УДК 621.3: 533.9

ВОЛНОВОЙ ЭЛЕКТРОННЫЙ ПАКЕТ ПРОВОДНИКА С ЭЛЕКТРИЧЕСКИМ ТОКОМ ПРОВОДИМОСТИ

Баранов М.И., д.т.н.

НИПКИ "Молния" Национального технического университета "Харьковский политехнический институт" Украина, 61013, Харьков, ул. Шевченко, 47, НИПКИ "Молния" НТУ "ХПИ" тел. (057) 707-68-41, факс (057) 707-61-33, e-mail: nipkimolniya@kpi.kharkov.ua

На основі фундаментальних принципів квантової механіки та електродинаміки розроблена наближена математична модель, яка описує основні хвильові та геометричні характеристики хвильового електронного пакету тонкого металевого провідника зі електричним струмом провідності довільних амплітудно-часових параметрів. Надані дані, які підтверджують достовірність отриманих розрахункових результатів.

На основе фундаментальных принципов квантовой механики и электродинамики разработана приближенная математическая модель, описывающая основные волновые и геометрические характеристики волнового электронного пакета тонкого металлического проводника с электрическим током проводимости произвольных амплитудновременных параметров. Приведены данные, подтверждающие достоверность полученных расчетных результатов.

1. ВВЕДЕНИЕ

Известно, что внешнее электромагнитное (силовое) воздействие (например, напряженности электрического поля от любого источника электрического напряжения) на обладающие как корпускулярными, так и волновыми свойствами свободные электроны металлического проводника приводит к возникновению в структуре его материала электрического тока проводимости и периодически изменяющегося вдоль продольной оси проводника макроскопического волнового электронного пакета (ВЭП) [1 – 3]. Ранее экспериментально [1] и теоретически [3] было установлено, что данный ВЭП проводника определяет пространственно-временное распределение его носителей элементарного отрицательного электрического заряда - свободных электронов и соответственно пространственно-временную картину температурного поля материала проводника. В основе электрофизического механизма образования ВЭП в металлическом проводнике с электрическим током проводимости лежат волновые свойства его (проводника) свободных электронов, удовлетворяющие соответствующим волновым уравнениям Шредингера [4].

Квантовомеханическая природа возникновения в металлическом проводнике с электрическим током проводимости ВЭП приводит к тому, что, например, продольное одномерное распределение свободных электронов в его металле вдоль продольной координаты z и во времени t описывается пространственными стоячими электронными волнами - волновыми функциями $\psi(z,t)$ (пси-функциями) [3]. Следует отметить, что в силу внутриатомных причин, обусловленных определенными различиями электронноэнергетических конфигураций отдельных атомов кристаллической решетки материала проводника, и особенностей выхода в межатомное пространство электронов с валентных зон атомов материала проводника его свободные электроны характеризуются различными частотными и соответственно энергетическими показателями (спектрами). Поэтому, по мнению автора, для микромира материала проводника в предельном случае будет справедливо такое обобщенное утверждение: сколько в материале проводника свободных электронов столько, как минимум, должно быть в нем (этом материале) и возможных волновых функций $\psi(z,t)$ (волн материи или волн ее вероятности [4, 5]), определяющих их электродинамическое поведение в проводнике. Здесь уместно напомнить читателю, что пространственная плотность свободных электронов для металлических проводников составляет величину порядка 10²⁹ м⁻³ [3, 4]. При этом заметим, что каждой такой пространственно-временной волновой функции $\psi(z,t)$ для дрейфующего в материале проводника свободного электрона строго соответствует своя круговая частота ω и свое волновое число k [3, 4]. Кроме того, квадрат модуля волновых функций $\psi(z,t)$ определяет плотность вероятности нахождения свободных электронов в том или ином месте межатомного пространства проводника [3, 4]. В итоге, суперпозиция вот таких волновых функций $\psi(z,t)$ и образовывает, в конце концов, полный ВЭП металлического проводника с электрическим током проводимости. Несомненный теоретический и практический интерес для многих областей электротехники (электрофизики) представляет решение фундаментальной научной задачи, связанной с разработкой математической модели ВЭП проводника и установление на ее основе основных свойств и характеристик ВЭП металлического проводника с электрическим током проводимости различного электрофизического происхождения и характера временного изменения.

