) of

the application domain. That he should have

the appropriate communication knowledge

and skills (Fig. 4).

The pre-development time processes

ontologies (Fig. 2, 3, 4) can be used during

the development time or (and) the run time

periods.

:Software product

:Task :Bachelor

:Software processes

1.Learns

3. Develops

3.2 For creating

4. Is used for

:Problem

2.Solves

3.1 Implements

Figure 2. General ontology

Методи та засоби програмної інженерії

59

Task

Content Properties

Application expert

Software product

Knows

Uses

Is used for decide

Decides

From

Has

Figure 3. Application domain ontology

Х

Provide for

Include

Consists of

Provide for

Knowledge of bachalor

Skills of bachalor

Implementation software processes means Implementation software project methods Professional communication

&

Develop and maintenance technology

Develop and maintenance means and methods

Application domain knowledge

Group Dynamic

Figure 4. Knowledge and skills of bachelor ontology

Ontology-driven using of pro-

gramming styles. Activities of a program-

mer will be more effective, and the software

will be more understandable when within the

process of software development, the pro-

gramming styles (standards) will be used,

providing clarity of software texts. Pro-

gramming stylistics problems arose in the

period before the structured programming,

but nowadays they remain relevant (Sidorov,

Sidorova&Pirog 2017). The existing prob-

lems of using the standards such as (Si-

dorova 2015): opposition of development

team to use standards; developers “forget-

ting” to use standards; management thinking

that the implementation of standards is too

Методи та засоби програмної інженерії

60

expensive, are resolved by developing and

using tools that automate the corresponding

processes. In the paper (Sidorova 2015), new

method of programming styles application

based on the ontology has been proposed. To

apply the style, a programmer should decide

two tasks: study the description of the style;

use and control the style during the coding.

Thus, it requires two tools - one for studying

the style and the other one to control the use

of this style. Both tools are based on the

presentation of the style. That is why the

form of this presentation affects the efficien-

cy of processes performed by a programmer

and the efficiency of tools. It is proposed to

use the ontology as a form of knowledge

representation about programming style (Si-

dorova Kramar 2014) (Fig. 5).

Using appropriate tool (e.g. Protégé

(Protégé), a formal representation of pro-

gramming style – an ontology is developed.

A programmer for coding uses ontology as

information resource. Therefore, two tools

are required – one for creating an ontology

and assisting the programmer, the second

one to control the implementation of style

during the coding (Fig. 6). For these tools

two categories ontologies are needed. The

first, the run time processes ontology for

ontology-enabled architecture is the result

ontology-driven pre-development. The sec-

ond, the run time processes ontology for on-

tology-based architecture.

Style artifacts
(Documentation)

Task requarements

Style ontology

Source code

 Лицо

Coding

Programmer

Figure 5. Ontology of style in programming

Style artifacts
(Documentation)

Protege

Task requarements

Reasoner
Style ontology

Source code

 Лицо

Source code
ontology

Use Create

Use
Code

Assist

Figure 6. Ontology tools

Методи та засоби програмної інженерії

61

The first tool, during predevelopment

time processes in application domain creates

the run time processes ontology template

(reusable asset), which is defining, general

programming standards properties. Style

analyst using Protégé setup template on par-

ticular programming standard. After then the

programmer uses ontology like software

product ontology – information resource

(Fig. 1) in run time to study programming

standard (ontology-enabled architecture

(Happel, Seedorf 2006). Examples of tem-

plate ontologies on the fig.7, fig. 8 are pre-

sented.

The second tool is a reasoner [3]. In

terms of descriptive logic, the reasoner

solves one major problem – verifies con-

sistency of the ontology (Dentler 2011). This

problem has certain features for the task of

programming style implementation (Fig. 9)

(Sidorov, Sidorova&Pirog 2017).

Protege is used to create TBox, which

includes terms describing programming style

(Style Ontology, Fig. 7, 8, 9). The assertions

about the source code – ABox (source code

ontology, Fig. 9) are created according to the

source code that is written by a programmer.

