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Prandtl steady rotary current
in an upright cylindrical container

The quantifying of the experimentally-known (Prandtl, 1949) steady rotary current during the swirl-type sloshing
is first given. The current is treated as the sum of the mean wave (pseudo-) momentum through the meridional cross-
section and the mean wave Eulerian flow, which is governed by the Craik—Leibovich equation. The constructed
analytical inviscid theory is supported by existing experimental data.
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In 1949, Ludwig Prandtl conducted a dedicated model test on the resonant sloshing in an or-
bitally-shaken upright circular tank to show that the swirl-type sloshing yields a steady circular
rotation of the contained liquid [1]. The phenomenon was later reproduced by Hutton [2] and,
recently, in [3-5], mainly, in context of sloshing in bioreactors. The steady rotary current occurs,
for each inner liquid point, strictly in the angularly-propagating wave direction; its (rotary cur-
rent) velocity is zero on the wall and reaches its maximum about the semiradius. To date with, the
three aforementioned peculiarities of the rotary current are not theoretically quantified. Existing
theoretical studies associate the Prandtl phenomenon with the angular Stokes drift and, in pa-
rallel way, discuss the steady streaming effect. Proceeding this way may, generally, clarify an an-
gular fluid mass-transport in the swirling wave direction, but other two peculiarities of the steady
rotary current remain unexplained.

Employing the asymptotic steady-state wave resonant-sloshing solution from [6], in general,
and adopting its lowest-order inviscid irrotational-flow component as an ambient flow, in parti-
cular, the present paper proposes an inviscid analytical theory of the steady rotary (Prandtl) cur-
rent, which is interpreted, over here, as the direct sum of the mean wave (pseudo-) momentum per
unit area of the meridional cross-section and the mean wave Eulerian (vortical) flow. The latter is
governed by the Craik—Leibovich equation and implies the counter-directed (relative to the
pseudo-momentum) fluid mass-transport.
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An upright circular cylindrical rigid tank of radius 7, performs a small-magnitude prescri-
bed periodic (elliptic) horizontal motion, which is described by the two generalised coordina-
tes My (¢) =1y, cosot and Ny (¢) =M, sin ot with the forcing frequency o close to the lowest natural
sloshing frequency oy =0y (fig. 1). For the infinite liquid depth (% /#%, — ), the natural fre-
quencies are computed by G?\,ﬁ = gkysi / 1o, Where g is the gravity acceleration, and k,;; are the

roots of Jy,(ky;)=0 (], is the Bessel function of the first kind).

When following [6], one can construct the Narimanov—Moiseev-type steady-state wave
asymptotic solution of the resonant sloshing problem by assuming a small-amplitude tank exci-
tation, (nfa +M3 )/ r02 =0(e?) <1, and requiring the so-called Moiseev detuning ‘(52 ~o7 ‘ /o%=
=0(e¥?). For brevity, we adopt the normalisation, in which 1/c and 1/ k are the charac-
teristic time and size, respectively (k=/k; =1.841183781341...). According to [6], the lowest-

order asymptotic approximation of the steady-state wave free-surface X(¢) representation,
2=0(r,0,6) =YD + L% 4 takes the form

3,8, t)=Ji(r) (=6, cost +6,sint), M

where 6, =bsin®+acos6, 6, =—bcost—asint, and aﬁ,l;,sz(eUg) are the four non-di-

mensional amplitude parameters, which come from a nonlinear secular system [6]. Depending on
the quadratic quantity Z=ab—ab , formula (1) determines either a standing (only for longitudi-
nal excitations) or swirling (angular progressive) wave, i.e., 2=0 < standing, £>0 < counter-
clockwise swirling, and E <0 < clockwise swirling. The asymptotic solution also represents the
relative velocity field o = o+ 0,0+ 032 =0V + 0% 1| where #,6, 2 are the cylindrical co-
ordinate frame units and

o3 (r,0,2,t)= V[ J;(r)e? (0, cost + 6, sint)] = 051/3)f+ 051/3)§ + vg/g)ﬁ. (2)

The inviscid potential flow implies the zero mean (time-averaged) velocity field, i.e., (¥) =0.
On the other hand, according to [7, Sect. 9.6.3], the mean angular wave (pseudo-) momentum per
unit area of the meridional cross-section (determined by the potential-flow solution),

