ОПТИМИЗАЦИЯ ПАРАМЕТРОВ ЭЛЕКТРОМАГНИТОВ УПРАВЛЕНИЯ МАГНИТНЫМ ПОЛЕМ

Пелевин Д.Е.

Отделение магнетизма Института электродинамики НАН Украины Украина, 61106, Харьков, ул. Индустриальная 19, тел./факс (0572) 99-21-62

Визначені критерії оптимізації електромагнітів керування магнітним полем по масі та споживаній потужності при заданому максимальному габаритному розмірі. Запропоновано схему розрахунку електромагнітів з наконечниками, яка може бути взята за основу у інженерних методиках їх розрахунку

Определены критерии оптимизации электромагнитов управления магнитным полем по массе и потребляемой мощности при заданном максимальном габаритном размере. Предложена схема расчета электромагнитов с наконечниками, которая может быть положена в основу инженерных методик их расчета.

ВВЕДЕНИЕ

При разработке электромагнитов управления магнитным полем возникает задача по минимизации его массы и энергетических показателей, для заданной величины его магнитного момента. Решение этой задачи ведется в основном по пути совершенствования классической конструкции электромагнита - ферромагнитный сердечник цилиндрической формы с намагничивающей обмоткой. Так, дополнение сердечника магнитной системы двумя наконечниками [1-3] позволило снизить массу электромагнитов по сравнению с традиционными магнитными системами - сердечник цилиндрической формы. Однако схема расчета электромагнитов с таким построением магнитных систем до настоящего времени остается недостаточно проработанной на инженерном уровне. Это не позволяет эффективно использовать все имеющиеся в конструкции резервы минимизации удельных показателей по массе и энергопотреблению проектируемых электромагнитов.

Цель работы - создание схем расчета электромагнитов с наконечниками, и определение критериев оптимизации электромагнитов управления магнитным полем по массе и потребляемой мощности при заданном максимальном габаритном размере.

ОПТИМИЗАЦИЯ ПАРАМЕТРОВ ЭЛЕКТРОМАГНИТА

Базовая конструкция электромагнита управления магнитным полем приведена на рис. 1.

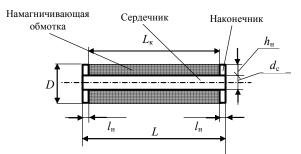


Рис. 1. Геометрические размеры электромагнита

Она включает в себя сердечник и два магнитных наконечника. Посредством намагничивающей обмот-

ки, сердечник намагничивается практически до насыщения и определяет магнитный момент электромагнита. С учетом ограничений по максимальному габаритному размеру оптимизация параметров электромагнитов заключается:

-в выборе минимального диаметра сердечника $d_{\rm c}$, достаточного для создания необходимой величины магнитного момента. При этом величина этого диаметра зависит, как от заданной величины магнитного момента электромагнита, так и от магнитных характеристик (кривая намагниченности) материала сердечника. По существу вес сердечника при заданном магнитном моменте M будет напрямую зависеть от выбора его номинальной намагниченности;

- в выборе параметров намагничивающей обмотки исходя из ее достаточности для намагничивания практически до насыщения сердечника и сохранения при этом близкой к предельной (заданной) плотности тока. Плотность тока по существу определяет вес обмотки. Чем выше плотность тока в обмотке, тем меньше ее вес при заданном числе ампер-витков AW.

С учетом этого, дальнейший расчет и анализ основных параметров электромагнита проводится исключительно с позиции минимизации, во-первых, его массы, и уже, во-вторых, потребляемой мощности.

В [4] показано, что для длинных сердечников L/d > 10, вклад магнитного момента, обусловленного намагниченностью сердечника составляет 95-97% от величины магнитного момента электромагнита в целом. Это позволяет магнитный момент M электромагнита в первом приближении рассматривать как:

$$M \approx M_{\rm cp}$$
. (1)

Величина магнитного момента $M_{\rm cp}$ ферромагнитного сердечника определяется известным соотношением:

$$M_{\rm cp} = J_{\rm c} \cdot V \tag{2}$$

где $J_{\rm c}$ - вектор средней намагниченности по объему сердечника; $V_{\rm c}$ - объем сердечника, равный

$$V = \frac{\pi \cdot d_{\rm c}^2}{4} \cdot l_{\rm c} \,. \tag{3}$$

Соотношения (2) и (3) является базовым для определения минимального объема сердечника (диамет-

