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Taking into account the latent melting heat and the heat conductivity differences
between the solid and liquid phases, the stationary heat and mass transfer problem in a
bounded domain region of a crystal/melt system has been solved under linear approxima-
tion with respect to the crystallization front non-flatness. The region of the problem input
parameters has been shown to be subdivided into two sub-regions, a subcritical (where the
solution can be a flat one only) and a supercritical one (where the crystallization front can
take a cellular structure). The derived condition of the transition to the supercritical
crystallization regime corresponds exactly to the modified criterion of concentration over-
cooling that is known in the cellular crystal growth theory.

C yueTOM CKDPBITON TEIJIOTHI IJIABJIEHUA U PA3JUUUA MEKAY TEILJIOIMPOBOTHOCTAMHU TBEP-
oo M KUAKOW (a3 B JHMHEHHOM IPUOJMIKEHUM II0 aMILIUTYJe OTKJIOHEHHUS OT ILIOCKOTO
dponra kpucramnusanuu (PK) pemreHa cramumoHapHas 3ajadya II0 TEILJIOMAaCCOIEPEHOCY B
OrpaHMYEHHON 00JacTH CHUCTEeMbLI KPHUCTANJI — paciiaB. [lokaszaHo, 4To o06JiacTh 3HAUEHUH
BXOJHBIX IIapaMeTPOB 3aJauu pasbuBaeTcs Ha ABe 00JaCTH: JOKPUTUUECKYIO, KOTIA pellleHue
MOJKeT OBITh TOJNBKO ILIOCKHM, U 3aKPUTUYECKYIO0, Korma @K MokeT mMpuHUMATL SYEHCTYIO
CTPYKTYpY. IlonyuernHoe ycjoBHe Iepexola K 3aKPUTHUUYECKOMY PEeKUMY KPUCTANIUIAINUUA B
TOUHOCTH COOTBETCTBYET WM3BECTHOMY B TEOPUU SUYEHCTOTO POCTA KPUCTAIJIOB MOAUDUIIAPO-
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BAHHOMY KPUTEPHUI0 KOHIIEHTPAIIMOHHOTO MMEePeOXJIaKICHU.

It has been shown [1, 2] that the critical
values of the crystallization parameters for
a binary melt can be obtained from the sta-
tionary problem solution without consider-
ing the solution stability. In this case, the
criterion of the crystallization front (FC)
transition from the flat shape to the cellu-
lar one is obtained as the existence condi-
tion of a non-flat solution for the corre-
sponding problem. Thus, the approach to
the cellular crystal growth (CCG) problem
applied in [1, 2] differs in principle from
the method proposed by Mullins and Sek-
erka [3], although is much similar thereto
due to the stationary approximation used by
those authors. In our previous studies, the
latent melting heat was neglected as well as
the heat conductivity difference between
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the solid and liquid phases. The purpose of
this work is to obtain the critical crystal-
lization parameters for a binary melt in sta-
tionary regime taking into account the men-
tioned characteristics of the crystal/melt
system.

It is obvious that to that end, it is suffi-
cient to use the solidification model pro-
posed by Mullins and Sekerka [3] (the MS
model) where the heat propagation domain
is assumed to be unbounded [4]. The studies
in the frame of a model considering a
bounded heat transfer domain are, however,
of interest. The selection of that model is
justified at least by the fact that the MS
model is a limiting case thereof. At the
same time, the bounded domain model does
not result in any appreciable complication
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Fig. Scheme of crystal growing (a) and tem-
perature T distribution at the flat phase in-
terface crystal-melt (b). Crucible with a sub-
stance being crystallized at a rate v (1); fur-
naces (2, 3); Pg, Pq, the temperature
observation points in the crystal (Tg) and the
melt (T';), respectively.

of calculations as compared to the MS
model.

