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In 1949, Ludwig Prandtl conducted a dedicated model test on the resonant sloshing in an or­
bitally­shaken upright circular tank to show that the swirl­type sloshing yields a steady circular 
rotation of the contained liquid [1]. The phenomenon was later reproduced by Hutton [2] and, 
recently, in [3­5], mainly, in context of sloshing in bioreactors. The steady rotary current occurs, 
for each inner liquid point, strictly in the angularly­propagating wave direction; its (rotary cur­
rent) velocity is zero on the wall and reaches its maximum about the semiradius. To date with, the 
three aforementioned peculiarities of the rotary current are not theoretically quantified. Existing 
theoretical studies associate the Prandtl phenomenon with the angular Stokes drift and, in pa­
rallel way, discuss the steady streaming effect. Proceeding this way may, generally, clarify an an­
gular fluid mass­transport in the swirling wave direction, but other two peculiarities of the steady 
rotary current remain unexplained. 

Employing the asymptotic steady­state wave resonant­sloshing solution from [6], in general, 
and adopting its lowest­order inviscid irrotational­flow component as an ambient flow, in parti­
cular, the present paper proposes an inviscid analytical theory of the steady rotary (Prandtl) cur­
rent, which is interpreted, over here, as the direct sum of the mean wave (pseudo­) momentum per 
unit area of the meridional cross­section and the mean wave Eulerian (vortical) flow. The latter is 
governed by the Craik—Leibovich equation and implies the counter­directed (relative to the 
pseudo­momentum) fluid mass­transport.
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Prandtl steady rotary current 
in an upright cylindrical container

The quantifying of the experimentally­known (Prandtl, 1949) steady rotary current during the swirl­type sloshing 

is first given. The current is treated as the sum of the mean wave (pseudo­) momentum through the meridional cross­

section and the mean wave Eulerian flow, which is governed by the Craik—Leibovich equation. The constructed 

analytical inviscid theory is supported by existing experimental data.
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An upright circular cylindrical rigid tank of radius 0r  performs a small­magnitude pre sc ri­
bed periodic (elliptic) horizontal motion, which is described by the two generalised coordina­
tes 1 1( ) cosat tη = η σ  and 2 2( ) sinat tη = η σ  with the forcing frequency σ close to the lowest natural 
sloshing frequency 1 11σ = σ  (fig. 1). For the infinite liquid depth ( 0/h r → ∞), the natural fre­

quencies are computed by 2
0/Mi Migk rσ = , where g  is the gravity acceleration, and Mik  are the 

roots of ( ) 0M MiJ k′ =  ( MJ  is the Bessel function of the first kind).
When following [6], one can construct the Narimanov—Moiseev­type steady­state wave 

asymptotic solution of the resonant sloshing problem by assuming a small­amplitude tank exci­

tation, 2 2 2 2
1 2 0( ) / ( ) 1a a r Oη + η = ε = , and requiring the so­called Moiseev detuning 2 2 2 2/3

1 / ( )Oσ − σ σ = ε
2 2 2 2/3/ ( )Oσ − σ σ = ε . For brevity, we adopt the normalisation, in which 1/ σ  and 0 /r k  are the charac­

teristic time and size, respectively ( 11 1.841183781341...k k= = ). According to [6], the lowest­
order asymptotic approximation of the steady­state wave free­surface ( )tΣ  representation, 

(1/3) (2/3)( , , ) ...z r t= ζ θ = ζ + ζ + , takes the form

(1/3)
1( , , ) ( ) ( cos sin ),s cr t J r t tζ θ = −θ + θ    (1)

where sin cosc b aθ = θ + θ , cos sins b t a tθ = − − , and 1/3, , , ( )a a b b O= ε  are the four non­di­
mensional amplitude parameters, which come from a nonlinear secular system [6]. Depending on 
the quadratic quantity ab abΞ = − , formula (1) determines either a standing (only for longitudi­
nal exci tations) or swirling (angular progressive) wave, i.e., 0Ξ = ⇔  standing, 0Ξ > ⇔  counter­
clockwise swirling, and 0Ξ < ⇔ clockwise swirling. The asymptotic solution also represents the 
re lative velocity field (1/3) (2/3)

1 2 3
ˆˆ ˆv v v= + + = + +…v r z v vθ ,  where ˆˆ ˆ, ,r zθ  are the cylindrical co­

ordinate frame units and

(1/3) (1/3) (1/3)(1/3)
1 1 2 3

ˆˆ ˆ( , , , ) [ ( ) ( cos sin )] .z
c sr z t J r e t t v v vθ = ∇ θ + θ = + +v r zθ  (2)

