Инструмент, порошки, пасты

УДК 621.922.34

М. Н. Шейко Институт сверхтвердых материалов им. В. Н. Бакуля НАН Украины, г. Киев, Украина *max-kiev@i.ua*

Форма зерен как фактор, определяющий параметры алмазно-гальванического покрытия правящего инструмента. Сообщение 3. Простейшая пространственная модель алмазного зерна – "бочка параболической и круговой клепки"

Приведена простейшая пространственная модель алмазного зерна в алмазно-гальваническом покрытии правящего инструмента – "бочка параболической и круговой клепки". Показано, что принятые представления о форме зерна позволяют, с одной стороны, адекватно описывать, в том числе на количественном уровне, известные из эксперимента соотношения параметров алмазно-гальванического покрытия, с другой стороны, получить более детальную информацию для их нанесения с заданными характеристиками.

Ключевые слова: алмазно-гальваническое покрытие, алмазный порошок, правящий инструмент, пространственная модель алмазного зерна.

В предыдущих сообщениях [1, 2] были приведены экспериментальные данные по параметрам алмазно-гальванического покрытия (АГП) – толщине алмазного слоя в методе гальваностегии [1] и площади контакта алмазных зерен с графитовой формой в методе гальванопластики [2]. Целью настоящего сообщения является теоретическое объяснение экспериментально установленных соотношений указанных параметров АГП. Не менее важно для метода гальванопластики установить более детальную информацию для расчета режимов нанесения АГП с заданными характеристиками, а именно – вычислить площадь свободной поверхности осаждаемого никеля как функцию толщины покрытия.

Очевидно, что характеристики АГП обусловлены, в том числе, формой зерен применяемого алмазного порошка. Исследованию формы алмазного зерна в теории алмазно-абразивной обработки посвящено много работ, в кото-

© М. Н. ШЕЙКО, 2016

рых спектр используемых аппроксимаций распространялся от простейших – шара [3], до годографа радиус-вектора как случайной функции [4]. Между ними лежали полные и усеченные пирамиды и конусы, двухосные и трехосные эллипсоиды и т. д. Не подлежит сомнению, эффективность математической модели той или иной степени сложности и детализации зависит, прежде всего, от ее соответствия целям и задачам исследования. Например, в [5] представлена прогностическая эффективность 3D-моделирования в задачах тестирования алмазного порошка. Иногда самое простое представление об объекте, например, шар объемом равным среднему объему зерна алмазного порошка определенной марки и зернистости, в задачах расчета концентрации ничуть не уступает 3D-моделированию конкретного алмазного кристалла.

Так, в [6] введены три приведенных диаметра зерна, привязанных к размеру верхнего сита *d* алмазного порошка. Первый диаметр d_v , приведенный по объему, – это диаметр шара, равнообъемного зерну данной зернистости, равный 1,024*d*. Второй диаметр d_p , приведенный по упаковке, – это диаметр шаров, плотнейшая объемная упаковка которых эквивалентна фактической плотнейшей объемной упаковке алмазных зерен. Он равен 1,087*d*. Третий диаметр d_t – приведенный по толщине алмазного слоя инструмента. Последние данные по d_t/d приведены в [1]. Кроме того, в [2] установлены средние площади контакта алмазного зерна с подложкой – приведенная площадь контакта *F*/ d^2 = 0,28. Также установлены максимальные сечения алмазных зерен – приведенная площадь максимального сечения *S*/ d^2 = 0,81. Установлена доля зерен, контактирующих с подложкой гранью, – от 50 до 80 % в зависимости от зернистости. Найдена высота *h* зерен, лежащих на своей грани, она составляет 0,9*d*.

