©2015. И. И. Скрыпник, С. В. Скрыпник

ТОЧНЫЕ УСЛОВИЯ УСТРАНИМОСТИ ИЗОЛИРОВАННОЙ ОСОБЕННОСТИ ДЛЯ ОДНОГО КЛАССА ЭЛЛИПТИЧЕСКИХ УРАВНЕНИЙ С НЕСТАНДАРТНЫМИ УСЛОВИЯМИ РОСТА

В данной работе получены точные условия устранимости изолированной особенности для одного класса двух-фазных эллиптических уравнений

Ключевые слова: устранимость изолированной особенности, двух-фазные уравнения.

1. Введение и основные результаты.

В данной работе изучаются решения уравнений

$$-\operatorname{div}\mathbb{A}(x,\nabla u) = 0, \quad x \in \Omega \setminus \{x_0\},\tag{1.1}$$

где Ω ограниченная область в \mathbb{R}^n , $n\geq 2$, $x_0\in\Omega$. Мы предполагаем, что функция $\mathbb{A}:\Omega\times\mathbb{R}^n\to\mathbb{R}^n$ удовлетворяет условиям Каратеодори и кроме того, с некоторыми положительными постоянными ν_1 , ν_2 выполнены неравенства

$$\mathbb{A}(x,\xi)\,\xi \geq \nu_1 \,g(a(x),|\xi|)|\xi|, \quad \xi \in \mathbb{R}^n,
|\mathbb{A}(x,\xi)| \leq \nu_2 \,g(a(x),|\xi|), \tag{1.2}$$

где $g(a(x),t)=t^{p-1}+a(x)t^{p-1}\ln^{\alpha}(1+t),\ t,\alpha>0,\ a(x)\geq0$ и с положительной постоянной A выполнено неравенство

$$|a(x) - a(y)| \le \frac{A}{\ln^{\alpha} \frac{1}{|x - y|}}, \quad x \ne y \in \Omega.$$

$$(1.3)$$

В дальнейшем мы будем различать два случая: $a(x_0)=0$ (так называемая p-фаза) и $a(x_0)>0$ (так называемая $(p,p+\alpha)$ -фаза). В дальнейшем также предполагаем, что p и α удовлетворяют следующим условиям

$$1$$

$$1 , если $a(x_0) > 0$. (1.5)$$

В связи с различными приложениями в теории уравнений математической физики, качественная теория квазилинейных эллиптических уравнений вида (1.1) получила интенсивное развитие, начиная с работы Жикова В.В. [23, 24] и Марцеллини П. [10, 11] (см., например, [1] - [6], [8] - [15]).

Для уравнений вида (1.1) со стандартными условиями роста ($\alpha = 0$, $a(x) \equiv 1$) поведение решений в окрестности точечной сингулярности изучалось многими авторами, начиная с работ Серрина Дж. (см., например, [17, 18, 19, 22]).

Посвящается 75-летию со дня рождения Игоря Владимировича Скрыпника

Точные условия устранимости изолированной особенности для уравнений вида

$$\operatorname{div}\left(g(|\nabla u|)\frac{\nabla u}{|\nabla u|}\right) = 0,\tag{1.6}$$

где $g(t) \in C(\mathbb{R}^1_T)$ удовлетворяет неравенствам

$$\left(\frac{t}{\tau}\right)^{p-1} \le \frac{g(t)}{g(\tau)} \le \left(\frac{t}{\tau}\right)^{q-1}, \quad t \ge \tau > 0, \tag{1.7}$$