Целью данной работы является разработка на принципах квантовой механики и электродинамики приближенной математической модели ВЭП в металлическом проводнике с переменным (импульсным) или постоянным электрическим током проводимости различного закона его изменения во времени и определение на основе этой модели основных волновых и геометрических параметров ВЭП в рассматриваемом проводнике.

2. ДОПУЩЕНИЯ И ПОСТАНОВКА ЗАДАЧИ ИССЛЕДОВАНИЙ

Рассмотрим тонкий в электромагнитном смысле прямолинейный изотропный сплошной металлический

проводник радиусом r_{Π} (м) и длиной l_{Π} (м) при условии $l_{\Pi} >> r_{\Pi}$ (рис. 1), неподвижно расположенный в изоляционной газовой или конденсированной среде.

Рис. 1. Расчетная модель тонкого металлического проводника с электрическим током проводимости $i_{\Pi}(t)$ произвольных амплитудно-временных параметров

Примем, что по рассматриваемому проводнику вдоль его продольной оси OZ протекает переменный (импульсный) или постоянный электрический ток проводимости $i_{\Pi}(t)$ (A), вызванный воздействием на концы проводника какого-либо источника электрического напряжения $U_{\Pi}(t)$ (В). Так как в нашем случае *г*_П будет значительно меньше толщины токового поверхностного слоя в проводнике, то в материале последнего указанный ток будет практически равномерно распределен по поперечному сечению S_{Π} (м²) проводника. Считаем, что дрейфующие под воздействием приложенного к противоположным концам проводника электрического напряжения $U_{\Pi}(t)$ свободные электроны материала проводника находятся в энергетической отрицательной потенциальной "яме", а их потенциальная энергия пренебрежимо мала. Ограничимся исследованием случая, когда влиянием свободных электронов друг на друга и величины электрического напряжения $U_{\Pi}(t)$ на концентрацию последних (электронов) можно пренебречь. Полагаем, что электродинамическое поведение свободных электронов в тонком, с макроскопической точки зрения, проводнике приближенно подчиняется одномерному нерелятивистскому волновому уравнению Шредингера, волновые у-функции которого будут зависеть только от продольной координаты z и времени t (рис. 1). Примем, что геометрическому и энергетическому центру ВЭП проводника соответствует центральная круговая частота ω_0 (с⁻¹) и центральное значение волнового числа k_0 (м⁻¹).

Требуется с учетом принятых допущений найти аналитические выражения, характеризующие ВЭП металлического проводника с произвольно изменяющимся во времени t электрическим током проводимости $i_{\Pi}(t)$, и на их базе установить основные волновые и геометрические характеристики ВЭП в исследуемом проводнике.

3. ОСНОВНЫЕ РАСЧЕТНЫЕ СООТНОШЕНИЯ МОДЕЛИ

На основании вышеизложенного и полученных в [3] результатов решения одномерного нерелятивистского волнового уравнения Шредингера для рассматриваемого проводника интегральную волновую функцию $\psi_{B \ni \Pi}(z,t)$, характеризующую ВЭП в исследуемом проводнике с электрическим током проводимости $i_{\Pi}(t)$, в обобщенном виде находим из следующего выражения:

$$\psi_{\rm B\Im\Pi}(z,t) = \int_{-\infty}^{\infty} \psi_k(z,t) dk , \qquad (1)$$

где $\Psi_k(z,t) = A_0 \sin kz \cdot (\cos \omega t - i \cdot \sin \omega t)$ – волновая функция для отдельных свободных электронов проводника [3]; $A_0 = (2/l_{\Pi} \cdot S_{\Pi})^{1/2}$ – амплитуда волновой функции $\Psi_k(z,t)$ (м^{-3/2}) [3]; $i = \sqrt{-1}$ – мнимая единица; $k = 2\omega/v_{\Gamma}$ – волновое число (м⁻¹) [5]; ω – круговая частота волны де Бройля для свободного электрона (c⁻¹) [4]; v_{Γ} – групповая скорость волн де Бройля для свободных электронов (м/с) [5].