Reasoner provides appropriate service based

on TBox and ABox (Sidorov, Si-

dorova&Pirog 2017). But it should be not

only assertion about knowledge base consist-

ence, i.e. compliance of ABox assertions re-

garding TBox, but also indications of specific

stylistic errors in the source code in case of

inconsistency of the style knowledge base

(Fig. 9). Thus, “regular” reasoner will not

fully satisfy this service. Therefore, the im-

plementation of corresponding Style Ontolo-

gy Reasoner (SOReasoner) was implemented

(Sidorov, Sidorova&Pirog 2017).

Rules of style

Semantic rulesSyntax rules

Is aIs a

Pragmatic rules

Is a

Figure 7. Style rules ontology
`

Programming Style

Programming style rulesRules of variables

Rules of

statements
File organization rules

Rules of classes

included

Comment rules

Rules of moduleRules of subroutine

Rules of methods

Figure 8. Programming style rules ontology

Методи та засоби програмної інженерії

62

Style Knowledge Base

Style ontology Source code ontology

TBox ABox

Style artifacts
(Documentation)

Source cod

Ontology Reasoner

Consistency

Inconsistency

(Style errors in source cod)

Figure 9. Model of style knowledge Base

As far as the ABox assertions for the

operation of SOReasoner are not generated to

TBox, the style ontology should be imple-

mented in a format for SOReasoner. This

format is recorded in a pattern on OWL,

which is used for creating style ontology

(Fig. 6). As far as the ABox assertions for the

operation of SOReasoner are not generated

to TBox, the style ontology should be im-

plemented in a format for SOReasoner. This

format is recorded in an ontology pattern on

OWL, which is used for creating style ontol-

ogy. Means for the creation of OWL tem-

plate (OWLParser) and ABox (SourceCode-

Parser) are united in Style Ontology Reason-

er (SOReasoner) that is the ontology-based

architecture (Happel, Seedorf 2006).

Conclusion

In this research, categorization of the

software engineering ontologies for support-

ing software life cycle processes is proposed.

The categorization scheme is presented. Im-

plementation details of categorization are giv-

en on the examples case studies of domain

analysis and naming styles for the Java con-

vention.

References

1. Baader F.D., Calvanese, D., Guinness Mc.

The Description Logic Handbook: Theory,

implementation, and applications. Cambridge

University Press. 2003. 320 р.

2. Blum B. A taxonomy of Software Develop-

ment Methods. Communication of the ACM.

1994. Vol. 37, N 11. P. 82–94.

3. Bondarenko M., Sydorov M., Morozova T.,

Mendzebrovskiy I. Model of a graduate of

Bachelor’s degree “Software engineering”.

Higher education, 2009. N 4. P. 50–61.

4. Guarino N. Formal ontology in information

systems. Proceedings of FOIS’98, Trento, Ita-

ly, Amsterdam, IOS Press. 1998, P. 3–15.

Методи та засоби програмної інженерії

63

5. Happel H., Seedorf S. Applications of ontolo-

gies in software engineering, Proceedings of

2nd International Workshop on Semantic Web

Enabled Software Engineering (SWESE

2006), Athens, GA, U.S.A. 2006. P. 1–14.

6. Dentler K., Cornet R., Teije A., Keizer N.

2011, Comparison of Reasoners for large

Ontologies in the OWL 2 EL Profile.

Available from: http://www.semantic-web-

journal.net/ sites/default/files/swj120_2.pdf. –

Title from the screen.

7. Mendzebrovskiy I. Domain analysis tool,

Materials of the International Conference

“Software Engineering 2017”. Kyiv. 2017.

P. 30.

8. Prieto-Diaz R. Domain analysis: Introduction,

ACM SIGSOFT, Software engineering notes.

1990. Vol. 15, N 2. P. 47–54.

9. Protégé, Available from:

http://protege.stanford.edu. Назва з екрана

(Protégé, Режим доступу:

http://protege.stanford.edu. Назва з екрана).