ра $d_{\rm c}$) необходимого для создания магнитного момента. Взаимосвязь между диаметром $d_{\rm c}$ и намагниченностью $J_{\rm c}$ с учетом (2), (3) определяется как:

$$J_{\rm c}(d_{\rm c}) = \frac{4 \cdot M_{\rm cp}}{\pi \cdot d_{\rm c}^2 \cdot l_{\rm c}} \,. \tag{4}$$

Зависимость $J_{\rm c}(d_{\rm c})$ позволяет определить минимальный диаметр сердечника при фиксированной длине сердечника и заданной величине магнитного момента с учетом магнитных характеристик (кривая намагниченности) материала сердечника.

Магнитное состояние сердечника определяется разностью двух магнитных полей: намагничивающего магнитного поля, напряженность H_{κ} которого определяется намагничивающей обмоткой и размагничивающего магнитного поля $H_{\rm p}$, которое будет противодействовать намагничивающему полю (H_{κ}) обмотки.

При этом величина намагничивающего поля $H_{\rm K}$ обмотки вдоль ее оси определяется числом ее ампервитков AW обмотки:

$$H_{\rm K} \approx AW/L_{\rm K}$$
, (5)

а величина размагничивающего поля $H_{\rm p}$ — конструкцией сердечника.

С учетом этого, истинная напряженность магнитного поля H внутри сердечника будет равна разности намагничивающего и размагничивающего магнитных полей [5]:

$$H = H_{K} - H_{p} . \tag{6}$$

Величина размагничивающего поля $H_{\rm p}$ может быть определена однозначно только для однородного изотропного эллипсоида помещенного в однородное магнитное поле. Соотношение (6) для такого случая будет иметь вид:

$$H = H_{\kappa} - N \cdot J \,, \tag{7}$$

где N -коэффициент размагничивания, величина которого зависит лишь от соотношения осей эллипсоидов; J — намагниченность, определяется из кривой намагничивания материала сердечника.

Соотношение (7) в простой математической форме увязывает магнитные параметры (J) сердечника, его размеры (N) с характеристиками намагничивающей обмотки, а именно с числом ее ампер-витков АЖ. Это соотношение является базовым для выбора предельной величины АШ необходимой для предельного намагничивания сердечников эллипсоидальной формы. Сердечники цилиндрической формы, в отличие от эллипсоидальных, намагничиваются неравномерно. Следовательно, для каждой точки цилиндрического сердечника справедливо свое уравнение (7). Коэффициент размагничивания N в этом случае зависит не только от формы сердечника, как в случае с эллипсоидом, но и является функцией координат сердечника. Чтобы применить уравнение (7) для расчета сердечников цилиндрической формы вводят усредненные по длине (объему) сердечника параметры H, Jи *N*. Основываясь на принципах такого усреднения в [4] было предложено расчетное соотношение типа (7) для сердечников цилиндрической формы. В этом соотношении увязаны между собой ампер-витки АW, определяющие напряженность H_{κ} намагничивающей обмотки, коэффициент размагничивания сердечника и

величина его средней намагниченности $J_{\rm c}$ по всему объему:

$$J_{c} = \frac{1}{2 \cdot N_{c}} \cdot \left[N_{II} \cdot a + H_{K} + b - - \sqrt{\left(N_{II} \cdot a + H_{K} + b \right)^{2} - 4 \cdot N_{II} \cdot H_{K} \cdot a} \right], \tag{8}$$

где a, b - постоянные коэффициенты зависят от материала сердечника (для пермаллоя 50H: a=1.25*10 6 , b=40 A/м), $N_{\rm u}$ - центральный (в центральном поперечном сечении стержня) коэффициент размагничивания:

$$N_{\rm II} = 0.93 \left(\frac{l_{\rm c}}{d_{\rm c}}\right)^{-1.7}.$$
 (9)