Наибольший для нас интерес представляет практический случай, когда волновая функция $\psi_k(z,t)$ в проводнике отлична от нуля в некоторой произвольной полосе $2\Delta k$ (м⁻¹) изменения волнового числа k. С учетом этого обстоятельства и приведенного выше значения для волновой функции $\psi_k(z,t)$ интеграл в (1) запишется в следующем приближенном виде:

$$\psi_{B\ni\Pi}(z,t) = A_0 \int_{k_0 - \Delta k}^{k_0 + \Delta k} \sin kz \cdot \exp(-i0.5v_{\Gamma}kt) dk , \quad (2)$$

где k_0 -центральное (среднее) значение волнового числа k (м⁻¹); Δk – полуширина полосы спектра (разброс значений) волнового числа k($k_0 - \Delta k \le k \le k_0 + \Delta k$).

Проинтегрировав в (2), получаем:

$$\psi_{\mathrm{B}\Im\Pi}(z,t) = B(z,t) \cdot \Delta k \cdot (\cos \omega_0 t - t \cdot \sin \omega_0 t), \tag{3}$$

$$\Gamma_{\mathrm{T}\mathrm{C}} = B(z,t) = 2A_0 \cdot \left[z^2 - v_{\Gamma}^2 \cdot t^2 / 4\right]^{-1} \times \left\{\sin(k_0 z) \left[z \cdot \cos(0,5v_{\Gamma} \cdot t \cdot \Delta k) \cdot \sin(\Delta k \cdot z) - 1\right]\right\}$$

$$-0.5v_{\Gamma}t \cdot \sin(0.5v_{\Gamma} \cdot t \cdot \Delta k) \cdot \cos(\Delta k \cdot z)] +$$

+ $i \cdot \cos(k_0 z) \cdot [z \cdot \sin(0.5v_{\Gamma} \cdot t \cdot \Delta k) \cdot \cos(\Delta k \cdot z) -$

$$-0.5v_{\Gamma} \cdot t \cdot \cos(0.5v_{\Gamma} \cdot t \cdot \Delta k) \cdot \sin(\Delta k \cdot z)] \} \cdot (\Delta k)^{-1}$$

– огибающая ВЭП металлического проводника с электрическим током проводимости $i_{\Pi}(t)$; ω_0 – центральная круговая частота ВЭП, соответствующая волновому числу $k = k_0$.

Полученная нами интегральная волновая функция $\psi_{B \supset \Pi}(z,t)$ согласно (3) является той квантовомеханической волной, которая будет описывать пространственно-временную эволюцию искомого ВЭП и соответственно пространственно-временные распределения свободных электронов в металлическом проводнике с электрическим током проводимости $i_{\Pi}(t)$ произвольной временной формы. При этом для полноты квантовомеханической картины микромира в рассматриваемом металлическом проводнике следует указать следующее. В связи с тем, что используемая