10. Ruiz F., Hilera J., Calero C., Ruiz F., Piat-

tini M. Сhapter 2. Using Ontologies in Soft-

ware Engineering and Technology. Ontolo-

gies for Software Engineering and Software

Technology, Berlin, Heidelberg, Springer,

2006. P. 62–102.

11. Sidorov M. Software engineering, NAU, Ky-

iv, 2007. P. 135.

12. Sidorov N. Software stylistics, Proc. of the

National Aviation University, 2005. N 2.

P. 98–103. Available from: 10.18372/2306-

1472.24.1152.

13. Sidorov N., Sidorova N., Pirog A. Ontology-

driven tool for utilizing programming styles,

Proc. of the National Aviation University,

2017. N 2, P. 98–103. Available from:

10.18372/2306-1472.24.1152.

14. Sidorova N. Ontology-driven method using

programming styles. Software engineering.

2015. N 2. P. 19–29.

15. Sydorov M., Mendzebroskiy I., Malin I. Do-

main analysis – way of proving development

of branch educational standards. Knowledge-

based technologies, NAU, Kyiv. 2009. B. 4,

N 4. P. 59–63.

16. Sydorov N., Mendzebrovsky I., Sydorova N.

Ontologies in software engineering. Kyiv.

2017. т. 198, P. 68–71.)

17. Sydorova N. Formation of preparedness of

software engineering bachelors for profes-

sional communication, Proceedings of the Na-

tional Aviation University. 2012. N 3.

P. 94–100.

18. Sidorova N., Kramar Y. Ontology of pro-

gramming style, Proc. the sixth world longest

“Aviation in the XXI-st Century, 2014.

Vol. 1. P.1.13.28 – 1.13.36.

19. Wongthongtham P., Chang E., Dillon T.,

Sommerville I. Development of a Software

Engineering Ontology for Multi-site Software

Development, IEEE Transactions on

knowledge and data engineering. 2009.

Vol. 21 (8). P. 1205–1217.

Література

1. Baader F.D., Calvanese, D., Guinness Mc.

The Description Logic Handbook: Theory,

implementation, and applications. Cambridge

University Press. 2003. 320 р.

2. Blum B. A taxonomy of Software Develop-

ment Methods. Communication of the ACM.

1994. Vol. 37, N 11. P. 82–94.

3. Бондаренко М., Сидоров М., Морозова Т.,

Мендзебровський І. Модель випускника

бакалаврату «Програмна інженерія», Ви-

ща школа. 2009. № 4. C. 50–61.

4. Guarino N. Formal ontology in information

systems. Proceedings of FOIS’98, Trento,

Italy, Amsterdam, IOS Press. 1998,

P. 3–15.

5. Happel H., Seedorf S. Applications of on-

tologies in software engineering, Proceed-

ings of 2nd International Workshop on Se-

mantic Web Enabled Software Engineering

(SWESE 2006), Athens, GA, U.S.A. 2006.

P. 1–14.

6. Dentler K., Cornet R., Teije A., Keizer N.

2011, Comparison of Reasoners for large

Ontologies in the OWL 2 EL Profile.

Available from: http://www.semantic-web-

journal.net/ sites/default/files/swj120_2.pdf. –

Title from the screen.

7. Мендзебровський І. Domain analysis tool.

Матеріали Міжнародної конференції

«Інженерія програмного забезпечення

2017», Kиїв, 2017, C. 30.

8. Prieto-Diaz R. Domain analysis: Introduction,

ACM SIGSOFT, Software engineering notes.