The selected solidification model is illus-
trated by the Fig. presenting a quite real
crystal growing scheme [6] using the two-
furnace principle proposed in [3] providing
easily the stationary crystallization regime.
The crucible 1 containing the substance to
be crystallized is pulled at a constant speed
(from right to left in the Figure) through
two furnaces 2 and 3 forming the crystal
and melt zones, respectively. The model is
based on the assumption that the furnaces
do not influence the phase interface (PI)
domain itself. Let this domain (restricted by
the PS and PL points in the Figure) be
defined as a 2h wide band where 2 is a
certain characteristic dimension (discussed
below). The part played by the furnaces in
our model is reduced to the maintaining of
the temperature values T'g and T at the Pgq
and P; points, respectively. Thus, it is sup-
posed that there are no heat sources in the
PI domain, except for the CF itself. Note
that the same assumption is the basis of the
MS model, however, the PI domain is of
infinite size therein and T'g — - [4]. It ob-
vious that, by regulating the power applied
to the furnaces and thus selecting the Tg
and T; values, we could attain always that
the CF (providing of course it is flat) will
be positioned at the middle of the above-
mentioned band.
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Let the orthogonal coordinate system x,
z be chosen where the Oz axis is directed
towards the melt and z is counted starting
from the flat CF position. The following
notation will be used from here on:

z = ¢(x) is the CF line equation;

C(x,z) is the impurity concentration in the
(x,2) point of the melt (z ¢);

C,, is the impurity concentration in the melt
at infinity from the CF;

v is the crystallization speed;

D is the impurity diffusion coefficient in
the melt;

m is the liquidus line slope in the phase
diagram of the binary system under consid-
eration;

k is the impurity distribution coefficient;
T(x,z) is the temperature in the (x,z) point
of the melt (z ¢) or the crystal (z < ¢);

Ty is the solidification temperature of the
melt at the impurity concentration C_/k;
K;(Kg) is the heat conductivity coefficient
of the melt (crystal);

L is the specific latent melting heat per
unit volume.

Let the solution definition domain Q be set
by the inequalities 0<x <! and -h<z<h
where [ is the cellular structure half-period.
Let the i value be selected so that the con-
dition D/v << h << Dp/v is met where Dy
is the temperature conductivity coefficient
in the crystal or in the melt. This condition
is easy to met, since in actual systems, Dp
exceeds D by several decimal orders [4].
Then we can take C(x,h) = C(x,o) =C,. If
we take into account that it is the cases
where | << Dp/v that are of a practical in-
terest [3], then we can make use of
Laplacian equation to find out the tempera-
ture field in the Q domain. The convection
in the melt and the diffusion in the crystal
are assumed to be negligible and the equi-
librium is assumed to exist at the phase
interface.

The concentration and temperature dis-
tribution in the domain Q at the stationary
regime can be determined by solving the
following problem:

DO2C +vC, =0, (1)
DIC,(9(x))=$,C(d(x)] + v(1-k)C((x)) = 0, (2)
C(x,0) = Cy, C,(0,2) = C,(1,2) = 0, (3)
02T = 0, (4)
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T(x,~h) = T, T(x,h) = Ty, (5)
Tx(O,Z) = Tx(l’z) = Oa (6)
KS[TZ(q) - 0) - q)xTx(q) - 0)] - (7)

- KT, (¢ +0) - ¢,T,(¢ + 0)] =vL,

T -0)=T( +0) = 3
=T, + m[C($(x)) - Coo/ K.

Here, indices are used to denote the par-
tial derivatives of C and T with respect to x
and z as well as the usual derivative of ¢
with respect to x; 0, the two-dimensional
nabla operator. Note that, taking into ac-
count that there is a stationary state and
the surface energy of the phase interface is
negligible as well as some insignificant de-
tails, the problem (1)—(8) differs from that
formulated in [4] only in the boundary con-
ditions (5).

For the flat case (¢ = 0), the solution of
the problem (1)—(8) has the form

C(2) =(C,/R)E + (1 - k)exp(-vz/D)], (11)

T(z)=Ty+Ggzatz<0, (12)
T(z)=Tyg+Grzatz O.