 (*0,6 k A _ck J? .
M= <J—“ JO v2edrdz> B JO <U§1/3)‘z:0 C(1/3)>dr9 +o(e*”)= :Io ]12(;) dré+o(e””), (3)
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is linearly proportional to = and, therefore, is non-zero for the swirl-type sloshing. The latter
fact means that the contained liquid slowly rotates, even though we adopt the inviscid poten-
tial-flow hydrodynamic model. The meridional distribution of the mean wave momentum can
be derived as

w (r,2)= 2% 0™ (r)0 = 2% (™! JE(r))6. (4)

Specifically, @™ does not coincide with the second-order Stokes drift velocity
w’(r,2)= <J.v(1/3)dt : Vv(1/3)> =20’ (r)0 =

=220 JE O+ PO =) 18, (5)
as it happens for the two-dimensional propagating wave.

Neither @™ nor w® can quantify the aforementioned peculiarities of the steady rotary
current. Using @™ and/or @® only theoretically states that a fluid mass-transport in the
swirling wave direction is possible within the framework of Eulerian and /or Lagrangian specifi-
cation, respectively.

Henceforth, we assume that there exists a non-zero mean wave angular vortex (Eulerian)
flow w’ =(v), of =Vxw® £0, which was not accounted in [6]. By an analogy to [8], the
steady vortex flow appears as a second-order, O(¢?), supplement to » by [6]. Utilising the
vorticity equation in the tank-fixed coordinate system and the time-averaging technique leads,
after long and very tedious derivations, to the Craik—Leibovich equation and the continuity
equations

Vx[(wf +w®)xof]=0 and V-wf =0 (6)
in the mean liquid domain Q, which should be equipped with the boundary conditions

wf| =0 and w¥
r=k

oV (7)

The homogeneous boundary-value problem, has two trivial solutions. The first solution
of =0= w” =0 implies the zero mean vortex flow. This is not consistent with experiments [2-5]
and our theoretical expectations. The second solution states that the mean Lagrangian flow is

zero, w" =w® +w” =0. This solution is derivable (see Remark 1) from and when postulating

w' =0= w” =—w’ at r=F. In other words, when assuming that the Prandtl phenomenon is
associated with the mean Lagrangian fluid motions, w’, the zero Lagrangian velocity on the
wall implies @’ =0 in the whole domain, i.e., we arrive at the contradiction — the steady rotary
current does not exist within the framework of the inviscid hydrodynamic model. Our forth-
coming focus is therefore on the sum w” =w" +w" .

To obtain a unique non-trivial solution of (6), (7), one should postulate an extra tangen-
tial boundary condition for @ on the wall. Experiments [2, 5] say us that the rotary current

velocity tends to zero at the wall, namely, they require the non-slip boundary condition w’ =0=

= wf =—w" on So-
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The no-slip condition is an attribute of viscous flows. A paradox is that this condition is na-
tural in our inviscid analysis and, as we will show, leads to a satisfactory description of the mean
flow phenomenon. Why is it so? Adopting w® =-w" on S, implies that the steady rotary cur-
rent by w” =wM +wF, if exists, is not affected, itself, by frictional forces on the wall, simply,
because fluid particles do not steadily move along the tank surface. What is the physical ori-
gin of @w® ? Why does it counteract @w™? Most probably, @ is initiated by the so-called stea-
dy streaming, which can be described within the framework of the nonlinear boundary-layer
theory [9]. According to the steady-streaming prediction [9], w” should be counter-directed
to @M at the wall, namely, it determines a return steady flow. However, the steady streaming
theory [9] does not cause @ =0 at the wall. An extra frictional steady force on the wall is
then expected, which should increase the return flow by @ until the no-slip condition for w”
would be fulfilled. When this finally happens, @’ =@" +w” becomes unaffected by frictional
forces at the wall and, therefore, the Prandtl phenomenon could be modelled within the frame-
work of the inviscid hydrodynamic model.