Последние данные [1, 2] не противоречат сложившимся ранее представлениям [6] и в рамках принятых математических моделей, в частности, посредством приведенных диаметров d_{y} и d_{p} , их можно интерпретировать. Действительно, если бы алмазное зерно имело правильную геометрическую форму, например октаэдр, икосаэдр или другой правильный многогранник, проблемы с непосредственным определением параметров такой геометрической фигуры не было бы. С другой стороны, около такой фигуры можно описать сферу и можно вписать соответствующую сферу. Первая, описанная, в известной степени характеризует габариты зерна-многогранника, его возможности плотнейшей упаковки в пространстве и на поверхности. Сфера, усредненная по описанной и вписанной, ограничивает объем, близкий к объему зерна-многогранника. Очевидно, реальное алмазное зерно имеет более сложную форму, имеющую как регулярные, так и случайные черты. Непосредственное описание зерна правильной геометрической фигурой затруднительно. Остаются широкие возможности опосредованного описания. Так, близость формы реального зерна к шарообразной – коэффициент формы не хуже 1,1 – позволяет приведенный диаметр зерна по упаковке d_n интерпретировать как диаметр сферы, близкий к описанной около фигуры зерна. Аналогично приведенный диаметр по объему d_v – как диаметр сферы, усредняющей описанную и вписанную (рис. 1).

При расчете концентрации алмазов в многослойном инструменте или условной концентрации и удельного числа зерен на рабочей поверхности для однослойного не имеет значения ориентация зерна-многогранника в своих "приведенных" сферах. Также не имеет значения ориентация при расчете площади сечения зерна, усредненной по большому числу сечений в какой-то произвольной плоскости абразивного пространства. Поэтому фигуры на рис. 1 даже не привязаны к какой-то системе координат. Иначе обстоит дело, если зерна получают определенную ориентацию, например, базируются какой-то из своих граней на поверхности графитовой формы (гальванопластика). Это условие расширяет информацию о геометрических параметрах системы зерно–подложка, появляется характеристика "площадь контакта зерна с подложкой", уточняется понятие о габаритах зерна. Теперь можно говорить о высоте зерна, лежащего на грани. Сечение зерна в плоскости, эквидистантной плоскости базирования, также отлично от сечения в произвольной плоскости.

Рис. 1. Алмазное зерно и его приведенные диаметры: неправильный многоугольник – контур проекции зерна, окружность пунктирной линией – контур равнообъемного зерну шара, окружность сплошной линией – контур "описанного" шара.

На рис. 2 изображена (с утрированием для наглядности пропорций) проекция на плоскость xOy зерна-многогранника и его "приведенных" сфер. Грань, по которой базируется зерно, проецируется в отрезок, лежащий на вертикали, отсекающей на оси x координату -h/2. Прямые измерения [2] показали, что высота h такого зерна – это расстояние между параллельными гранями. Таким образом, вторая грань проецируется также на вертикаль и отсекает координату +h/2, а середина высоты проходит через начало координат. Как и на рис. 1, на рис. 2 окружность диаметром d_v , изображенная пунктирной, "аппроксимирует" контур зерна-многогранника *ABCDEF*, так как соответствующий шар диаметром d_v равнообъемен зерну. Для задачи расчета площади сечения зерна в плоскости, параллельной yOz, причем площади, усредненной по большому числу зерен, форму зерна приближаем телом вращения вокруг Ox с сохранением симметрии относительно плоскости yOz. Таким образом, *BCD* – это образующая тела вращения, а характер этой кривой (или ломаной) обусловлен следующим.

На тело вращения накладываются следующие условия, вытекающие из вышеописанных экспериментальных данных. Во-первых, объем этой фигуры должен быть равным объему зерна $V = \frac{\pi}{6} d_v^3$. Во-вторых, максимальное поперечное сечение должно быть равно $S = \frac{\pi}{4} d_v^2$. В-третьих, площадь основания должна быть равна $F = \mu S$, где $\mu = 0.35$. В-четвертых, высота фигуры должна быть равной h = 0.9d. Кроме того, так как искомая фигура отражает форму зерна, усредненную по их большому числу, образующая тела вращения из ломаной превращается в плавную выпуклую кривую. Оказалось, всем

этим требованиям с хорошей точностью отвечает тело вращения с интересным названием "бочка параболической клепки", на рис. 2 фигура *ABCDEF* – это ее фронтальная проекция.