1990. Vol. 15, N 2. P. 47–54.

9. Protégé, Available from:

http://protege.stanford.edu. – Назва з екрана

(Protégé, Режим доступу:

http://protege.stanford.edu. – Назва з

екрана).

http://www.semantic-web-journal.net/sites/default/files/swj120_2.pdf
http://www.semantic-web-journal.net/sites/default/files/swj120_2.pdf
http://protege.stanford.edu/
http://protege.stanford.edu/
http://dx.doi.org/10.18372/2306-1472.24.1152
http://dx.doi.org/10.18372/2306-1472.24.1152
http://dx.doi.org/10.18372/2306-1472.24.1152
http://www.semantic-web-journal.net/sites/default/files/swj120_2.pdf
http://www.semantic-web-journal.net/sites/default/files/swj120_2.pdf
http://protege.stanford.edu/
http://protege.stanford.edu/

Методи та засоби програмної інженерії

64

10. Ruiz F., Hilera J., Calero C., Ruiz F., Piat-

tini M. Сhapter 2. Using Ontologies in Soft-

ware Engineering and Technology. Ontolo-

gies for Software Engineering and Software

Technology, Berlin, Heidelberg, Springer,

2006. P. 62–102.

11. Sidorov M. Software engineering, NAU, Ky-

iv, 2007. P. 135.

12. Sidorov N. Software stylistics, Proc. of the

National Aviation University, 2005. N 2.

P. 98–103. Available from: 10.18372/2306-

1472.24.1152.

13. Sidorov N., Sidorova N., Pirog A. Ontology-

driven tool for utilizing programming styles,

Proc. of the National Aviation University,

2017. N 2. P. 98–103. Available from:

10.18372/2306-1472.24.1152.

14. Sidorova N. Ontology-driven method using

programming styles. Software engineering.

2015. N 2. P. 19–29.

15. Сидоров М.О., Мендзебровський І.Б.,

Малін І.В. Доменний аналіз – шлях

доказової побудови галузевих освітніх

стандартів, Наукоємні технології, НАУ,

Київ, 2009. Т. 4, № 4. C. 59–63.

16. Сидоров М., Мендзебровський І., Сидо-

рова Н. Наукові записки НаУКМА, Т.

198, Комп’ютерні науки, Київ. 2017.

С. 68–71.

17. Сидорова Н.М. Формування готовності

бакалаврів з інженерії програмного забез-

печення до професійної комунікації,

Вісник НАУ. 2012. № 3. C. 94–100.

18. Sidorova N., Kramar Y. Ontology of pro-

gramming style, Proc. the sixth world longest

“Aviation in the XXI-st Century, 2014.

Vol. 1. P.1.13.28 – 1.13.36.

19. Wongthongtham P., Chang E., Dillon T.,

Sommerville I. Development of a Software

Engineering Ontology for Multi-site Software

Development, IEEE Transactions on

knowledge and data engineering. 2009.

Vol. 21 (8). P. 1205–1217.

Data received 11.02.2018

About authors:

Sidorov Nikolay,

Doctor of Engineering Sciences.

Professor.

Publications: 130.

Ukrainian: 118, Foreign: 12

http://orcid.org/0000-0002-3794-780X,

Sidorova Nika,

Postgraduate student

Department of Software Engineering.

National Aviation University, Kyiv, Ukraine.

Publications: 14.

Ukrainian: 14.

http://orcid.org/0000-0002-2989-3637,

Menzebrovski Igor,

Postgraduate student

Department of Software Engineering.

National Aviation University, Kyiv, Ukraine.

Publications: 10.

Ukrainian: 9, Foreign: 1.

http://orcid.org/0000-0001-9473-6876.

Location:

E-mail: nikolay.sidorov@livenau.net,

 sna@nau.edu.ua

Tel.: 067 798 0361, 2343600.

Department of Software Engineering.

National Aviation University, Kyiv, Ukraine.

E-mail: nika.sidorova@gmail.com,

igor.menzebrovski@iteraconsulting.com

http://dx.doi.org/10.18372/2306-1472.24.1152
http://dx.doi.org/10.18372/2306-1472.24.1152
http://dx.doi.org/10.18372/2306-1472.24.1152
https://orcid.org/0000-0002-2989-3637
mailto:nikolay.sidorov@livenau.net
mailto:sna@nau.edu.ua
mailto:nika.sidorova@gmail.com
mailto:igor.menzebrovski@iteraconsulting.com