Postulating @” =0= w® =—w" on the wall causes an axisymmetric solution of the boun-
dary-value problem (6), (7). Requiring a continuous finite vector-function @’ in Q,, the 7
and Z scalar components of the Craik—Leibovich equation in (6) deduce that 9,G=0 &
(r9,G+G)=0, where G =wf o} —wfof ,and 26=C/r=C=0=6G=0=

E.E _E E En. E En. E
w0y 03 —wy o =9,(rwy Yws +9,(rwy )w; =0, (8)

but the continuity equation takes the form
3, (rwt)+9, (rwf)=0. 9)

Because we suggest a non-trivial angular flow component wf , solving (7), (8), (9) with
respect to the pair wf, w3E leads to the zero solution (just applying the method of characte-

ristics to (9) with constraint (8)). The remaining 6 -component of the Craik—Leibovich equa-

tion in (9) together with the no-slip condition @w® =—w" on the wall constitute the boundary-

value problem
2wk d w5 +Ee**[3(2w° —w™ )0, w0k + 2w, (rwk )] =0; wk - ~Ze% py;
r=

E

wf = —Ee2zp0; wy < oo, (10)

r=k ‘720

where py =] 12 (k)/k . The exact analytical solution of (10) takes the form

S S
wt =20l (r), ©F(r)= @ (r) cozi[l—w () J (11)

cor2 -1 k2 Po

Remark 1. 1f p, = w’ (k)= c=0= 0 (ry=—w’ (r), and, therefore, we arrive at the tri-
vial solution w’(r)=0=>w’ =0, which was discussed in context of the boundary-value prob-

lem (6), (7).
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Fig. 2. The measured ([2, 5], circles) and theoretical (by (12), the solid lines) mean wave velocity @’ (r) / max, |w@ Pyl
Panel (@) implies measurements [5] made for the orbital forcing, 6 /0y =0.78, z,=—-0.1061% (h /5 =2. 168
7p=51.2mm), R, = roc/v 1000. Panel (b) — experiments [2] with the longitudinal forcing, R, =4.5- 10°,
h/ny=141= 99 47 cm, 6 /6y =1, z5 =-0.422 h; three different forcing amplitudes (“small”, “middle”, “large”)
were used, which are not specified in [2] but associated with experimental crest/trough at the wall equal to
8.89/5.588, 11.43/6.35, 13.97/7.62 cm, respectively; mechanical measurements adopted rectangular paddles
of different sizes (“small paddle” = [, /I, = 3.937 x 2.286 cm, “medium paddle” = 4.8514 % 3.6068 cm, “large padd-
le” = 5.968 x 4.334 cm).

The mean rotary current is, according to our inviscid theory, described by

Ji) (r) J

r cor -1

w” (r,2) =Ee* 0" (r)0 = Z¢? ( (12)
where ©°(r) is defined by (5) and ¢y is computed in (11). The theoretical prediction of
wp(r)/maX, |@®(r)| by (12) can then be compared with the corresponding experimental
data from [2, 5] made at the fixed vertical level z=z, beneath the mean free surface. The re-
sult is presented in Fig. 2.

Using the PIV velocimetry, [5] measured the fluid mass-transport velocity through the
meridional plane for the swirl-type sloshing in a circular container, which is exposed to the cir-
cular orbital forcing. The container was filled by silicon oil with the Reynolds number
R, = r020 /v =1000 (v is the kinematic viscosity). The liquid depth was % /7, =2.168 (1, =51.2mm)
and several forcing frequencies were applied, one of which, 6 /6, =0.78, was sufficiently close to
the primary resonance to apply the asymptotic resonant sloshing theory from [6]. The measu-
rements were done at the vertical level zy =—0.1061 2. The experimental mean wave veloci-

ties were normalised by its maximum value, which was found approximately at ETO . The experi-

mental and theoretical functions w” () / max |’ | are compared in Fig. 2. A satisfactory agree-
ment is found.