Рис. 2. Алмазное зерно и его приведенные диаметры, привязанные к декартовой системе координат и спроецированные на плоскость xOy; фигура "бочка параболической клепки", равнообъемная зерну и эквивалентная ему по высоте и величине поперечных сечений, проецируется в *ABCDEF*, фигура "бочка круговой клепки" – в $A_1B_1C_1D_1E_1F_1$.

Покажем выполнение условий для этого случая. Принимая второе условие, убеждаемся, что максимальное сечение $S = \frac{\pi}{4} d_v^2 = \frac{\pi}{4} (1,024 d)^2 = 0,82 d^2$ практически совпадает с экспериментальным значением $0,81 d^2$. Дополняя требования третьим условием $F = \mu S$, находим диаметр основания бочки $b = \sqrt{\mu} d_v$. Тогда объем принятой фигуры

$$V = \frac{\pi h}{15} \left(2 d_v^2 + b d_v + 0.75 b^2 \right) = \frac{\pi h}{15} \left(2 + \sqrt{\mu} + 0.75 \mu \right) d_v^2.$$
(1)

Выполняя первое условие, приравняем (1) объему зерна $V = \frac{\pi}{6} d_v^3$ и получим выражение высоты

$$h = \frac{15 d_v}{6 \left(2 + \sqrt{\mu} + 0.75 \,\mu\right)}.\tag{2}$$

Подставляя значение $\mu = 0.35$, получаем $0.876 d_{\nu}$ или 0.90 d и, таким образом, убеждаемся в выполнении последнего, четвертого, условия.

Выполнения всех условий отнюдь не очевидны. Выбирая за тело вращения ту же бочку, но не параболической, а круговой клепки, получили бы h = 0,87d, что менее точно. А максимально упростив модель до двух усеченных конусов со смежными большими основаниями, получили бы h = 1,06d, что вообще выходит за пределы ошибки экспериментального значения h. С другой стороны, безусловно, можно найти множество примеров, удовлетворяющих условиям, но более сложных и практически бесполезных. Таким образом, предлагаемая модель унаследует от реального зерна следующие геометрические параметры: объем, площадь максимального сечения, площадь основания и высоту.

Останавливаясь на модели "бочка параболической клепки", запишем диаметр текущего поперечного сечения, проходящего через координату x в данной системе координат (см. рис. 2):

$$D'(x) = d_{\nu} \left(1 - \left(1 - \sqrt{\mu} \right) \left(\frac{x}{h/2} \right)^2 \right),$$
(3)

где h определяется выражением (2). Поместив начало системы координат в основание бочки, тем самым осуществляя отсчет высоты сечения от поверхности подложки, получим

$$D(x) = d_v \left(1 - \left(1 - \sqrt{\mu} \right) (2x/h - 1)^2 \right), \quad 0 \le x \le h.$$
(4)

Площадь соответствующего поперечного сечения вычисляется по формуле

$$S_G(x) = \frac{\pi}{4} D^2(x), \quad 0 \le x \le h.$$
 (5)

Чтобы вычислить суммарную площадь сечения всех зерен, закрепленных на подложке, можно, в первом приближении, умножить S(x) из (5) на удельное число зерен n_c на единице плошали номинальной поверхности графитовой формы. Более точно – учесть долю зерен G, базирующихся гранью [2]. В этой связи интересно указанные данные связать с данными высоты d_t алмазного слоя [1] посредством предложенной модели зерна. Как отмечалось выше (см. рис. 2), зерно, базируемое на поверхности формы своей гранью, моделируется бочкой параболической клепки ABCDEF, которая характеризует площади сечений зерна и его контакта с подложкой, а также бочкой круговой клепки $A_1B_1C_1D_1E_1F_1$, которая характеризует габариты зерна. Последняя представляет симметричный шаровой слой высотой h и диаметром d_p. Напомним, высота h такой бочки равна 0,9h, а диаметр оснований нетрудно рассчитать – он равен 0,617d. Проекция этой фигуры на плоскость *xOy* (см. рис. 2) обладает осевой симметрией относительно осей х и у. Поэтому зерна, базируемые своей гранью, достаточно моделировать бочкой, лежащей на основании A_1B_1 , а все прочие – на любой точке дуги A_1F_1 . (Здесь вектор силы тяжести направлен в противоположном направлении оси Ox).