были получены в работах [13, 16]. В частности, точные условия устранимости изолированной особенности для уравнений вида (1.6) имеют вид

$$\lim_{r \to 0} g\left(\frac{M(r)}{r}\right) r^{n-1} = 0, \quad 1$$

$$\lim_{r \to 0} M(r) \ln^{-1} \frac{1}{r} = 0, \quad q = n, \tag{1.9}$$

где $M(r) := \text{ess sup}\{|u(x)| : |x| = r\}.$

В данной работе изучаются точные условия, налагаемые на решения уравнения (1.1), которые обеспечивают устранимость изолированной особенности. Перед формулировкой основных результатов мы дадим определение решения уравнений (1.1). Пусть $G(a(x),t)=t\,g(a(x),t),\,t>0$ через $W^{1,G}(\Omega)$ определим класс слабо дифференцируемых функций, для которых конечен интеграл

$$\int_{\Omega} G(a(x), |\nabla u|) dx < \infty.$$

Будем говорить, что u(x) – решение уравнения (1.1) в $\Omega\setminus\{x_0\}$, если для любой функции $\psi\in C^1(\Omega)$, которая равна нулю в окрестности $\{x_0\}$, мы имеем включение $u\,\psi\in W^{1,G}(\Omega)$ и кроме того, справедливо интегральное тождество

$$\int_{\Omega} \mathbb{A}(x, \nabla u) \nabla(\varphi \psi) dx = 0, \tag{1.10}$$

для любой функции $\varphi \in \stackrel{\circ}{W}^{1,G}(\Omega)$.

Говорим также, что u(x) имеет устранимую особенность в $\{x_0\}$, если $u\in W^{1,G}(\Omega)$ и, кроме того, интегральное тождество (1.10) справедливо при $\psi\equiv 1$.

Для $0 < R < \min\{1, \operatorname{dist}(x_0, \partial \Omega)\}$ и 0 < r < R определим M(r) равенством

$$M(r) := \sup\{|u(x)| : x \in K(r, R)\},\$$

где $K(r,R) := B_R(x_0) \setminus B_r(x_0), B_r(x_0) := \{x : |x - x_0| < r\}.$

Нашим первым основным результатом данной работы является следующая теорема.

Теорема 1.1. Пусть u(x) – решение уравнения (1.1), $a(x_0) = 0$ и выполнены условия (1.2)–(1.4). Предположим также, что

$$\lim_{r \to 0} M(r) r^{\frac{n-p}{p-1}} = 0, \quad ecnu \quad 1$$

$$\lim_{r \to 0} M(r) \ln^{-1} \frac{1}{r} = 0, \quad ecnu \quad p = n, \tag{1.12}$$

тогда особенность u(x) в $\{x_0\}$ устранима.

Следующая теорема – это точное условие устранимости в случае(p,p+lpha)-фазы.

Теорема 1.2. Пусть u(x) – решение уравнения (1.1), $a(x_0) > 0$ и выполнены условия (1.2), (1.3), (1.5). Предположим также, что

$$\lim_{r \to 0} M(r) r^{\frac{n-p-\alpha}{p+\alpha-1}} = 0, \quad ecnu \ 1$$

$$\lim_{r \to 0} M(r) \ln^{-1} \frac{1}{r} = 0, \quad ecnu \quad p = n - \alpha, \tag{1.14}$$

тогда особенность u(x) в $\{x_0\}$ устранима.

Замечание 1.1. Теорема 1.2 является следствием результатов [13]. Определим $R_0 = \exp\left(-\left(\frac{2A}{a(x_0)}\right)^{\frac{1}{\alpha}}\right)$ и пусть $R_1 < \min(R,R_0)$. Очевидно, что выполнены неравенства

$$\frac{a(x_0)}{2} \le a(x) \le \frac{3}{2}a(x_0)$$
 для всех $x \in B_{R_1}(x_0)$.

Поэтому

$$\min\left(1, \frac{a(x_0)}{2}\right)g(t) \le g(a(x), t) \le \max\left(1, \frac{3a(x_0)}{2}\right)g(t), \quad t > 0,$$

где $g(t) = t^{p-1} + t^{p-1} \ln^{\alpha}(1+t)$, и кроме того, справедливы неравенства (1.7) при $q = p + \alpha$. Отметим также, что условие (1.8) эквивалентно (1.13). Таким образом, Теорема 1.2 является следствием (1.8), (1.9).

Отметим, что данная работа продолжает исследования [17, 20, 21].

2. Доказательство Теоремы 1.1.

2.1 Интегральные оценки градиента решения.

В дальнейшем нам понадобится следующая лемма (см., например, [7]).