The inviscid potential flow implies the zero mean (time­averaged) velocity field, i.e., 0〈 〉 =v . 
On the other hand, according to [7, Sect. 9.6.3], the mean angular wave (pseudo­) momentum per 
unit area of the meridional cross­section (determined by the potential­flow solution),

2
(1/3) (1/3) 2/3 2/31

2 20 0 00

( )ˆ ˆ ˆ( ) ( )
2

k k k

z

J r
M v drdz v dr o dr o

r

ζ

−∞ =
= = ζ + ε = Ξ + ε∫ ∫ ∫ ∫θ θ θ , (3)

Fig. 1. The upright circular container with an 
infinite liquid depth moves translatorily along 
a horizontal elliptic orbit defined by η1(t) = 
=η1acosσt and η2(t) = η2asinσt. Sloshing is 
considered in the tank­fixed coordinate sys­
tem so that Oz coincides with the symmet ry 
axis, and z = 0 determines the mean free sur­
fa ce. The panel (a) introduces geometric no­
tations and (b) shows the hydrostatic (mean) 
liquid shape as it appears for the adopted nor­
ma lisation
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is linearly proportional to Ξ  and, therefore, is non­zero for the swirl­type sloshing. The latter 
fact means that the contained liquid slowly rotates, even though we adopt the inviscid poten­
tial­flow hydrodynamic model. The meridional distribution of the mean wave momentum can 
be derived as

2 2 1 2
1

ˆ ˆ( , ) ( ) ( ( )) .M z M zr z e w r e r J r−= Ξ = Ξw θ θ  (4)

Specifically, Mw  does not coincide with the second­order Stokes drift velocity 

(1/3) (1/3) 2 2 1 2 2 1 2ˆ ˆ( , ) ( ) (2 ) [ ( ) ( ( ) ( )) ]S z S zr z dt e w r e r J r J r r J r= ⋅∇ = Ξ = Ξ + −∫w v v θ θ 

(1/3) (1/3) 2 2 1 2 2 1 2
1 1 1

ˆ ˆ( , ) ( ) (2 ) [ ( ) ( ( ) ( )) ]S z S zr z dt e w r e r J r J r r J r− −= ⋅∇ = Ξ = Ξ + −′θ θ , (5)

as it happens for the two­dimensional propagating wave.
Neither Mw  nor Sw  can quantify the aforementioned peculiarities of the steady rotary 

current. Using Mw  and/or Sw  only theoretically states that a fluid mass­transport in the 
swir ling wave direction is possible within the framework of Eulerian and/or Lagrangian speci fi­
cation, respectively.

Henceforth, we assume that there exists a non­zero mean wave angular vortex (Eulerian) 
flow E = 〈 〉w v , 0E Eω = ∇× ≠w , which was not accounted in [6]. By an analogy to [8], the 
steady vortex flow appears as a second­order, 2/3( )O ε , supplement to v  by [6]. Utilising the 
vorticity equation in the tank­fixed coordinate system and the time­averaging technique leads, 
after long and very tedious derivations, to the Craik—Leibovich equation and the continuity 
equations

[( ) ] 0 and 0E S E E∇× + ×ω = ∇⋅ =w w w  (6)

in the mean liquid domain Q0, which should be equipped with the boundary conditions 

1 3
0

0 and 0E E

r k z
w w

= =
= = . (7)

The homogeneous boundary­value problem, has two trivial solutions. The first solution 
E Eω = ⇒ =0 0w  implies the zero mean vortex flow. This is not consistent with experiments [2­5] 

and our theoretical expectations. The second solution states that the mean Lagrangian flow is 
zero, L S E= + = 0w w w . This solution is derivable (see Remark 1) from and when postulating 

L E S= ⇒ = −0w w w  at r k= . In other words, when assuming that the Prandtl phenomenon is 
associated with the mean Lagrangian fluid motions, Lw , the zero Lagrangian velocity on the 
wall implies L = 0w  in the whole domain, i.e., we arrive at the contradiction — the steady rotary 
current does not exist within the framework of the inviscid hydrodynamic model. Our forth­
coming focus is therefore on the sum P M E= +w w w .

To obtain a unique non­trivial solution of (6), (7), one should postulate an extra tangen­
tial boundary condition for Ew  on the wall. Experiments [2, 5] say us that the rotary current 
velocity tends to zero at the wall, namely, they require the non­slip boundary condition P E M= ⇒ = −0w w w 