Зависимость (9) указывает на то, что при выборе размеров сердечника необходимо стремится к увеличению соотношения между его длиной и диаметром. В случае, когда длина сердечника жестко оговорена, необходимо стремится к минимизации диаметра стержня $d_{\rm c}$, как из соображений снижения массы сердечника, так и из соображений минимизации параметров обмотки, а точнее ее числа ампер-витков необходимых для намагничивания сердечника до преднасыщенного состояния. Соотношение (8) с учетом (2) легко преобразуется к виду, увязывающему величину магнитного момента электромагнита с параметрами его магнитной системы и намагничивающей обмотки:

$$M_{\rm cp} = \frac{\pi \cdot d^2 \cdot l_{\rm c}}{9.42 \left(\frac{l_{\rm c}}{d_{\rm c}}\right)^{-1.7}} \left(0.93 \left(\frac{l_{\rm c}}{d_{\rm c}}\right)^{-1.7} a + AW/L_{\rm K} + b - \frac{1}{2} \left(\frac{l_{\rm c}}{d_{\rm c}}\right)^{-1.7} a + \frac{1}{2} \left(\frac{l_{\rm c}}{d_{$$

$$-\sqrt{\left(0.93 \cdot \left(\frac{l_{\rm c}}{d_{\rm c}}\right)^{-1.7} a + AW/L_{\rm K} + b\right)^2 - 4 \cdot 0.93 \left(\frac{l_{\rm c}}{d_{\rm c}}\right)^{-1.7} a \cdot AW/L_{\rm K}}\right)}.$$

Это соотношение является базовым для расчетов параметров цилиндрических сердечников. Естественно, что оно не учитывает действие наконечников на среднюю намагниченность $J_{\rm c}$ стержня магнитной системы электромагнита. На рис. 2 приведена расчетная зависимость (10) величины магнитного момента электромагнита (без наконечников) от числа ампер-витков намагничивающей обмотки. Расчет проводился при $d_{\rm c}=9$ мм и $I_{\rm c}=165$ мм.

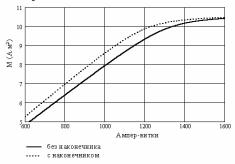
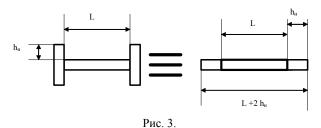



Рис. 2

Установка наконечников на торцах сердечника приводит к выравниванию неравномерности намагниченности стержня по длине, что в конечном итоге увеличивает, как среднюю намагниченность сердечника цилиндрической формы, так и величину созда-

ваемого ним магнитного момента M.

Аналитические и экспериментальные исследования, проведенные в рамках настоящей работы, указывают на то, что действие наконечников можно интерпретировать как увеличение длины стержня на величину выступающих частей наконечника. Суть этой интерпретации наглядно проиллюстрирована на рис. 3, а ее правомерность обоснована рядом проведенных экспериментальных исследований для наконечников с диаметром намного меньше длины сердечника ($l_v/h_{\rm H}>10$).

Такая интерпретация действия наконечников на магнитное состояние магнитной системы позволяет соотношение (9) для центрального коэффициента размагничивания $N_{\rm ц}^{\rm p}$ сердечника с наконечниками представить как:

$$N_{\rm II}^{\rm H} = 0.93 \left(\frac{l_{\rm c} + 2 \cdot h_{\rm H}}{d_{\rm c}} \right)^{-1.7}.$$
 (11)

Данное соотношение указывает на то, что увеличение диаметра наконечников приводит к уменьшению коэффициента размагничивания, а следовательно и к снижению числа ампер-витков намагничивающей обмотки.

Таким образом, соотношение (10) для магнитного момента $M^{\rm H}$ электромагнита с наконечниками с учетом (11) примет вид:

$$M^{H} = \frac{l_{c} + 2h_{H}}{l_{c}} \cdot \frac{\pi \cdot d^{2} \cdot l_{c}}{9.42 \left(\frac{l_{c} + 2 \cdot h_{H}}{d_{c}}\right)^{-1.7}}$$

$$\left(0.93 \left(\frac{l_{c} + 2 \cdot h_{H}}{d_{c}}\right)^{-1.7} a + AW/L_{K} + b - \left(\left(0.93 \cdot \left(\frac{l_{c} + 2 \cdot h_{H}}{d_{c}}\right)^{-1.7} a + AW/L_{K} + b\right)^{2} - \left(12\right)\right)$$

$$-4 \cdot 0.93 \left(\frac{l_{c} + 2 \cdot h_{H}}{d_{c}}\right)^{-1.7} a \cdot AW/L_{K}\right)^{0.5}$$

Это уравнение является базовым для определения необходимого числа ампер-витков, при заданных параметрах намагничивающей обмотки $(L_{\rm k})$ и магнитной системы электромагнита, а именно диаметра $(d_{\rm c})$ и длины $(l_{\rm c})$ ее сердечника, а также размера $(h_{\rm H})$ ее наконечников.