Лемма 2.1. Пусть $\{y_j\}$ – ограниченная числовая последовательность, удовлетворяющая условию

$$0 \le y_{j+1} \le C b^j y_j^{1+\varepsilon}, \qquad j = 0, 1, 2, \dots$$

c положительными постоянными $\varepsilon, \ C>0, \ b>1.$ Тогда выполнено неравенство

$$y_j \leq C^{\frac{(1+\varepsilon)^j-1}{\varepsilon}} b^{\frac{(1+\varepsilon)^j-1}{\varepsilon^2} - \frac{j}{\varepsilon}} y_0^{(1+\varepsilon)^j}.$$

Кроме того, если $y_0 \leq C^{-\frac{1}{\varepsilon}} b^{-\frac{1}{\varepsilon^2}}$, то $\lim_{i \to \infty} y_i = 0$.

При $r > 0, \ p < n$ положим $\psi_r(x) \in C^1(B_R(x_0)), \ 0 \le \psi_r(x) \le 1, \ \psi_r(x) = 0$ для $x \in B_r(x_0), \ \psi_r(x) = 1$ для $x \in B_R(x_0) \setminus B_{2r}(x_0), \ |\nabla \psi_r| \le 2 \, r^{-1}$.

Кроме того, при $r>0,\ p=n$ положим $\psi_r(x)\in C^1(B_R(x_0)),\ 0\leq \psi_r(x)\leq 1,$ $\psi_r(x)=0$ для $x\in B_r(x_0),\ \psi_r(x)=1$ для $x\in B_R(x_0)\backslash B_{\sqrt{r}}(x_0),\ |\nabla\,\psi_r|\leq \frac{2}{|x-x_0|\ln\frac{1}{r}}$.

В дальнейшем, через γ будем понимать всевозможные постоянные, зависящие лишь от ν_1 , ν_2 , n, p, α , R и A. Положим также $u_r := (u_-(M(r)))_+$, $E(r) := \{x \in B_R(x_0); u > M(r)\}.$

Лемма 2.2. Предположим, что выполнены условия Теоремы 1.1. Тогда справедливо неравенство

$$\int_{E(R)} G(a(x), |\nabla u|) \psi_r^{p+1} dx \le \gamma M(r) \mu(r), \tag{2.1}$$

где $\mu(r) = M^{p-1}(r)r^{n-p}$, если p < n и $\mu(r) = \left(M(r) \ln^{-1} \frac{1}{r}\right)^n$, если p = n.

Доказательство. Подставим в интегральное тождество (1.10) функции $\varphi = u_R \psi_r^p, \ \psi = \psi_r,$ используя (1.2) и очевидное неравенство

$$g(a(x),b)c \le \varepsilon g(a(x),b)b + g\left(a(x),\frac{c}{\varepsilon}\right)c, \qquad \varepsilon,b,c > 0,$$
 (2.2)

мы получим

$$\begin{split} \int\limits_{E(R)} G(a(x),|\nabla u|)\psi_r^{p+1}dx &\leq \gamma \int\limits_{E(R)} u_R^p |\nabla \psi_r|^p dx + \\ &+ \gamma \int\limits_{E(R)} a(x) u_R^p \ln^\alpha (1+u_R |\nabla \psi_r|) |\nabla \psi_r|^p dx, \end{split}$$

отсюда, используя (1.3) и определение M(r), мы получим требуемое неравенство (2.1). \square

При $t \ge M(r)$ положим

$$E_t(R) := \{ x \in E(R) : u < t \}, \quad u^{(t)}(x) := \min\{ u_R(x), t - M(R) \}.$$

Лемма 2.3. Пусть выполнены условия Теоремы 1.1. Тогда справедливо следующее неравенство

$$\int_{E_t(R)} |\nabla u|^p \psi_r^{p+1} dx \le \gamma (t - M(R)) \mu(r), \tag{2.3}$$