P E M= ⇒ = −0w w w  on 0S .
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The no­slip condition is an attribute of viscous flows. A paradox is that this condition is na­
tural in our inviscid analysis and, as we will show, leads to a satisfactory description of the mean 
flow phenomenon. Why is it so? Adopting E M= −w w  on 0S  implies that the steady rotary cur­
rent by P M E= +w w w , if exists, is not affected, itself, by frictional forces on the wall, simply, 
because fluid particles do not steadily move along the tank surface. What is the physical ori­
gin of Ew ? Why does it counteract Mw ? Most probably, Ew  is initiated by the so­called stea­
dy streaming, which can be described within the framework of the nonlinear boundary­layer 
theory [9]. According to the steady­streaming prediction [9], Ew  should be counter­directed 
to Mw  at the wall, namely, it determines a return steady flow. However, the steady streaming 
theory [9] does not cause P = 0w  at the wall. An extra frictional steady force on the wall is 
then expected, which should increase the return flow by Ew  until the no­slip condition for Pw  
would be fulfilled. When this finally happens, P M E= +w w w  becomes unaffected by frictional 
forces at the wall and, therefore, the Prandtl phenomenon could be modelled within the frame­
work of the in viscid hydrodynamic model. 

Postulating P E M= ⇒ = −0w w w on the wall causes an axisymmetric solution of the boun­
dary­value problem (6), (7). Requiring a continuous finite vector­function Ew  in 0Q , the r̂  
and ẑ  scalar components of the Craik—Leibovich equation in (6) deduce that 0 & ( ) 0z rG r G G∂ = ∂ + =

0 & ( ) 0z rG r G G∂ = ∂ + = , where 1 3 3 1
E E E EG w w= ω − ω , and / 0 0G C r C G⇒ = ⇒ = ⇒ = ⇒

1 3 3 1 2 3 2 1( ) ( ) 0,E E E E E E E E
z rw w r w w r w wω − ω = ∂ + ∂ =  (8)

but the continuity equation takes the form

3 1( ) ( ) 0.E E
z rr w r w∂ + ∂ =  (9)

Because we suggest a non­trivial angular flow component 2
Ew , solving (7), (8), (9) with 

respect to the pair 1 3,E Ew w  leads to the zero solution (just applying the method of characte­
ristics to  (9) with constraint (8)). The remaining θ̂ ­component of the Craik—Leibovich equa­
tion in (9) together with the no­slip condition E M= −w w  on the wall constitute the boundary­
value problem

2 2
2 2 2 2 2 02 [3(2 ) 2 ( )] 0;  ;E z z S M E S E E z

z z r
r k

w w e w w w w r w w e p
=

∂ + Ξ − ∂ + ∂ = = −Ξ

2 2
2 2 2 2 2 02 [3(2 ) 2 ( )] 0;  ;E z z S M E S E E z

r k
w w e w w w w r w w e p

=
∂ + Ξ − ∂ + ∂ = = −Ξ  2

0
,E

r
w

=
< ∞  (10)

where 2
0 1 ( )/p J k k= . The exact analytical solution of (10) takes the form

2
2 02 2

00

( ) 1 ( )
( ), ( ) , 1 .

1

S S
E z E E w r w k

w e w r w r c
pc r k

 
= Ξ = = −  −  

 (11)

Remark 1. If 0 0( ) 0 ( ) ( )S E Sp w k c w r w r= ⇒ = ⇒ = − , and, therefore, we arrive at the tri­
vial solution ( ) 0L Lw r = ⇒ = 0w , which was discussed in context of the boundary­value prob­
lem (6), (7).
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The mean rotary current is, according to our inviscid theory, described by

2
2 2 1

2
0

( ) ( )ˆ ˆ( , ) ( ) ,
1

S
P z P z J r w r

r z e w r e
r c r

 
= Ξ = Ξ + 

− 
w θ θ  (12)

where ( )Sw r  is defined by (5) and 0c  is computed in (11). The theoretical prediction of 
( ) / max | ( ) |P P

rw r w r  by (12) can then be compared with the corresponding experimental 
da ta from [2, 5] made at the fixed vertical level 0z z=  beneath the mean free surface. The re­
sult is presented in Fig. 2.

Using the PIV velocimetry, [5] measured the fluid mass­transport velocity through the 
meridional plane for the swirl­type sloshing in a circular container, which is exposed to the cir­
cular orbital forcing. The container was filled by silicon oil with the Reynolds number 

2
0 / 1000sR r= σ ν =  (ν is the kinematic viscosity). The liquid depth was 0/ 2.168h r =  ( 0 51.2r = mm) 

and several forcing frequencies were applied, one of which, 1/ 0.78σ σ = , was sufficiently close to 
the primary resonance to apply the asymptotic resonant sloshing theory from [6]. The measu­
rements were done at the vertical level 0 0.1061 z h= − . The experimental mean wave velo ci­

ties were normalised by its maximum value, which was found approximately at 0
1

2
r . The experi­

mental and theoretical functions ( ) / max | |P Pw r w  are compared in Fig. 2. A satisfactory agree­
ment is found.