Here, Gg = (Ty— Tg)/h and Gg = (T} — Ty)/h.
It is just the polygonal section of the T(z)
plot presented in the Fig. 1(b) that answers
to the temperature distribution (12) in the
—h <z < h region.

Substituting the distribution (12) into
(7), we obtain the expression

K4Gg - K;G; = vL, (13)

where from it is seen that at preset non-
varying parameters Kg, K, and L, one of
the parameters Gg, Gy, or v that can be
varied is the dependent one. This is to be
taken into account when carrying out the
experiments on the CCG as well in the crys-
tal growth practice. For example, when
varying the crystallization speed, it is im-
possible to fix the averaged heat conductiv-

ity coefficient used in the CCG theory [7, 8]
G- KGg+ K;Gp (14)
- Kg+K;

but either Gg or G; can be remained con-
stant. From the standpoint of the CCG prob-
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lem, it is the G constancy that is of more
importance, thus, when varying v, it is de-
sirable to correct Gg. So, when increasing v
and maintaining Tg and T at constant lev-
els (Fig. b), it is natural to expect that the
CF will be displaced from the z = 0 position
to left, i.e., both Gg and G will change. It
is obvious that to restore the former Gp
value, the CF should be returned to the z = 0
position by lowering the Tg value, i.e. the
power applied to the furnace 2 should be
lowered (see Fig. a). The Gg in this case will
increase by the value that can be calculated
using Eq.(13).

It is to note that the right-hand side of
inequality (13) can be neglected in many
cases of practical importance. In fact, as
L/(K; + Kg) =100 KiS/cm? [3], then at
G; ~10 K/cm and v ~10"% cm/s (corun-
dum, YAG, AHC, etc.), the vL/(K;G) value
is of the order of 1073, so the above-men-
tioned FC displacement remains unapprecia-
ble even if the crystallization speed is
changed by one decimal order.

It is more convenient to carry out the
further calculations in dimensionless vari-
ables, that are defined as

. _kC-C,)  T-T,

k(C-C,) T-Ty —”1(15)
e (1-k) ST, -T,

=pb

where [ is any of linear dimensions (x, z, [,
h). Let the dimensionless coefficients be in-
troduced defined as

e:To‘Ts n:ﬁ)\: LD
Ty - TO’ KS’ KT, - TO)Elﬁ)
_(k-1mC,  kG.D
CK(T,-Ty)' (k- 1muC,

As a result of such a replacement, the 11
input parameters of the initial problem are
reduced down to five ones (k and first four
parameters of (16)). The parameter I' is one
to be sought while A’ is expressed in terms
of other ones as

e—r] :}\h', (17)

that is equivalent to (13). The coefficient B
is not an independent one (B = 1/(MhA')) but
it is very convenient in considerations of
the CCG problem [1, 5] because in unites all
the parameters that are possible to be var-
ied in experiment.

Let a perturbation (18) be imposed onto a
flat PI (¢’ = 0)
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¢' = dcoswxx’, (18)

where O is the perturbation parameter and
w=Ty/l'. In the first approximation with re-

spect to O, it is the perturbed concentration
field

C' = e? + Adexp(—qz')coswx’, (19)

that answers to the perturbation. In (19), ¢
is calculated as

q = 0.5470.25 + (2 (20)

while the constant A is to be determined.
Proceeding from (2) and taking into account
(15), we obtain

-k (21)
g+k-1

Substituting (18) into (19), we obtain in the
sameapproximation

c@)=1-—L"1 seosar. 2
qg+k-1
Using the formulae (8), (15), (16), and (22),
we obtain the condition
(23)

() = M—L= L Scosx,
q+tk-1

that makes it possible to obtain the heat
conductivity part of the problem in the first

approximation:
roe s Gra-l _00, @
K g qg+k-1 Hkp

shw(h' + 2'
bs Gj—zcoswx', -h'<z'<¢'.

