А.Н. Петренко

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ НАГРЕВА ЧАСТОТНО-УПРАВЛЯЕМОГО АСИНХРОННОГО ДВИГАТЕЛЯ ПРИ РАЗЛИЧНЫХ ИСТОЧНИКАХ ПИТАНИЯ

У статті розглянуто питання експериментального дослідження теплового стану частотно-керуємого асинхронного двигуна при різних джерелах живлення. Запропоновано для експериментального дослідження три схеми живлення. Дослідження проведені на двигуні АИР90LB4, в якому закладені терморезистори СТ-1-19. Виконана оцінка впливу схеми живлення на тепловий стан двигуна.

В статье рассмотрен вопрос экспериментального исследования теплового состояния частотно-управляемого асинхронного двигателя при различных источниках питания. Предложены для экспериментального исследования три схемы питания. Исследования проведены на двигателе АИР90LB4, в котором размещены терморезисторы СТ-1-19. Выполнена оценка влияния схемы питания на тепловое состояние двигателя.

ВВЕДЕНИЕ

Погрешность в определении температур при использовании расчетных методов исследования теплового состояния электрических машин может достигать 15 %, что объясняется допущениями, присущими всем расчетным методам. Поэтому достоверная информация о тепловом состоянии электрической машины может быть получена только в результате экспериментального исследования нагрева. Это характерно и для частотно-управляемых асинхронных двигателей, у которых помимо основных потерь, связанных с первой гармоникой напряжения, возникают дополнительные электрические и магнитные потери, обусловленные высшими гармониками напряжения [1, 2]. Величина этих потерь зависит от спектра высших гармоник и их амплитуд, что, в свою очередь, определяется источником питания частотно-управляемого асинхронного двигателя. На практике используются автономные инверторы напряжения (АИН), обеспечивающие ступенчатую форму фазного напряжения на двигателе и преобразователи частоты, у которых, с целью улучшения спектрального состава выходного напряжения, применяют широтно-импульсную модуляцию прямоугольного напряжения по синусоидальному закону. Ширина импульсов изменяется в течении полупериода, наибольшая ширина импульсов наблюдается в середине полупериода, а к началу и концу ширина импульсов уменьшается [2, 3].

ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ

Для оценки степени влияния типа источника питания на тепловое состояние частотно-управляемого асинхронного двигателя, в качестве базового был выбран регулируемый источник синусоидального напряжения.

Таким образом, в ходе экспериментального исследования нагрева частотно-управляемого асинхронного двигателя были реализованы три режима питания. Блок-схемы источников питания, обеспечивающие каждый из режимов, представлены на рис. 1-3.

Рис. 3. Режим питания от преобразователя частоты (схема 3)

На рис. 1-3 обозначено: ПД – приводной двигатель постоянного тока; ИГ – индукторный генератор; ИР – индукторный регулятор напряжения; ИД – испытуемый асинхронный двигатель; БМ – балансирная машины постоянного тока; НР – нагрузочный реостат; В – мостовой выпрямитель; АИН - автономный инвертор напряжения; ПМК – программируемый микроконтроллер; ПЧ – преобразователь частоты (фирма "Shorh", Голландия).

Во всех режимах питания реализовывались два наиболее распространенных закона регулирования – закон регулирования при постоянном моменте $\gamma = \alpha$; $M = \text{const}; \ 0 \le \alpha \le 1,0$ при регулировании "вниз" и закон регулирования при постоянной полезной мощности и неизменном напряжении $\gamma = 1,0 = \text{const};$ $P_2 = \text{const}; \ 1,0 \le \alpha \le 1,5$ при регулировании "вверх".

Здесь
$$\gamma = \frac{U_{1\varphi}}{U_{1\varphi hom}}$$
, $\alpha = \frac{f_1}{f_{1hom}}$.

В качестве исследуемого был использован асинхронный двигатель АИР90LB4 с номинальными данными: $P_{2N} = 2,5$ кВт, $U_{1\phi N} = 220$ В, $f_{1N} = 50$ Гц, $n_N = 1430$ об/мин, исполнение IP44, ICO141. Потери в номинальном режиме: $P_{3\pi 1} = 298$ Вт; $P_{3\pi 2} = 129$ Вт; $P_{\text{маг}} = 123$ Вт; $P_{\text{мех}} = 19$ Вт; $P_{\text{доп}} = 16$ Вт.

Для исследования температурного поля двигателя в радиальном и аксиальном сечениях, на стадии изготовителя двигателя были заложены термодатчики. Схема размещения термодатчиков показана на рис. 4.