 $r de \ \mu(r) \ onpedeneno \ в \ Лемме \ 2.2.$

Доказательство. Подставим в интегральное тождество (1.10) функции $\varphi =$ $u^{(t)}\psi_r^p, \ \psi = \psi_r, \$ используя (1.2), получим

$$\int_{E_t(R)} G(a(x), |\nabla u|) \psi_r^{p+1} dx \le \gamma (t - M(R)) \int_{E(R)} g(a(x), |\nabla u|) |\nabla \psi_r| \psi_r^p dx,$$

отсюда, используя неравенство (2.2) с $b=|\nabla u|,\, c=|\nabla \psi_r|,\, \varepsilon=M^{-1}(r)\,\psi_r^{-1},$ мы имеем

$$\int_{E_{t}(R)} G(a(x), |\nabla u|) \psi_{r}^{p+1} dx \leq \gamma (t - M(R)) M^{-1}(r) \int_{E(R)} G(a(x), |\nabla u|) \psi_{r}^{p+1} dx + \gamma (t - M(R)) \int_{E(R)} g(a(x), M(r) |\nabla \psi_{r}|) |\nabla \psi_{r}| dx.$$

Отсюда, используя (1.3), определение M(r) и Лемму 2.2, мы получим требуемое неравенство (2.3). \square

2.2 Ограниченность решений уравнения (1.1) в случае p-фазы.

Мы докажем ограниченность решений лишь в случае p < n. Доказательство ограниченности решений в случае p = n полностью аналогично.

Зафиксируем
$$0<\rho\leq\frac{R}{2},$$
 при $j=0,1,2,\ldots$ положим $\rho_j^{(1)}=\frac{\rho}{2}(1+2^{-j}),$ $\rho_j^{(2)}=\frac{\rho}{2}(3-2^{-j}),$ $\overline{\rho_j}^{(1)}=\frac{1}{2}(\rho_j^{(1)}+\rho_{j+1}^{(1)}),$ $\overline{\rho_j}^{(2)}=\frac{1}{2}(\rho_j^{(2)}+\rho_{j+1}^{(2)}),$

$$D_j = \{x : \rho_j^{(1)} < |x - x_0| < \rho_j^{(2)}\}, \quad \overline{D_j} = \{x : \overline{\rho_j}^{(1)} < |x - x_0| < \overline{\rho_j}^{(2)}\},$$

 $k_j=2k-\frac{k}{2^j}$, где k положительное число, которое мы определим позже. Пусть $\xi_j\in C_0^\infty(\overline{D_j}),\ 0\leq \xi_j\leq 1,\ \xi_j=1$ в $D_j,\ |\nabla\,\xi_j|\leq \gamma\,2^j\,\rho^{-1}$. Подставим в интегральное тождество (1.10) функции $\varphi=(u_R-k_{j+1})_+\xi_j^p,\ \psi=\xi_j,$ используя (1.2) и (2.2), получим

$$\int_{\overline{D_{j}}} |\nabla (u_{R} - k_{j+1})_{+}|^{p} \xi_{j}^{p+1} dx \leq \gamma 2^{j \gamma} \rho^{-p} \int_{\overline{D_{j}}} (u_{R} - k_{j+1})_{+}^{p} dx +
+ \gamma 2^{j \gamma} \rho^{-p} \int_{\overline{D_{j}}} a(x) (u_{R} - k_{j+1})_{+}^{p} \ln^{\alpha} (1 + (u_{R} - k_{j+1})_{+} |\nabla \xi_{j}|) dx,$$

отсюда, используя (1.3) и (1.11), получим

$$\int_{\overline{D_{i}}} |\nabla (u_{R} - k_{j+1})_{+}|^{p} \xi_{j}^{p+1} dx \le \gamma 2^{j \gamma} \rho^{-p} \int_{\overline{D_{i}}} (u_{R} - k_{j+1})_{+}^{p} dx.$$
(2.4)

Из теоремы вложения Соболева и (2.4) следует

$$\int_{D_{j+1}} (u_R - k_{j+1})_+^p dx \leq \int_{\overline{D_j}} (u_R - k_{j+1})_+^p \xi_j^{p+1} dx \leq
\leq \gamma \int_{\overline{D_j}} |\nabla (u_R - k_{j+1}) \xi_j^{\frac{p+1}{p}}|^p dx |\overline{D_j} \cap \{u_R > k_{j+1}\}|^{\frac{p}{n}} \leq
\leq \gamma 2^{j \gamma} k^{-\frac{p^2}{n}} \rho^{-p} \int_{D_j} (u_R - k_j)_+^p dx.$$