Тогда, формально, всевозможные ориентации зерна (или бочки, моделирующей его) относительно подложки характеризуются направлением вектора силы тяжести, т. е. углом φ (см. рис. 2), принимающим значения от 0 до $\pi/2$. Сам угол φ можно рассматривать как случайную величину, плотность распределения которой описывается обобщенной функцией. Экспериментальный факт, что доля зерен, лежащих на основании, равна *G*, обусловливает вид плотности распределения. Если для простоты принять равновероятность всех значений φ кроме $\varphi = 0$, получим выражение для плотности

$$\widetilde{P}(\varphi) = G\,\delta(x) + \frac{2(1-G)}{\pi}, \quad 0 \le \varphi \le \frac{\pi}{2},\tag{6}$$

где $\delta(\cdot)$ – дельта-функция Дирака. Опрокидываясь через точку A_1 (см. рис. 2), и, тем самым, увеличивая ϕ , зерно-бочка круговой клепки увеличивает свою высоту от *h* при $\phi = 0$ до текущего значения *H*. Нетрудно видеть, высота как функция ϕ равна

$$H(\varphi) = \begin{cases} d_p \cos(\varphi_0 - \varphi), & 0 \le \varphi \le \varphi_0 \\ d_p, & \varphi_0 < \varphi \le \pi/2 \end{cases},$$
(7)

где $\varphi_0 = \arcsin 0.617 d / 1.087 d = 0.604 \text{ рад}$.

Идея состоит в том, чтобы из (6) и (7) вывести распределение высоты зерна-бочки, выделить долю η наиболее высоких зерен и найти математическое ожидание высоты по выделенному ансамблю. В силу того, что толщина алмазного слоя (а речь идет об однослойном инструменте) определяется наиболее высокими зернами, величину упомянутого математического ожидания интерпретируем как толщину слоя d_t . Если расчетная толщина или ее приведенная величина d_t/d будут согласоваться с экспериментальной зависимостью от зернистости d [1], то это, кроме непосредственной ценности аналитического выражения, повысит уровень достоверности принятых моделей бочки.

Искомое распределение высоты зерна – это распределение функции аргумента ф с заданным распределением и ее плотность находится по известной формуле [7], что применительно к нашему случаю:

$$P(H) = \widetilde{P}(\varphi) \left| \frac{d\varphi}{dH}(H) \right|, \qquad (8)$$

где $\varphi(H)$ – обратная к (7) функция. Сложность заключается в том, что $H(\varphi)$ – немонотонная функция, и ее обратная $\varphi(H)$ неоднозначна. Проблема решается следующим образом. Вводится малый параметр $\varepsilon <<1$ в (7) таким образом, чтобы область определения первой ветви распространялась до $\varphi_0 - \varepsilon$, а для второй начиналась с $\varphi_0 - \varepsilon$, причем во второй ветви к постоянной d_p добавлялась малая переменная поправка $d_p \varepsilon (\varphi - \varphi_0)$. Тогда, формально, обратная функция однозначна, а в окончательных расчетах малым параметром ε можно пренебречь. Выражение обратной функции и ее производной, с учетом, что величины высших порядков малости ε отброшены, соответственно следующие:

$$\varphi(H) = \begin{cases} \varphi_0 - \arccos \frac{H}{d_p}, & d_p \cos \varphi_0 \le H \le d_p \\ \varphi_0 - \varepsilon + \frac{H - d_p}{\varepsilon d_p}, & d_p < H \le d_p \left(1 + \varepsilon \left(\frac{\pi}{2} - \varphi_0 \right) \right) \end{cases}, \tag{8'}$$