В качестве термодатчиков использовались терморезисторы СТ-1-19. В процессе исследования нагрева при трех режимах питания задавались значения

ISSN 2074-272X. Електротехніка і Електромеханіка. 2010. №5

коэффициента регулирования α: 1,0; 0,9; 0,7; 0,5 – при регулировании "вниз" (регулирование при постоян-ном моменте) и 1,0; 1,1; 1,3; 1,5 – при регулировании "вверх" (регулирование при постоянной полезной мощности).

В качестве примера в табл. 1 и 2 приведены значения превышений температур в местах размещения термодатчиков для номинального режима двигателя - $\gamma = \alpha = 1.0$.

· · ·					Та	блица	1
D	 (<u> </u>	1 0.	11-	11)		

I адиальное сечение $(\gamma - \alpha, \alpha - 1, 0, M - M_N)$									
Область	Зубцовая			Спи	нка	Ротор			
двигателя	301	на стато	opa	серде	чника		0		
Режим		Номер датчика					Юокр		
питания	5	16	22	30	17	37			
Схема 1	72,3	59,1	61,9	49,5	44,6	75,5	29,5		
Схема 2	84,7	69,2	71,3	57,0	51,4	97,2	20		
Схема 3	78,8	63,9	67,2	53,7	48,2	80,0	27		

Таблица 2

		111	Criain		-icin	ic .			
Область		Зубцовая зона статора							
двигателя									
Режим		Номер датчика							
питания	25	5	14	19	22	8	20	5	28
Схема 1	72,4	72,3	75,3	61,2	61,9	71,5	78,3	72,3	81,9
Схема 2	84,2	84,7	88,2	81,7	71,3	83,7	91,8	84,7	96,0
Схема 3	78.6	78.8	813	65.9	67.2	77.0	85.5	78.8	88.7

Продолжение таблицы 2

	Ротор			Спинка сердечника						
Номер датчика										
36	37	23	26	30	29	10	17	9		
69,9	75,5	73,3	42,6	49,5	53,1	36,0	44,6	49,2		
89,6	97,2	94,4	49,7	57,0	62,0	42,0	51,4	57,5		
73.8	80.0	777	46.1	537	57.1	38.9	48.2	52.9		

Продолжение таблицы 2

Внутренний		Подшип	Охлаждающий			
BO3	дух	щи	воздух в каналах			
		ер датчика				
1	3	13	12	31	33	35
49,2	55,0	27,7	42,1	6,7	10,0	15,5
60,1	67,2	31,4	49,8	9,4	14,1	19,4
52,6	58,5	29,8	44,9	6,8	11,6	16,0

По данным экспериментального исследования построены тепловые характеристики - зависимости превышений температур элементов конструкции двигателя от коэффициента регулирования α при трех режимах питания. Тепловые характеристики пазовой части обмотки статора, сердечника статора и обмотки ротора представлены на рис. 5-7.

Установлено, что при всех режимах питания с увеличением коэффициента регулирования α превышения температур существенно уменьшаются. Наибольшие перегревы отмечены при $\gamma = \alpha = 0.5$; $M = M_N$, так как при этом снижается максимальный момент и жесткость механической характеристики, поэтому $M = M_N$ может быть реализован при относительном скольжении гораздо большем, чем в номинальном режиме. Так, при питании по схеме 1 и $\gamma = \alpha = 1,0;$ $M = M_N$ номинальное скольжение $s_N = 0,046$, при той же схеме питания, но $\gamma = \alpha = 0.5$; $M = M_N$ скольжение $s_N = 0,156$. Увеличение скольжения приводит к росту электрических потерь в статоре и роторе: при $\gamma = \alpha = 1,0; P_{3\pi 1} = 298$ Вт; $P_{3\pi 2} = 129$ Вт; при $\gamma = \alpha = 0.5; P_{3\pi 1} = 470$ Вт; $P_{3\pi 2} = 195$ Вт. По мере роста α при $\gamma = \alpha$, $M = M_N = \text{const}$ при всех режимах питания уменьшаются относительное скольжение и потери, а также повышается эффективность охлаждения за счет роста конвективных тепловых проводимостей элементов конструкции двигателя. При α ≥ 1,0 происходит смена закона регулирования с $M = M_N = \text{const}$ на $P = P_{2N} = \text{const}, при этом момент двигателя, а значит и$ потери с ростом а уменьшаются, эффективность охлаждения продолжает расти, что приводит к дальнейшему уменьшению превышений температур.