выше волновая функция $\psi_k(z,t)$ является лишь только одной модой из полного спектра собственных значений рассматриваемой нами у-функции, состоящего из n = 1,2,3,... подобных волновых функций с квантованными длинами их волн $\lambda_{en} = 2l_{\prod} / n$ и квантованными волновыми числами $k_n = 2\pi/\lambda_{en}$ [3], то применение к каждой такой $\psi_{kn}(z,t) - \phi$ ункции процедуры интегрирования, аналогичной (2), приведет нас к некоторому дискретному набору интегральных волновых функций $\psi_{B \ni \Pi}^{n}(z,t)$. Причем, каждая из интегральных волновых функций $\psi_{B \to \Pi}^n(z,t)$ данного набора будет согласно приведенным выше условиям квантования соответствующим образом пространственно расположена вдоль длины *l*_П проводника. В первом приближении положения максимальных значений интегральных волновых функций $\psi_{\text{B} \supseteq \Pi}^{n}(z,t)$ вдоль продольной оси OZ металлического проводника могут быть определены с помощью формулы (18) из [3], содержащей два квантовых числа – *n* и l = n - 1. В итоге, дискретный набор вот таких отличающихся друг от друга только численными значениями центральной круговой частоты ω_0 и центрального волнового числа k_0 интегральных волновых функций $\psi_{\text{ВЭП}}^{n}(z,t)$ и составит полный ВЭП исследуемого проводника. Поэтому для приближенного изучения свойств и установления характеристик периодически изменяющегося вдоль длины l_{Π} металлического проводника полного ВЭП нам достаточно изучить свойства его отдельной составной части, определяемой указанной выше отдельной интегральной волновой функцией $\psi_{\text{ВЭП}}(z,t)$.

Для наглядности и лучшего восприятия в обобщенной формуле (3) интегральной волновой функции $\psi_{\rm B \supset \Pi}(z,t)$ остановимся на одном из частных случаев, соответствующем моменту времени t = 0. На основании (3) этому случаю будет соответствовать следующая интегральная волновая функция $\psi_{\rm B \supset \Pi}(z,t)$:

 $\psi_{B\ni\Pi}(z,0) = 2A_0 \cdot \Delta k \cdot \sin(k_0 \cdot z) \cdot \sin(\Delta k \cdot z) / (\Delta k \cdot z).$ (4)

Из (4) видно, что роль огибающей составной части ВЭП в проводнике теперь, по аналогии с (3), будет выполнять такая функция как

$$C(z) = 2A_0 \cdot \sin(\Delta k \cdot z) / (\Delta k \cdot z) .$$
⁽⁵⁾

Огибающая ВЭП C(z) согласно (5) может быть нами достаточно просто построена и проанализирована. На рис. 2 в безразмерном виде изображена построенная по (5) огибающая $C(z)/2A_0$ ВЭП в металлическом проводнике с электрическим током проводимости $i_{\Pi}(t)$ различной природы и различной временной формы.

Из данных рис. 2 следует, что безразмерная функция $C(z)/2A_0$ действительно описывает некоторую квантовомеханическую волну, которая быстро убывает за пределами некоторого безразмерного интервала $\Delta k \cdot \Delta z$, где Δz (м) – ширина участка состав-

Рис. 2. Пространственное распределение огибающей $C(z) / 2 A_0$ для ВЭП тонкого металлического проводника с электрическим током проводимости $i_{\Pi}(t)$ (t = 0).

ной части ВЭП, внутри которого сосредоточена основная доля электромагнитной (тепловой) энергии волны материи (вероятности), описываемой пространственными стоячими волнами – волновыми ψ -функциями и их интегральной волновой функцией $\psi_{\rm BЭ\Pi}(z,t)$. Поместим границы этого интервала, например, в точках, где амплитуда интегральной волновой функции $\psi_{\rm BЭ\Pi}(z,t)$ ВЭП согласно (4) уменьшается примерно до уровня 0,9 от его (волнового пакета) максимального значения. Такому условию в рассматриваемом случае будет соответствовать следующее равенство:

$$\Delta k \cdot z = \pm \pi / 4 . \tag{6}$$

Следовательно, с учетом изложенного выше и выражения (6) ширина составной части ВЭП Δz и полуширина полосы спектра Δk для волнового числа k в нашем случае будут связаны между собой таким соотношением:

$$\Delta k \cdot \Delta z = \pi / 2 \,. \tag{7}$$

Из (7) следует важный для электротехнических (электрофизических) приложений практический вывод, связанный с тем, что более узкому (компактному) ВЭП в проводнике (малому Δz) будет соответствовать более широкий спектр Δk волнового числа k. На практике такому ВЭП будет соответствовать случай, когда по проводнику протекает постоянный или переменный апериодический (например, униполярный токовый импульс с малым временем нарастания и длинным спадом) электрический ток проводимости $i_{\Pi}(t)$ с широким спектром круговых частот. И наоборот - более широкому (размытому) ВЭП в проводнике (большому Δz) будет соответствовать более узкий спектр Δk его волнового числа k. Такая форма ВЭП будет наблюдаться в проводнике с электрическим током проводимости $i_{\Pi}(t)$, обладающим относительно узким частотным спектром (например, для широко используемого в электротехнике переменного синусоидального тока промышленной частоты 50 Гц).

С учетом ранее принятых допущений для рассматриваемого случая можно говорить о том, что энергия E_{e0} свободного электрона в ВЭП проводника связана с его (волнового пакета) центральной круговой частотой ω₀ соотношением Планка [4]:

$$E_{e0} = h \cdot \omega_0 / 2\pi , \qquad (8)$$

где $h = 6,626 \cdot 10^{-34}$ Дж·с – постоянная Планка.

Тогда, принимая во внимание, что потенциальная энергия свободного электрона в ВЭП проводника близка к нулю, имеем:

$$h \cdot \omega_0 / 2\pi = m_e \cdot v_\Gamma^2 / 2, \qquad (9)$$

где $m_e = 9,108 \cdot 10^{-31}$ кг — масса покоя свободного электрона [4].

Так как в соответствии с волновыми свойствами свободного электрона для него будут справедливы соотношения вида $\omega_0 = k_0 \cdot v_{\Gamma}/2$ и $k_0 = 2\pi/\lambda_{e0}$ [4], то с помощью последних соотношений из (9) для длины λ_{e0} волны свободного электрона в ВЭП проводника, соответствующей его (волнового пакета) центральной круговой частоте ω_0 , мы приходим к известному квантовомеханическому соотношению де Бройля [5]:

$$\lambda_{e0} = h / m_e \cdot v_{\Gamma} \,. \tag{10}$$

Таким образом, связав скорость свободного электрона в материале проводника с групповой скоростью v_{Γ} волн де Бройля и предположив справедливость формулы Планка (8) для свободного электрона в ВЭП с центральной круговой частотой ω₀, мы относительно пространственного положения свободного электрона в проводнике можем определенно сказать следующее: местоположение свободного электрона в металлическом проводнике с электрическим током проводимости $i_{\Pi}(t)$ определяется пространственно-временным положением в нем (проводнике) ВЭП, то есть другими словами, где в проводнике ВЭП, там и свободный электрон [3, 6]. В связи с конечностью ширины ВЭП Δz на основании (7) уже можно обоснованно говорить о некоторой неопределенности пространственного положения свободного электрона в металлическом проводнике с током проводимости. Далее уточним и более конкретизируем этот важный вывод, вытекающий из полученных нами новых данных про ВЭП проводника.

В связи с тем, что в соответствии с научными положениями квантовой механики и электродинамики импульс (количество движения) p (Дж·с/м) свободного электрона проводника с его волновым числом k связан соотношением [4, 5]

$$p = k \cdot h / 2\pi \,, \tag{11}$$

то для полуширины полосы спектра Δk в рассматриваемом проводнике согласно (11) можно записать такое выражение:

$$\Delta k = 2\pi \cdot \Delta p_z / h , \qquad (12)$$

где Δp_z – изменение продольной составляющей импульса *p* свободного электрона в металлическом проводнике (Дж·с/м) [3].