$$\frac{d\Phi}{dH}(H) = \begin{cases} \frac{1}{\sqrt{d_p^2 - H^2}}, & d_p \cos \varphi_0 \le H \le d_p \\ \frac{1}{\epsilon d_p}, & d_p < H \le d_p \left(1 + \epsilon \left(\frac{\pi}{2} - \varphi_0 \right) \right) \end{cases}$$
(8")

www.ism.kiev.ua/stm

Подставляя (8')-(8") в (8), а также производя соответствующие преобразования, в том числе дельта-функции Дирака [8], получим

$$P(H) = G \,\delta(H - d_p \cos \varphi_0) + \frac{2(1 - G)}{\pi} \begin{cases} \frac{1}{\sqrt{d_p^2 - H^2}}, & d_p \cos \varphi_0 \le H \le d_p \\ \frac{1}{\epsilon d_p}, & d_p < H \le d_p \left(1 + \epsilon \left(\frac{\pi}{2} - \varphi_0\right)\right) \end{cases}. (8''')$$

Выражение (8") выдерживает проверку нормируемости на 1, причем на бесконечно малый интервал от d_p до $d_p \left(1 + \varepsilon \left(\frac{\pi}{2} - \varphi_0\right)\right)$ приходится конечная

величина $\frac{2(1-G)}{\pi} \left(\frac{\pi}{2} - \varphi_0\right)$. Поэтому, при устремлении $\varepsilon \to 0$, формула (8^{'''})

преобразуется к выражению, содержащему второй член с дельта-функцией:

$$P(H) = G \,\delta(H - d_p \cos \varphi_0) + \frac{2(1 - G)(\pi/2 - \varphi_0)}{\pi} \delta(H - d_p) + \frac{2(1 - G)}{\pi \sqrt{d_p^2 - H^2}} \,. \tag{9}$$

Последнее выражение представляет собой искомую плотность распределения зерен на поверхности подложки по их высоте.

Как и намечали, выделяя долю η наиболее высоких зерен, находим $(l\!-\!\eta)$ квантиль $H_{1-\eta}$ из уравнения

$$\eta = \int_{H_{1-\eta}}^{\infty} P(H) dH , \qquad (10)$$

где *P*(*H*) дается выражением (9). В силу того, что *P*(*H*) содержит два члена с дельта-функцией, решение уравнения (10) разбивается на три случая. В первом, когда $\eta < \frac{2(1-G)(\pi/2-\phi_0)}{\pi}$, т. е. $G < 1 - \frac{\pi\eta}{\pi - 2\phi_0}$, искомая квантиль

лежит на верхней границе области определения Р(Н), а значит

$$H_{1-\eta} = d_p \,. \tag{10'}$$

когда $\frac{2(1-G)(\pi/2-\phi_0)}{\pi} \le \eta \le 1-G$ Bo втором случае, или

$$1 - \frac{\pi \eta}{\pi - 2 \phi_0} \le G \le 1 - \eta, \text{ уравнение (10) перепишем в виде}$$
$$\eta = \int_{H_{1-\eta}}^{d_p} \left[G \,\delta \Big(H - d_p \cos \phi_0 \Big) + \frac{2 (1 - G) (\pi/2 - \phi_0)}{\pi} \delta \Big(H - d_p \Big) + \frac{2 (1 - G)}{\pi \sqrt{d_p^2 - H^2}} \right] dH = \frac{2 (1 - G)}{\pi} \left(\pi - \phi_0 - \arcsin \frac{H_{1-\eta}}{d_p} \right),$$

откуда

$$H_{1-\eta} = d_p \sin\left(\pi - \varphi_0 - \frac{\pi \eta}{2(1-G)}\right).$$
 (10")

В третьем случае, когда $\eta > 1 - G$ или $G > 1 - \eta$, искомая квантиль лежит на нижней границе области определения P(H), т. е.