Положим $y_j = \rho^{-n} \int\limits_{D_j} (u_R - k_j)_+^p dx$, из последнего неравенства получим

$$y_{j+1} \le \gamma 2^{j \gamma} k^{-\frac{p}{n}} y_j^{1+\frac{p}{n}}, \qquad j = 0, 1, 2, \dots$$

Согласно Лемме 2.1, это неравенство влечет $\lim_{j\to\infty}y_j=0$, если k удовлетворяет следующему условию $y_0=\gamma\,k^p$, поэтому, отсюда имеем

$$(M(\rho) - M(R))_{+}^{p} \le \gamma \rho^{-n} \int_{D_0} u_R^p dx,$$
 (2.5)

так как $D_0 \subset K\left(\frac{\rho}{2},R\right)$ и $u_R(x)=u^{(M(\frac{\rho}{2}))}(x)$ при $x\in K\left(\frac{\rho}{2},R\right)$, то из (2.5), используя неравенство Пуанкаре и Лемму 2.3, получим

$$(M(\rho) - M(R))_+^p \le \gamma \rho^{p-n} \left(M\left(\frac{\rho}{2}\right) - M(R) \right)_+ \mu(r),$$

итерируя последнее неравенство, имеем для любого $0 < \rho \le \frac{R}{2}$

$$(M(\rho) - M(R))_{+} \le \gamma \rho^{\frac{p-n}{p-1}} \mu^{\frac{1}{p-1}}(r).$$
 (2.6)

Переходя к пределу при $r \to 0$ в неравенстве (2.6) и используя условие (1.11), из неравенства (2.6) следует $M(\rho) \le M(R)$, что доказывает ограниченность решений.

2.3 Окончание доказательства Теоремы 1.1.

Пусть K – компакт в Ω , и $\xi \in C_0^{\infty}(\Omega)$, $\xi = 1$ при $x \in K$. Подставляя в интегральное тождество (1.10) функции $\varphi = u \, \xi \psi_r^p$, $\psi = \psi_r$, используя (1.2), (2.2), ограниченность решений и переходя к пределу при $r \to 0$, мы получим

$$\int_{K} G(a(x), |\nabla u|) dx \le \gamma. \tag{2.7}$$

Подставляя в (1.10) $\varphi \psi_r$, где φ – произвольная функция из $\overset{\circ}{W}{}^{1,G}$, используя (2.7) и ограниченность решений, переходя к пределу при $r \to 0$, мы получим интегральное тождество (1.10) для любой функции $\varphi \in \overset{\circ}{W}{}^{1,G}$ и $\psi \equiv 1$. Таким образом, Теорема 1.1 доказана.