Another experimental series was reported in [2] for the longitudinal excitation with the for­
cing frequency equal to 1

1 8.91 rad s−σ = , when the swirling wave mode is stable [6]. This case is 

Fig. 2. The measured ([2, 5], circles) and theoretical (by (12), the solid lines) mean wave velocity ( ) / max | ( ) |P P
rw r w r . 

Panel (a) implies measurements [5] made for the orbital forcing, 1/ 0.78σ σ = , 0 0.1061 z h= −  ( 0/ 2.168h r = , 

0 51.2r = mm), 2
0 / 1000sR r= σ ν = . Panel (b) — experiments [2] with the longitudinal forcing, 54.5 10sR = ⋅ , 

0/ 1.4h r = , 0 22.47r =  cm, 1/ 1σ σ = , 0 0.422 z h= − ; three different forcing amplitudes (“small”, “middle”, “large”) 
were used, which are not specified in [2] but associated with experimental crest/trough at the wall equal to 
8.89/5.588, 11.43/6.35, 13.97/7.62 cm, respectively; mechanical measurements adopted rectangular paddles 
of different sizes (“small paddle” = / 3.937 2.286r zl l = ×  cm, “me dium paddle” = 4.8514 3.6068×  cm, “large pa d d­
le” = 5.968 4.334× cm).
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analysed in Fig. 2 (b). Three different experimental forcing amplitudes were utilised, which were 
not specified in [2] but, instead, the output data were distinguished by documenting the cor­
responding experimental crest and through at the wall. The geometric input is 0 22.47r = cm 
and 31.45h =  cm. To measure the mean wave velocity distribution, Hutton in [2] used a me­
chanical device, whose main element is a rectangular paddle lying in the meridional plane and 
rotating together with the current. Three different paddles were employed. The measurements 
were made at the vertical level 0 0.422 z h= − , which is fairly deep and far away from the mean 
free surface. The experimental values are marked by circles. The smaller symbol means the 
smaller paddle size. The grey filling depth of the circles increases with increasing the forcing 
amplitude. Fig. 2 (b) supports our analytical inviscid theory for measurements with the “small 
paddle”. The “medium” and “large” paddles give larger velocity values for the measurement pro­
be, which is close to the tank centre.

In summary, the Prandtl phenomenon consisting of a mean angular fluid rotation during 
the swirl­type resonant sloshing in a vertical circular cylindrical tank with an infinite liquid 
depth is first theoretically quantified by utilising the asymptotic steady­state wave solution 
from [6]. In the constructed inviscid theory, the steady rotary current is associated with the 
summarised effect of the mean wave (pseudo­) momentum through the meridional plane and 
the mean vortical (Eulerian) flow. To find the last component, the Craik—Leibovich equation 
for the swirling wave mode is derived and analytically solved. The solution requires the tangen­
tial boundary condition on the vertical wall. Adopting the no­slip condition for the summari­
sed mean fluid rotation, which becomes natural for our inviscid theory, leads to an exact analyti­
cal expression, which determines the summarised steady current velocity. The latter result is in a 
satis factory agreement with measurements [2, 5].

The author acknowledges the financial support of the Centre of Autonomous Marine Operations 

and Systems (AMOS), whose main sponsor is the Norwegian Research Council (Project number 
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КРУГОВИЙ УСТАЛЕНИЙ ПОТІК ПРАНДТЛЯ 
У ВЕРТИКАЛЬНОМУ ЦИЛІНДРИЧНОМУ КОНТЕЙНЕРІ

Вперше дається кількісне визначення експериментально відомого усталеного кругового потоку Прандля 
(1949), який виникає під час кругової хвилі в контейнері. Потік пов’язується із сумарним ефектом (псев­
до­) імпульса крізь меридіональну площину та усередненою хвильовою ейлерівською течією, яка опи­
сується рівнянням Крейка—Лейбовича. Побудована аналітична нев’язка теорія підтверджується існуючи­
ми експериментальними даними. 

Ключові слова: хлюпання рідини, кругова хвиля, рівняння Крейка—Лейбовича, дрейф Стокса.
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КРУГОВОЙ УСТАНОВИВШИЙСЯ ПОТОК ПРАНДЛЯ 
В ВЕРТИКАЛЬНОМ ЦИЛИНДРИЧЕСКОМ КОНТЕЙНЕРЕ

Впервые дается количественное определение экспериментально известного установившегося кругового 
потока Прандтля (1949), который возникает во время круговой волны в контейнере. Поток связывается с 
суммарным эффектом (псевдо­) импульса через меридиональное сечение и усредненным волновым эй­
леровским течением, которое описывается уравнением Крейка—Лейбовича. Построенная аналитическая 
теория подтверждается существующими экспериментальными данными. 

Ключевые слова: плескание жидкости, уравнение Крейка—Лейбовича, дрейф Стокса.