$$H_{1-\eta} = d_p \cos \varphi_0 \,. \tag{10'''}$$

Плотность распределения зерен по высоте – из доли η наиболее высоких – вычисляется по формуле

$$P^{(\eta)}(H) = \frac{1}{\eta} P(H), \quad H_{1-\eta} \le H \le d_p.$$
 (11)

В соответствии со значением квантилей (10')–(10'''), искомые плотности для первого случая

$$P^{(\eta)}(H) = \delta(H - d_p), \qquad (11')$$

для второго

$$P^{(\eta)}(H) = \frac{2(1-G)(\pi/2 - \varphi_0)}{\pi \eta} \delta(H - d_p) + \frac{2(1-G)}{\pi \eta \sqrt{d_p^2 - H^2}}, \qquad (11'')$$

для третьего

$$P^{(\eta)}(H) = \frac{G + \eta - 1}{\eta} \delta(H - d_p \cos \varphi_0) + \frac{2(1 - G)(\pi/2 - \varphi_0)}{\pi \eta} \delta(H - d_p) + \frac{2(1 - G)}{\pi \eta \sqrt{d_p^2 - H^2}}.$$
 (11''')

Теперь, по найденным распределениям, можно найти для трех случаев математическое ожидание \overline{H} и, как и предполагали, интерпретировать его как искомую толщину d_t алмазного слоя:

$$d_t = \overline{H} = \int_{-\infty}^{\infty} H P^{(\eta)}(H) dH.$$
(12)

В первом случае, с учетом (11'), получаем

$$\frac{d_t}{d_p} = 1, \tag{12'}$$

во втором, с учетом (11"),

$$\frac{d_t}{d_p} = \frac{2(1-G)}{\pi\eta} \left(\frac{\pi}{2} - \varphi_0 - \cos\left(\frac{\pi\eta}{2(1-G)} + \varphi_0\right) \right), \qquad (12'')$$

в третьем, с учетом (11""),

www.ism.kiev.ua/stm

84

$$\frac{d_t}{d_p} = \frac{2(1-G)}{\pi\eta} \left(\frac{\pi}{2} (1-\cos\varphi_0) + \sin\varphi_0 - \varphi_0 \right) + \cos\varphi_0 \,. \tag{12'''}$$

Откуда, окончательно, расчетная приведенная толщина алмазного слоя, базирующаяся на модели зерна-бочки круговой клепки, следующая

$$\frac{d_{t}}{d} = 1,087 \begin{cases} 1, & G < 1 - \frac{\pi \eta}{\pi - 2\phi_{0}}; \\ \frac{2(1 - G)}{\pi \eta} \left(\frac{\pi}{2} - \phi_{0} - \cos\left(\frac{\pi \eta}{2(1 - G)} + \phi_{0}\right) \right), & 1 - \frac{\pi \eta}{\pi - 2\phi_{0}} \le G \le 1 - \eta; (13) \\ \frac{2(1 - G)}{\pi \eta} \left(\frac{\pi}{2} (1 - \cos\phi_{0}) + \sin\phi_{0} - \phi_{0} \right) + \cos\phi_{0}, \quad G > 1 - \eta. \end{cases}$$

Принимая $\eta = 0,5$, т. е. полагая, что толщина алмазного слоя определяется половиной наиболее высоких зерен, можно для каждой зернистости вычислить приведенную толщину (13) и, как указывалось выше, сравнить с экспериментальными данными [1]. При этом использовали экспериментально установленную корреляционную связь доли *G* с зернистостью *d* [2]

$$G = 1 - e^{-2,22d} . (14)$$

Результаты расчетов приведены на рис. 3 (сплошная кривая), экспериментальные значения, как и прежде [1], – точки с интервалами погрешности. Если в [1] экспериментальные данные аппроксимированы линейной функцией и лишь формально, то на рис. 3 видна хорошая согласованность нелинейной теоретической зависимости, полученной на базе модели зерна-бочки, с экспериментом. Это, как отмечалось выше, повышает достоверность модели.