При этом речь идет об ампер-витках обмотки, число которых явилось бы достаточным для обеспе-

чения средней намагниченности сердечника. Именно на эту величину намагниченности, как предельную, следует ориентироваться при практических расчетах. Предельного значения намагниченности в сердечниках цилиндрической формы достичь практически невозможно без перенасыщения его центральной части. В свою очередь такое перенасыщение приведет к увеличению ампер-витков намагничивающей обмотки, а следовательно и к увеличению ее массогабаритных показателей.

На рис. 2 представлена расчетная зависимость величины магнитного момента M от числа AW для электромагнита с диаметром (d_c =9 мм), длинной сердечника (l_c =165 мм) и параметром наконечников $(h_{\rm H}=4,5{\rm MM})$ определяемая соотношением (12). Увеличение длины сердечника на величину $2(l_{\rm H}/2)$ обосновывается тем, что установка наконечника вплотную к сердечнику, приводит по существу к увеличению его длины. Сопоставление зависимостей на рис. 2 наглядно показывает, что установка наконечников приводит к снижению необходимого числа ампер-витков намагничивающей обмотки при создании одинакового магнитного момента. В данном случае это снижение составляет величину порядка 20%. Снижение числа ампер-витков напрямую снижает и массу намагничивающей обмотки электромагнита. Проведенные расчеты еще раз указывают на эффективность использования наконечников в магнитных системах электромагнитов.

Как было указано ранее, первым и необходимым условием минимизации массы его намагничивающей обмотки является обеспечение максимально возможной плотности тока. Соотношение, увязывающее плотность тока j при заданной величине питающего напряжения U, с параметрами ($l_{\rm np}$, $S_{\rm np}$ — соответственно, длина и сечение провода) намагничивающей обмотки представляется в виде:

$$j = \frac{U}{S_{\text{np}} \cdot R} = \frac{U}{S_{\text{np}} \cdot \rho \cdot \frac{l_{\text{np}}}{S_{\text{np}}}} = \frac{U}{\rho \cdot l_{\text{np}}}, \quad (13)$$

где ρ - удельное сопротивление проводящего материала, из которого изготовлена обмотка.

Как следует из соотношения (13), плотность тока обмотки однозначно определяет длину ее провода при заданном напряжении питания:

$$l_{\rm np} = \frac{U}{j \cdot \rho} \,. \tag{14}$$

Знание длины провода обмотки, минимального $d_{\rm c}$ и максимального D диаметров намагничивающей обмотки электромагнита позволяет практически однозначно определить ее оптимальное число витков w:

$$w \approx \frac{l_{\rm np}}{\pi} \frac{D + d_{\rm c}}{2} = \frac{2U}{\pi \cdot j \cdot \rho \cdot (D + d_{\rm c})}.$$
 (15)

С учетом однозначности определения длины провода (числа витков) обмотки по критерию плотности в ней тока, единственным параметром, посредством которого возможно осуществлять регулирование числа ампер-витков (AW) обмотки, остается сечение $S_{\rm np}$ ее провода:

$$AW = \frac{2U \cdot S_{\text{np}}}{\pi \cdot j \cdot \rho \cdot (D + d_{\text{c}})},$$
(16)

При этом масса m_{ob} обмотки с учетом соотношения (13) будет определяться как:

$$m_{\text{of}} = \delta_{\text{M}} \frac{U}{\rho} \cdot \frac{S_{\text{np}}}{j},$$
 (17)

где $\delta_{\scriptscriptstyle \rm M}$ – удельный вес меди.

Мощность потребляемая обмоткой при этом будет равна:

$$P = j \cdot S_{\text{IID}} \cdot U \,, \tag{18}$$

Соотношения (16–18) являются исходными для выбора параметров обмотки. Величина сечения провода $S_{\rm пр}$ и удельная плотность тока j играют в них ключевую роль. К их правильному выбору сводится решение задачи оптимизации намагничивающей обмотки.