Тепловые характеристики пазовой части обмотки статора и сердечника статора при питании по схемам 2 и 3 подобны тепловым характеристикам при питании по схеме 1, но проходят выше за счет дополнительных электрических и магнитных потерь от действия высших гармоник напряжения ΣР_{допν}. Расчетное исследование $\Sigma P_{\text{допу}}$ для исследуемого двигателя АИР90LB4 по методике [1] при питании по схеме 2 позволило получить зависимость $\Sigma P_{\text{допу}} = f(\alpha)$. В частности:

• $\alpha = 0.5$:

 $\Sigma P_{\text{допу}} = 70,6$ Вт или 9,8 % от ΣP ,

• $\alpha = 1.0$: • $\alpha = 1.5$:

1,5

 $\Sigma P_{\text{допу}} = 120,8$ Вт или 20,3 % от ΣP , $\Sigma P_{\text{допу}} = 73,1$ Вт или 13,5 % от ΣP ,

где ΣP - сумма основных потерь двигателя.

Рис. 7. Тепловая характеристика ротора $\Delta \Theta_{37} = f(\alpha)$

Установлено, что дополнительные электрические потери в статоре и роторе $P_{3\pi1\nu}$ и $P_{3\pi2\nu}$ составляют 94-96 % от $\Sigma P_{\text{допу}}$, при этом величины $P_{3\pi1\nu}$, $P_{3\pi2\nu}$ определяются спектром и амплитудами высших гармоник тока

0,9 1,0 1,1

 $\Delta \Theta_5 = f(\alpha)$

По результатам экспериментальных и расчетных исследований установлено, что учету по значимости потерь подлежат 5, 7, 11, 13 гармоники тока при питании по схеме 2 и 5, 7 гармоники тока при питании по схеме 3. Например, для номинального режима $\gamma = \alpha = 1,0; M = M_N$, действующие значения высших гармоник в % к первой гармонике тока: схема 2

• CXEMA 3:

$$I_5 = 34,7 \%, I_7 = 17,7 \%, I_{11} = 8,2 \%, I_{13} = 5,9 \%;$$

• CXEMA 3:
 $I_5 = 6,7 \%, I_7 = 3,2 \%.$

<u>∆⊖5</u> C

140

130

120

110

100

90

80

Отсюда следует, что $\Sigma P_{\text{допу}}$ на тепловое состояние двигателя при питании по схеме 3 существенно меньше, чем при питании по схеме 2. Потери в роторе $P_{3\pi 2\nu}$ составляют в среднем 60 % от $\Sigma P_{\text{допу.}}$. Это обстоятельство существенно влияет на вид тепловой характеристики обмотки ротора при питании по схеме 2. При α = 1,0, когда $\Sigma P_{\text{допу}}$ достигают максимума, на тепловой характеристике имеет место локальный максимум. При питании по схеме 3 тепловая характеристика обмотки ротора по форме подобна характеристике при питании по схеме 1, т.е. монотонна. Отметим также, что тепловые характеристики пазовой части обмотки статора и сердечника статора при всех схемах питания во всем диапазоне изменения α монотонны, что свидетельствует о меньшем влиянии $\Sigma P_{\rm допv}$ на нагрев этих элементов конструкции в сравнении с ротором [4].

Показательными с точки зрения влияния схемы источника питания на тепловое состояние двигателя являются разности превышений температур при базовом режиме, т.е. питание двигателя по схеме 1 и режимах питания по схемам 2 и 3.

Для значений $\alpha = 0.5$; 1,0; 1,5 в табл. 3 приведены разности превышений температур при питании по схемам 2 и 1, обозначенные $\Delta \Theta^{\circ}_{2.1}$ и при питании по схемам 3 и 1, обозначенные $\Delta \Theta^{\circ}_{3.1}$ для пазовой части обмотки статора, сердечника статора и обмотки ротора (термодатчики 5, 17, 37).

r ··· (-r -,,	- ,	.,,.		-	Габлица 3	
	Термод	атчик 5	Термода	атчик 17	Термодатчик 37		
α	$\Delta \Theta^{\circ}_{2-1}$	$\Delta \Theta^{\circ}_{3-1}$	$\Delta \Theta^{\circ}_{2-1}$	$\Delta \Theta^{\circ}_{3-1}$	$\Delta \Theta^{\circ}_{2-1}$	$\Delta \Theta^{\circ}_{3-1}$	
0,5	16,2	11,4	11,6	9,2	15,8	10,4	
1,0	12,4	6,5	6,8	3,6	22,4	4,5	
1,5	7,0	0,9	4,1	1,3	11,8	1,5	

Из данных табл. 3 следует:

• степень влияния схемы источника питания зависит от области диапазона регулирования частоты вращения и от условий закона регулирования, т.е. M = const или $P_{2N} = \text{const}$;

• во всем диапазоне регулирования частоты вращения и при всех рассматриваемых законах регулирования степень влияния на тепловое состояние двигателя при схеме 2 существенно больше, чем при схеме 3.