Рис. 3. Зависимость приведенной толщины алмазного слоя от зернистости порошка: сплошная кривая – результаты расчетов, точки с интервалами погрешности – экспериментальные значения [1].

В связи с полученными данными о нелинейной связи толщины АГП с зернистостью встает вопрос об определении условной концентрации K однослойного правящего инструмента. Согласно [6], условная концентрация и ее максимальное значение обусловлено толщиной алмазного слоя d_t и если приве-

денная величина d_l/d постоянна, то *K* не зависит от зернистости. Выше доказана зависимость d_l/d от *d*, поэтому и для условной концентрации *K* есть, пусть слабая, но формально существующая, связь с зернистостью. Это очень неудобно и непрактично. Чтобы обойти этот момент, предлагается условную концентрацию однослойного инструмента подсчитывать, полагая $d_l/d \equiv 1,087$. Принимая это допущение, во-первых, не умаляется значение зависимости (13) для технологии гальваностегии. Во-вторых, принятое значение приведенной толщины является фиксированным, предельным значением фактического диапазона значений и близко к истинному для зернистостей 400/315 и ниже. Втретьих, значения условной концентрации, приведенные в [6], требуют небольших уточнений, а именно: наиболее вероятное значение условной концентрации алмазов для диапазона зернистостей 250/200–630/500 в правящем инструменте

$$K = 180 \%$$
, (15)

максимально возможное значение

$$K_{\max} = \frac{400 \pi}{3\sqrt{3}} \frac{d_v^3}{d_t d_p^2} = \frac{400 \pi}{3\sqrt{3}} \frac{1,024^3}{1,087 \cdot 1,087^2} = 202,2\%$$
(16)

и выражение для удельного числа зерен через условную концентрацию

$$n_{\rm c} = \frac{3K}{200\pi} \frac{d_t}{d_v^3} = \frac{3K}{200\pi} \frac{1,087}{1,024^3} \frac{1}{d^2} = 4,83 \cdot 10^{-3} \frac{K}{d^2} \,. \tag{17}$$

Последняя задача, решаемая в работе, это уточнение суммарной площади сечений всех зерен, закрепленных на подложке, плоскостью, эквидистантной к последней на произвольной высоте x. Как указывалось, на единице площади рабочей поверхности инструмента или, что то же самое, номинальной поверхности графитовой формы [2], $G n_c$ зерен базируются гранью – их высота равна h, а их сечение $S_G(x)$ определяется выражением (5). Остальные $(1-G)n_c$ зерен – выше, их "рост" равен d_t (13), а сечение определяется как сечение одноосного эллипсоида – шара диаметром d_v , вытянутого в высоту в d_t/d_v и сокращенного в поперечнике в $\sqrt{d_t/d_v}$ раза:

$$S_{1-G}(x) = \pi \left(\frac{d_{v}}{d_{t}}\right)^{3} (d_{t} - x)x, \quad 0 \le x \le d_{t}.$$
 (18)

Тогда суммарная площадь поперечных сечений всех зерен на единицу площади номинальной поверхности формы

$$G n_c S_G(x) + (1-G) n_c S_{1-G}(x),$$

а искомая площадь $S_{\rm cB}$ свободной поверхности осаждения никеля, эквидистантной с зазором x к поверхности графитовой формы, вычисленная относительно номинальной площади $S_{\rm HOM}$ под наносимый слой АГП, равна

$$\frac{S_{_{\rm CB}}}{S_{_{\rm HOM}}} = 1 - n_c \left(G S_{\rm G}(x) + (1 - G) S_{1 - G}(x) \right), \tag{19}$$

www.ism.kiev.ua/stm

где $S_G(x)$ и $S_{1-G}(x)$ определяются (4), (5) и (18) с учетом своих областей определения, вне которых функции равны нулю, а значение G вычисляется по (14).