В дополнение к указанным параметрам оптимизации намагничивающей обмотки следует отнести и плотность укладки ее провода в окне магнитной системы электромагнита. Величина этого окна имеет площадь S, равную:

$$S = \frac{D - d_c}{2} L_{\pi} . \tag{19}$$

В указанное окно должен разместиться провод обмотки при коэффициенте заполнения k_3 , т.е. должно выполняться условие:

$$\frac{2U \cdot S_{\text{IIP}}}{\pi \cdot j \cdot \rho \cdot (D + d_{\text{c}})} k_3 \le L_{\text{c}} \frac{D - d_{\text{c}}}{2}$$
 (20)

Из приведенных выкладок следует, что: для обеспечения минимума массы намагничивающей обмотки (при заданном числе ее ампер-витков) следует стремиться к увеличению удельной плотности тока j; снижение мощности, потребляемой обмоткой, требует снижение плотности тока, т.е. увеличения массы обмотки.

В табл. 1, приведены варианты выполнения намагничивающей обмотки электромагнитов с $d_{\rm c}$ = 9 мм, рассчитанные по приведенным выше соотношениям, обеспечивающие при этом величины магнитного момента электромагнита – M = 10 ${\rm Am}^2$

Таблица 1

					т аолица т
Число	Плот-	Диа-	Macca	Macca	Потреб-
витков	ность	метр	сердеч-	об-	ляемая
	тока,	прово-	ника,	мотки,	мощ-
	А/мм2	да,	грамм	грамм	ность,
		MM			Вт
10000	4,3	0,19	102	85	3.2
12800	2,8	0,2	102	178	2,2
13590	2,7	0,2	102	148	2,3
13000	2,8	0,21	102	169	2,4

В ходе выполнения настоящей работы была изготовлена физическая модель оптимального варианта электромагнита и проведены его экспериментальные исследования в части определения зависимости его магнитного момента от тока I намагничивающей обмотки. Результаты экспериментальных исследований представлены на рис. 4.

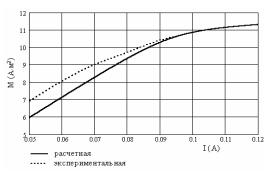


Рис. 4

На рис. 4 приведены также расчетные зависимости для оптимального варианта электромагнита. При этом расчетная величина магнитного момента определялась как сумма магнитных моментов намагничивающей обмотки $M_{\rm of}$ и сердечника $M_{\rm cp}$ магнитной системы электромагнита. Сопоставление расчетных и экспериментальных зависимостей рис. 4 показывает хорошее совпадение выбранной расчетной модели при проектировании электромагнитов с сердечниками цилиндрической формы.

выводы

Предложена схема расчета электромагнитов с наконечниками, которая может быть положена в основу инженерных методик их расчета.

Определены критерии оптимизации размеров, массы и потребляемой мощности электромагнитов для управления магнитным полем.

ЛИТЕРАТУРА

- [1] Розов В.Ю., Волохов С.А., Ерисов А.В. Электромагнитный компенсатор магнитных полей технических объектов //Вісник Національного технічного університету "ХПІ". 2001. №15. С. 191–197.
- [2] V. Kildishev, S. A. Volokhov and A. V. Erisov, "A Local Shipboard Electromagnetic Compensator", MARELEC'99 -2nd International Conference on Marine Electromagnetics, ENSIETA, BREST, FRANCE, 5 - 7 JULY 1999, pp. 453-458.
- [3] Назаров Ю.И., Гузеев С.Т., Волохов С.А., Кильдишев А.В. Магнитный диполь для компенсации магнетизма судна.//Вторая международная конференция по судостроению - ISC'98. 24 - 26 ноября 1998 г. Санкт-Петербург, Россия. Труды. Секция Е. Физические поля судов и океана, обитаемость судов. Том 2. Санкт-Петербург, 1998, С.44-48.
- [4] Коваленко А.П. Магнитные системы управления космическими летательными аппаратами. М., "Машиностроение", 1975.
- [5] Стреттон Дж.А. Теория электромагнетизма. М,. Гостехиздат, 1948, 539с.

Поступила 28.11.2005