Подставив (12) в (7), получаем: $\Delta p_{\tau} \cdot \Delta z = h/4$.

$$p_z \cdot \Delta z = h/4 \,. \tag{13}$$

Соотношение (13), полученное на основе предложенного нами физико-математического подхода по описанию ВЭП проводника с электрическим током проводимости $i_{\Pi}(t)$, практически является не чем иным, как знаменитым соотношением неопределенностей Гейзенберга [3, 4], устанавливающим связь между неопределенностью пространственного положения Δz свободного электрона в твердом теле (материале проводника) и неопределенностью его продольной проекции импульса Δp_z . Согласно (13) уточнение местоположения свободного электрона (уменьшение Δz) в проводнике непосредственно сказывается на увеличении неточности в значении его импульса Δp_z (скорости v_{Γ}) и наоборот. Кроме того, из (3), (4) и (13) видно, что вероятное местонахождение свободного электрона в исследуемом проводнике будет характеризоваться только плотностью вероятности ρ_{ew} (м⁻³) [4] его пребывания в некотором элементе цилиндрического объема $\Delta V = \Delta z \cdot S_{\Pi}$ (м³) материала проводника. Чем выше реw, тем более определенным будет положение свободного электрона в межатомном пространстве материала металлического проводника.

Численно величина ρ_{ew} в рассматриваемом обобщенном случае для составной части ВЭП проводника может быть определена из следующего соотношения:

$$\rho_{ew} = (\Delta k)^{-2} \cdot \psi_{B \ni \Pi}(z, t) \cdot \psi^*_{B \ni \Pi}(z, t) , \qquad (14)$$

где $\psi^*_{B \supset \Pi}(z,t)$ – интегральная волновая функция ВЭП, комплексно сопряженная функции $\psi_{B \supset \Pi}(z,t)$, находимой по (3).

В частном случае для рассматриваемой нами составной части ВЭП (t = 0) при расчетной оценке ρ_{ew} с учетом (4) и найденного модуля интегральной волновой функции $\psi_{BЭ\Pi}(z,0)$ следует воспользоваться таким соотношением:

$$\rho_{ew} = (\Delta k)^{-2} \cdot |\psi_{B \ni \Pi}(z,0)|^2 \tag{15}$$

Из анализа выражений (3), (4), (14) и (15) можно сделать вывод о том, что свободные электроны рассматриваемого проводника будут, в основном, локализоваться и концентрироваться в межатомном пространстве его материала там, где интегральные волновые функции $\psi_{B \supset \Pi}(z,t)$ и $\psi_{B \supset \Pi}(z,0)$ принимают максимальные значения.

Памятуя о том, что из предложенных расчетных соотношений (3) и (4) соответственно для интегральных волновых функций $\psi_{\rm B \to \Pi}(z,t)$ и $\psi_{\rm B \to \Pi}(z,0)$, а также из базирующихся на них электронноэнергетических выражений (5)-(15) вытекают всемирно известные квантовомеханические соотношения де Бройля (10) и Гейзенберга (13), можно заключить: предложенный нами квантовомеханический подход по определению основных волновых (ψ -функций, ω_0 , k_0 , E_{e0} , Δk , Δp_z , ρ_{ew}) и геометрических (Δz) характеристик одной из практически идентичных составных частей ВЭП в металлическом проводнике с электрическим током проводимости $i_{\Pi}(t)$ различных амплитудно-временных параметров не противоречит современным фундаментальным положениям и закономерностям квантовой физики. Это может свидетельствовать о работоспособности такого подхода в описании ВЭП металлического проводника.