В качестве примера рассчитаем относительную площадь свободной поверхности $S_{\rm CB}(x)/S_{\rm HOM}$ как функцию толщины x никелевого слоя для алмазных порошков зернистостью 400/315 и 800/630, т. е. для d = 0,4 и 0,8 мм соответственно. Результаты представлены на рис. 4, из которого следует, что относительная площадь изменяется в широких пределах, существенно изменяя плотность тока осаждения, а следовательно, скорость и время заращивания. Более того, этот фактор существенен для качества формируемого АГП.

Рис. 4. Относительная площадь свободной поверхности осаждения никеля как функция толщины *x* никелевого слоя для алмазных порошков зернистостью 400/315, $n_c = 6 \text{ мм}^{-2}(1)$ и 800/630, $n_c = 1,5 \text{ мм}^{-2}(2)$.

Таким образом, цели, поставленные в первых двух сообщениях [1, 2] и в настоящем, достигнуты; экспериментально уточнены косвенные и прямые характеристики АГП – важнейшего элемента, определяющего эксплуатационные характеристики алмазного правящего инструмента. Метод гальваностегии получил точные данные по занижению корпуса инструмента под последующее нанесение АГП, а для метода гальванопластики подготовлены исходные, которые посредством теоретического анализа и моделирования позволили получить более детальную информацию для нанесения АГП с наперед заданными параметрами.

Наведено найпростіша просторова модель алмазного зерна в алмазногальванічному покритті правлячого інструменту – "бочка параболічної і кругової клепки". Показано, що прийняті уявлення про форму зерна дозволяють, з одного боку, адекватно описувати, в тому числі на кількісному рівні, відомі з експерименту співвідношення параметрів алмазно-гальванічного покриття, з іншого боку, отримати більш детальну інформацію для його нанесення із заданими характеристиками.

Ключові слова: алмазно-гальванічне покриття, алмазний порошок, правлячий інструмент, просторова модель алмазного зерна.

The report offers some basic 3D model of diamond grain in the diamondgalvanic covering (DGC) of dress tool - "barrel with parabolic and circular staves". It is shown that the received representation of the grain form allow, on the one hand, be adequately described, including a quantitatively, known experimental relationship between the parameters of the DGC, on the other hand, – to obtain more detailed information for the application of DGC from desired characteristics.

Keywords: diamond-galvanic covering, diamond powder, dress tool, 3D model of the diamond grains.

- 1. Шейко М. Н., Скок В. Н. Форма зерен как фактор, определяющий параметры алмазногальванического покрытия правящего инструмента. Сообщение 1. Величина занижения корпуса инструмента под нанесение алмазно-гальванического покрытия методом гальваностегии // Сверхтв. материалы. – 2015. – № 6. – С. 86–88.
- 2. Шейко М. Н., Скок В. Н., Пасичный О. О. Форма зерен как фактор, определяющий параметры алмазно-гальванического покрытия правящего инструмента. Сообщение 2. Фактическая площадь контакта зерен с графитовой формой и смежные характеристики как исходные для расчета режимов нанесения алмазно-гальванического покрытия методом гальванопластики // Там же. 2016. № 1. С. 61–66.
- 3. *Байкалов А. К.* Введение в теорию шлифования материалов. К.: Наук. думка, 1978. 297 с.
- Королев А. В., Новоселов Ю. К. Теоретико-вероятностные основы абразивной обработки. Часть 1. Состояние рабочей поверхности инструмента. – Изд-во Сарат. ун-та, 1987. – 160 с.
- 5. Петасюк Г. А., Сирота Ю. В. Аналитическое определение количества зерен в одном карате алмазного порошка на основе экстраполяционно-аффинной 3D-модели зерна // Сверхтв. материалы. 2012. № 3. С. 70–82.
- 6. Шейко М. Н., Скок В. Н., Лубнин А. Г. Основные характеристики абразивно-алмазного слоя правящих инструментов // Там же. 2007. № 4. С. 75–78.
- 7. Худсон Д. Статистика для физиков. М.: Мир, 1970. 296 с.
- Лаврентьев М. А., Шабат Б. В. Методы теории функций комплексного переменного. М.: Наука, 1987. – 688 с.

Поступила 03.03.15