Another experimental series was reported in [2] for the longitudinal excitation with the for-
cing frequency equal to 6, =8.91 rad s™!, when the swirling wave mode is stable [6]. This case is
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analysed in Fig. 2 (b). Three different experimental forcing amplitudes were utilised, which were
not specified in [2] but, instead, the output data were distinguished by documenting the cor-
responding experimental crest and through at the wall. The geometric input is 7, =22.47 cm
and £=31.45 cm. To measure the mean wave velocity distribution, Hutton in [2] used a me-
chanical device, whose main element is a rectangular paddle lying in the meridional plane and
rotating together with the current. Three different paddles were employed. The measurements
were made at the vertical level z, =—-0.422 &, which is fairly deep and far away from the mean
free surface. The experimental values are marked by circles. The smaller symbol means the
smaller paddle size. The grey filling depth of the circles increases with increasing the forcing
amplitude. Fig. 2 (b) supports our analytical inviscid theory for measurements with the “small
paddle”. The “medium” and “large” paddles give larger velocity values for the measurement pro-
be, which is close to the tank centre.

In summary, the Prandtl phenomenon consisting of a mean angular fluid rotation during
the swirl-type resonant sloshing in a vertical circular cylindrical tank with an infinite liquid
depth is first theoretically quantified by utilising the asymptotic steady-state wave solution
from [6]. In the constructed inviscid theory, the steady rotary current is associated with the
summarised effect of the mean wave (pseudo-) momentum through the meridional plane and
the mean vortical (Eulerian) flow. To find the last component, the Craik—Leibovich equation
for the swirling wave mode is derived and analytically solved. The solution requires the tangen-
tial boundary condition on the vertical wall. Adopting the no-slip condition for the summari-
sed mean fluid rotation, which becomes natural for our inviscid theory, leads to an exact analyti-
cal expression, which determines the summarised steady current velocity. The latter result is in a
satisfactory agreement with measurements [2, 5].

The author acknowledges the financial support of the Centre of Autonomous Marine Operations
and Systems (AMOS), whose main sponsor is the Norwegian Research Council (Project number
223254—AMOS).
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KPYTOBUM YCTAJTEHUM ITOTIK TPAH/IT/IL
V BEPTUKAJIbBHOMY [UJITHIPUYHOMY KOHTENHEPI

Briepie maetbes KifbKicHe BU3HAUEHHS €KCIIEPUMEHTATBHO Bi[OMOTO YCTaJIeHOTO KPyTroBoTo nmoToky IIpanmis
(1949), axuit BUHUKAE TTi/1 9ac KPyToBOi XBUJIi B KOHTelHepi. [10oTiK IOB’A3y€eThCs i3 cyMapHUM eeKToM (TIceB-
J10-) iMITyJibCca KPi3b MEPHUIOHATBHY TUIOMIUHY Ta YCEPEIHEHOI0 XBUJIbOBOIO €MJIEPIBCHKOIO TEUi€T0, SIKA OTIH-
cyerbes piBHaHHAM Kpeiika—Jleitbosuya. ITo6yqoBaHa aHaliTHYHA HEB I3Ka TEOPis MiATBEPAKYETHCS ICHYI0U M-
MU eKCIIEPUMEHTATbHIMHY JTaHUMU.

Kmouosi cnosa: xmonanns piounu, xpyzosa xeuns, piensmns Kpetika—Jleiibosuua, dpetigh Cmoxca.
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KPYTOBOM YCTAHOBUBIINNCY ITOTOK ITPAH/IJIA
B BEPTUKAJIBHOM I[TUJIMHJIPUYECKOM KOHTEMHEPE

BrepBrie maetcst KosndecTBEHHOE OTIPesie/IeHre SKCIIePIMEHTAThHO U3BECTHOTO YCTAaHOBUBIIETOCS KPYTOBOTO
notoka IIpanaras (1949), kotopslil Bo3HUKAaeT BO BpeMs KPYTOBOI BOJIHBI B KoHTeliHepe. [ToTok cBsi3biBaeTcs ¢
cyMMapHBIM 3¢ derTom (TICeBIO-) MMITYJIbCa Yepe3 MEPUANOHAIBHOE CeUeHre W YCPeAHEHHBIM BOJTHOBBIM -
JIEPOBCKUM TEYEHHEM, KOTOPOE onuchiBaeTcst ypasHennem Kpeiika—Jleiibosuua. ITocTpoeHHass aHaIUTHYECKAS
TeOpUs MOATBEPKAAETCS CYIIECTBYIOMUMI 9KCTIEPUMEHTATbHBIMI JAHHBIMU.

Kntoueewie cnosa: naeckanue jycuoxocmu, ypasnenue Kpeiika—Jleibosuua, opetigh Cmoxca.
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