Численно оценим по (12) и (13) порядки физических величин Δk , Δz и Δp_z для свободного электрона в исследуемой части ВЭП проводника. Пусть местоположение свободного электрона в материале проводника вначале примерно соответствует диаметру атома водорода, равному около $\Delta z = 10^{-10}$ м [4]. Тогда из (13) неопределенность значения импульса Δp_{π} свободного электрона составит примерно $\Delta p_z = 1,65 \cdot 10^{-24}$ Дж·с/м, что при его массе покоя $m_e = 9,108 \cdot 10^{-31}$ кг будет соответствовать весьма значительному разбросу значений его скорости v_{Γ} (порядку неточности в ее определении), составляющему около $\Delta v_{\Gamma} = 1,82 \cdot 10^6$ м/с, и волнового числа k по (12) – $\Delta k = 1.56 \cdot 10^{10} \text{ м}^{-1}$. При явлении электрического взрыва металлического проводника постоянным или импульсным током проводимости $i_{\Pi}(t)$ большой плотности [1, 7 – 9], когда ширина составной части ВЭП Δz составляет порядка $\Delta z = 10^{-3}$ м, искомые величины принимают такие значения: $\Delta p_z = 1,65 \cdot 10^{-31}$ Дж·с/м и $\Delta v_{\Gamma} = 0,182$ м/с. Заметим, что в последнем случае разброс по скорости Δv_{Γ} оказывается соизмеримым со средней скоростью дрейфа v_D свободного электрона в металлическом проводнике [1,3]. Кроме того, для найденной нами по (13) величины импульса $\Delta p_z = 1,65 \cdot 10^{-31}$ Дж·с/м полуширина полосы спектра Δk волнового числа k в ВЭП согласно (12) составит численное значение, равное $\Delta k = 1,56 \cdot 10^3 \,\mathrm{m}^{-1}$.

4. ВЫВОДЫ

1. На основе известных положений и закономерностей квантовой механики и электродинамики получены аналитические выражения (3)–(15), впервые описывающие основные волновые и геометрические характеристики одной из составных частей ВЭП в металлическом проводнике с электрическим током проводимости $i_{\Pi}(t)$ произвольных амплитудновременных параметров.

2. Достоверность полученных расчетных формул для ВЭП рассматриваемого проводника подтверждается тем, что из них вытекают известные классические квантовомеханические соотношения де Бройля (10) и Гейзенберга (13).

ЛИТЕРАТУРА

- [1] Марахтанов М.К., Марахтанов А.М. Периодические изменения температуры по длине стальной проволоки, вызванные электрическим током// Вестник Московского государственного технического университета (МГТУ) им. Н.Э. Баумана. Серия: Машиностроение.-2003.-№1.-С. 37-47.
- [2] Баранов М.И. Расчет глубины проникновения температурного поля в массивный проводник с переменным током// Електротехніка і електромеханіка. Харьков: НТУ "ХПИ".- 2004.-№2.-С. 74-79.
- [3] Баранов М.И. Волновое распределение свободных электронов в проводнике с электрическим током проводимости// Электротехника.-2005.-№7.-С. 25-33.
- [4] Кузьмичев В.Е. Законы и формулы физики/ Отв. ред. В.К. Тартаковский.- Киев: Наукова думка, 1989.- 864с.
- [5] Яворский Б.М., Детлаф А.А. Справочник по физике.-М.: Наука, 1990.-624 с.
- [6] Солимар Л., Уолш Д. Лекции по электрическим свойствам материалов/ Пер. с англ. под ред. С.И. Баскакова.-М.: Мир, 1991.-504 с.
- [7] Столович Н.Н. Электровзрывные преобразователи энергии/ Под ред. В.Н. Карнюшина. Минск: Наука и техника, 1983.-151 с.
- [8] Баранов М.И. Аналитический расчет времени электрического взрыва проводников под воздействием больших импульсных токов высоковольтных электрофизических установок// Електротехніка і електромеханіка. Харьков: НТУ "ХПИ".- 2004.- №4.-С. 95-99.
- [9] Баранов М.М., Баранов М.И. Квантовомеханическая модель поглощения электромагнитных волн проводником и явление его электрического взрыва// Електротехніка і електромеханіка. Харьков: НТУ "ХПИ".- 2005.-№2.-С. 63-71.

Поступила 25.10.2005