Для рассматриваемых элементов конструкции двигателя также оценим степень влияния схемы источника питания соотношениями:

$$\Delta_{2-1}\% = \frac{\Delta \Theta_{2-1}^{\circ}}{\Delta \Theta_{1}^{\circ}} \cdot 100\% ; \ \Delta_{3-1}\% = \frac{\Delta \Theta_{3-1}^{\circ}}{\Delta \Theta_{1}^{\circ}} \cdot 100\% ,$$

где $\Delta \Theta^{\circ}_1$ - превышение температуры элемента конструкции при питании по схеме 1.

Результаты приведены в табл. 4.

						Габлица 4	
~	Термодатчик 5		Термода	атчик 17	Термодатчик 37		
ά	$\Delta_{2-1}\%$	$\Delta_{3-1}\%$	$\Delta_{2-1}\%$	$\Delta_{3-1}\%$	$\Delta_{2-1}\%$	$\Delta_{3-1}\%$	
0,5	12,4	8,8	12,7	10,1	12,0	7,9	
1,0	17,1	7,9	15,2	8,1	29,7	6,0	
1,5	12,8	1,6	13,2	4,2	18,4	2,3	

Из данных табл. 4 следует:

• наиболее существенно влияние схемы источника питания при схеме 2 и $\alpha = 1,0$, когда $\Sigma P_{\text{допу}}$ достигает максимума. При этом для всех рассматриваемых элементов конструкции зависимости $\Delta_{2-1}\% = f(\alpha)$ имеют явно выраженные максимумы в области $\alpha = 1,0$;

• значения Δ_{2-1} % для пазовой части обмотки статора и сердечника статора составляют во всем диапазоне регулирования 12-17 %, для обмотки ротора зна-

чения Δ_{2-1} % значительно больше и достигают 29 %. Как отмечалось ранее, это связано с влиянием P_{3n2v} ;

• при питании по схеме 3, значения Δ_{3-1} % во всем диапазоне регулирования значительно меньше, чем Δ_{2-1} %. Характерно резкое в 2,5-4 раза уменьшение Δ_{3-1} % в верхней части диапазона регулирования, что свидетельствует о таком же изменении $\Sigma P_{\text{допу}}$ при питании по схеме 3. В отличие от Δ_{2-1} % = $f(\alpha)$ зависимости Δ_{3-1} % = $f(\alpha)$ во всем диапазоне регулирования монотонны.

выводы

Проведенные экспериментальные исследования позволили оценить влияние схемы источника питания на тепловое состояние асинхронного частотноуправляемого двигателя.

При питании от автономного инвертора напряжения и ступенчатой форме подводимого к двигателю напряжения превышения температур элементов конструкции двигателя возрастают в сравнении с режимом питания синусоидальным напряжением на 15-30 %.

При питании от преобразователя частоты и прямоугольной форме подводимого напряжения с широтно-импульсной модуляцией по синусоидальному закону – на 2-10 %.

Это обстоятельство необходимо учитывать при определении допустимой по условиям нагрева мощности двигателя во всем диапазоне регулирования частоты вращения.

СПИСОК ЛИТЕРАТУРЫ

1. Осташевский Н.А., Иваненко В.Н., Петренко А.Н. Потери в частотно-управляемом асинхронном двигателе при различных законах регулирования и типах преобразователей // Электротехника и электромеханика. – 2009. - № 3. - С. 37-41.

2. Радин В.И., Брускин А.Э., Зорохович А.Е. Электрические машины. Асинхронные машины. – М.: Высшая Школа, 1988. – 324 с.

 Петрушин В.С. Асинхронные двигатели в регулируемом электроприводе. – Одесса: Наука и техника, 2006. – 320 с.
 Осташевский Н.А., Петренко А.Н. Исследование теплового состояния частотно-управляемого асинхронного двигателя при изменении нагрузки // Электротехника и электромеханика. – 2010. - № 3. - с. 23-27.

Поступила 22.09.2010

Петренко Александр Николаевич, начальник расчетного отдела АО "СКБ Укрэлектромаш" 61050, Харьков, ул.Искринская, 37

A.N. Petrenko

Experimental investigation of a frequency-controlled induction motor heating under different power sources.

The paper considers a problem of experimental investigation of a frequency-controlled induction motor thermal condition under different power sources. Three supply circuits are chosen for the experimental investigation. The investigations are conducted with an ANV90LB4 motor in which ST-1-19 thermistors are installed. Action of every supply circuit on the motor thermal condition is estimated.

Key words – frequency-controlled induction motor, thermal condition, supply circuit, experimental investigation.