- 1. Baroni P., Colombo M., Mingione G. Harnack Inequalities for Double Phase Functionals // Nonlinear Analysis. 2015. V. 121. P. 206-222.
- 2. Colombo M., Mingione G. Regularity for double phase variational problems //Arch. Rat. Mech. Analysis. 2015. V. 215, No. 2. P. 443-496.
- 3. Colombo M., Mingione G. Bounded minimisers of double phase variational integrals // Arch. Rat. Mech. Analysis. 2015. V. 218. P. 219-273.
- 4. Esposito L., Leonetti F., Mingione G. Sharp Regularity for Functionals with (p,q)-growth // J. Diff. Equat. -2004. V. 204, No. 1. P. 5-55.
- 5. Fusco N., Bordone C. Some remarks on the regularity of minima of anisotropic integrals // Comm. Partial Diff. Equat. 1993. V. 18, No. 1-2. P. 153-167.
- Kolodij I.M. On Boundedness of Generalized Solutions of Elliptic Differential Equations // Vestnik Moskow Gos. Univ. – 1970. – V. 5. – P. 44–52.
- 7. Ladyzhenskaya O.A., Ural'tseva N.N. Linear and Quasilinear Elliptic Equations. Academic Press, New-York London, 1968.
- 8. Lieberman G.M. The natural generalization of the natural conditions of Ladyzhenskaya and Ural'tseva for elliptic equations // Comm. Partial Diff. Equat. 1991. V. 16, No. 2-3. P. 311-361.
- 9. Lieberman G.M. Gradient estimates for a new class of degenerate elliptic and parabolic equations // Ann. Scuola Norm. Sup. Pisa Cl. Sci. (IV) 1994. V. 21, No. 4. P. 497-522.
- 10. Marcellini P. Regularity of minimizers of integrals of the calculus of variations with non standard growth conditions // Arch. Rat. Mech. Analysis. 1989. V. 105, No. 3. P. 267-284.
- 11. $Marcellini\ P$. Regularity and existence of solutions of elliptic equations with p, q-growth conditions // J. Diff. Equat. -1991. V. 90, No. 1. P. 1-30.
- 12. Mascolo E., Papi G. Harnack inequality for minimizers of integral functionals with general growth conditions // Nonlin. Diff. Equat. and Appl. 1996. V. 3, No. 2. P. 231-244.
- 13. Mihăilescu M. Classification of isolated singularities for nonhomogeneous operators in divergence form // J. Funct. Anal. 2015. V. 268, No. 8. P. 2336-2355.
- 14. Moscariello G., Nania L. Hölder Continuity of Minimizers of Functionals with Non-standard Growth Conditions // Ricerche di Mat. 1991. V. 15, No. 2. P. 259-273.
- 15. Moscariello G. Regularity results for quasiminima of functionals with non-polynomial growth // J. Math. Anal. Appl. 1992. V. 168, No. 2. P. 500-512.
- 16. Namlyeyeva Yu.V., Skrypnik I.I. Removable singularities for elliptic equations with (p,q)-growth conditions // Preprint. IM-2015-55, Praha, 2015.
- 17. Nicolosi F., Skrypnik I.V., Skrypnik I.I. Precise point-wise growth conditions for removable isolated singularities // Comm. in Part. Diff. Equat. 2003. V. 28, No. 3-4. P. 677-696.
- 18. Serrin J. Isolated singularities of solutions of quasi-linear equations // Acta Mathematica. 1965. V. 113, No. 1. P. 219-240.
- 19. Serrin J. Removable singularities of solutions of elliptic equations // Arch. Rat. Mech. Analysis. 1965. V. 20, No. 3. P. 163-169.
- 20. Skrypnik I.V. Methods for Analysis of Nonlinear Elliptic Boundary Value Problems. Translations of AMS. V. 139. Providence, 1994.
- 21. Skrypnik I.V. About pointwise estimates for some capacity potentials // General theory of boundary value problems. Kyiv, Nauk. Dumka, 1983. P. 198-206.
- Veron L. Singularities of Solutions of Second Oorder Quasilinear Equations. Longman, Harlow, 1996.
- 23. Zhikov V.V. Averaging of functionals of the calculus of variations and elasticity theory // Izv. Akad. Nauk SSR, Ser. Math. 1986. V. 50. P. 675-710.
- 24. Zhikov V.V. On Lavrentiev's Phenomenon // Russ. J. of Math. Physics. 1995. V. 3. P. 264-269.

I. I. Skrypnik, S. V. Skrypnik

On the precise conditions for removability of isolated singularity for one class of elliptic

equations with nonstandart growth condition.

In the present paper we obtain the precise conditions for removability of isolated singularity for one class of two phase elliptic equations

 $\textbf{\textit{Keywords:}} \ \ \textit{removability of isolated singularity, two phase equations.}$

І. І. Скрипнік, С. В. Скрипнік

Точні умови усувності ізольованої особливості для одного класу еліптичних рівнянь з нестандартними умовами зростання.

У даній роботі отримано точні умови усувності ізольованої особливості для одного класу двохфазних еліптичних рівнянь.

Ключові слова: усувність ізольованої особливості, двох-фазні рівняння.

Ин-т математики НАН Украины, Славянск iskrypnik@iamm.donbass.com

Получено 19.11.15