shwh'

,_Z g-1 _ 10 (25)
=% s g—91"2 - 1ex
Iz @wq+k—1 r

X Mcoswx’, o' <z <h.
shwh'
Substituting (24) and (25) into (7) under
account for (15) and (16), in the zero ap-
proximation we obtain the expression (17).
Taking into account the items proportional
to dcoswx', we obtain

qg-1
g+k-1

According to (20), the left-hand side of (26)
cannot exceed 1. Thus, the non-flat solution
of the problem may exist only under condition

:BG+r]. (26)
1+n
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gcltn (27)
0 +n

It is the upper limit of that inequality
that will determine the critical values of
the crystallization parameters.

The parameter B is convenient in that if
it is less than 1, a concentration overcool-
ing (CO) zone appears in the melt [1]. Thus,
if the right-hand side of the inequality (27)
is larger or smaller than 1, this evidences
the existence of a non-flat problem solution
prior to the CO zone appearance or when it
exists already, respectively. So, at0=n=1
(the simplest 2D solidification model), we
obtain from (27) the classical CO criterion
[7]. If we take 6=n =1/2 for simplicity
sake, that is equivalent to Kg = 2K; (rela-
tion close to the reality for metals [3]), and
L =0, then in the 1 < B < 3/2 the non-flat
solution will exist in the absence of the CO
in the melt. If Kg= K; and L # 0, then at
2/(2 + Ah') £ B < 1, the solution will be still
flat although the melt will contain already
a CO zone.

Using (16) it is easy to check that the
inequality (27) answers exactly to the so-
called modified CO criterion [3]:

g - (k- 1)mcC,, (28)
v kD ’

where G is given by (14). It is to note that
the expression (28) is very elegant and easy
to remember but is impractical in use. Tak-
ing into account (13), it is better to write it
in the form

G - 1 DK ‘K ( — 1)mC,, L% (29)

The latter inequality shows how the L,
K; and Kg parameters introduced in the
model effect the G; and v critical values;
but it does not produce an illusion of sig-
nificance of the Gg parameter.
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Po3paxyHOK KpUTHYHMX 3HAYE€Hb IMapaMeTpiB
KpucTaJizainili 0iHapHOTO poO3IJIaBy B CTAlliOHAPHOMY
pesKumi

B.H.Kaniwes, C.B.Bapannux

3 ypaxyBaHHAM IIPUXOBAHOI TEIJIOTH IJIABJEHHS Ta PiSHUIl MiK TeIJONpPOBiAHOCTAMU
TBepaoi Ta pigkol ¢as y JiHiAHOMY HaOAMKEHHI B3MIOBXK aMILIITYAM BiAXWJEHHS BifJ ILJIOCKO-
ro ¢poury Kpucrainisamii (PK) Bupimreno craimionapHy samady 3 TeIJOMaCcOIepPeHOCY B o0Me-
JKeHill o0sacTi cucreMu KpucraJy-posmnaB. IlokasaHo, 110 00JacTh 3HAUeHb BXiMTHMX mapa-
MeTpiB 3ajgaui po3duBaeThCA HA ABi 00JIaCTi: JOKPUTUUYHY, KOJU PillleHHA MOXKe OYyTH TiIbKU
ILJIOCKUM, Ta 3aKPUTHUYHY, Koau PK Morke yTBOpIOBAaTH KOMipKOBY CTPYKTYDPy. OmepskaHa
YMOBa IEepexXxofy OO0 3aKPUTUYHOTO PEeXKUMY KpHCTajisallii TOYHO BiAmoBimae Bimomomy B
Teopii KOMipuacToro pocTy KPHCTAJIB MOAM(MIKOBAHOMY KPUTEPil0 KOHIIEHTPAIlillHOTO IIepe-
OXOJIOMKEeHHS.
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