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Properties of the "thin" structure domain
walls in rare-earth ortho-ferrites
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Dynamics of thin-structure domain walls (DW) has been studied taking into account of
the g-factor anisotropy. The line speed has been found as a function of the DW motion
speed different from that known before. A 180-deg DW of the Neel type with a zero-deg
Bloch line localized thereon has been considered using numerical methods. The law of the
magnetization vector turning, effective widths of the DW and line, and energy per unit
line length have been determined for such a DW. The more precise taking of the DW
bidimensionality into account has been shown to result in significant differences as
compared to the approximate analytical methods.

UccnenoBana gunammka gomeHHBIX rpaHul ([II') ¢ TOHKOII CTPYKTYpPO# € y4eTOM aHUBO-
Tponuu g-haxropa. HalifeHa CKOpPOCTh ABUKEHUS JUHUU B 3aBUCUMOCTH OT CKODOCTH IBU-
skenusa I, oTimuaromiascsa oT paHee m3BecTHOM. C IMIOMOIIBIO UMCIEHHBIX METOJOB, PACCMOT-
pena 180-rpagycuas [II' HeeJleBCKOTO THUIIA C JIOKAJM30BAHHOH Ha HeHM HOJBL-TPANyCHOM JIH-
Hueit Bmaoxa. OmpegeseHbl 3aKOH DpasBOpOTa BeKTopa HaMaramueHHoctu Ttakoii [T,
abdexTuBHble mMupuHL ' ¥ JUHNN, dSHEPTU, NPUXOAAINMIAACT HA €IWHUIY MJIUHBI JIUHWUU.
IloxasaHo, uTo Gosee TOUuHBIN yueT AByMepHOCTH I’ IPUBOAUT K CYII[€eCTBEHHBIM OTIUUYUIM
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To date, the dynamics of homogeneous
domain walls (DW) in rare-earth ortho-fer-
rites (REO) being non-collinear antiferro-
magnetics with weak ferromagnetism
(WFM) is studied in experiment in detail
enough and explained theoretically in main
features [1, 2]. In contrast to ferromagnets,
the situation with the "thin" structure in-
vestigation is quite different. Theoretically,
the existence possibility for two “thin"
structure types of DW in REO was pre-
dicted rather long ago for the case when
Q = k,/ke, >> 1 (B, and k,, being the ef-
fective anisotropy constants in the ab and
cb planes, respectively) [3]. The dynamic
characteristics of such DWs must differ sig-
nificantly from those of DWs with lines in
ferromagnets [4, 5]. For example, the gy-
rotropic term of the dynamic force acting
on the REO line appears in an external field
perpendicular to the rotation plane of the
antiferromagnetism vector 1 and it may be
comparable to the inertia and viscosity
terms in absolute value. There are also ex-
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perimental results [6—8] which can be inter-
preted as observation of dynamic lines on a
DW in REO moving at a supersonic speed.
In those experiments, however, condi-
tions were used that were not considered
theoretically (e.g., a Neel DW, high speeds
of the DW and line), so that, generally
speaking, it is unclear what a specific type
of the DW "thin" structure is realized in
practice. In [8], a doubt has been expressed
that the experimental results obtained, e.g.,
the line speed dependence on the DW speed,
can be explained well enough using the field
gyroscopic force. In principle, three further
types of possible gyroscopic forces are
known for two-sublattice magnetics [9]. In
the case of YFeO; used in experiments
[6—8], however, the first of those forces (re-
sulting from a purely relativistic invariant
in the Dzialoszynski interaction) is absent,
as well as the second one associated with
the difference between the magneto-me-
chanical ratios of the sublattices. To obtain
the third force, similar to that in ferromag-
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nets and proportional to the effective mag-
netization of sublattices, M, it is necessary
to turn down the use of one of the integrals
ml = 0 in the motion equations for magneti-
zation. To date, this is realized for homoge-
neous magnetics only [10]. Therefore, to de-
rive a new kind of gyroscopic force, it is of
interest to take into account the anisotropy
of the g-factor that may be of great impor-
tance in the antiferromagnet dynamics [11].

In general case, the Vlasov-Ishmukhame-
tov equation for spin planes should be used
to that end. It has been shown [11] that the
Landau-Lifshits equations can be applied to
a magnetic with anisotropic g-factor if the
latter is taken into account in thermody-
namic potential through the Zeeman energy.
In this work, first, the dynamics of a thin-
structure DW is studied taking into account
the g-factor anisotropy. Second, a 180-deg
Neel DW with a zero-deg line is considered
using numerical methods for arbitrary values
of the material quality factor Q.

Let an infinite REO plate be considered
in the two-sublattice model. The obiect state
is described by two sublattice magnetization
vectors M; and M, with the same modules
(M4] = |M2][ = M,). Then, the ferromagne-
tism vector m and the antiferromagnetism
one, 1, can be determined as m = (M; +
M,)/2M,, 1= (M; — My)/2M, respectively.
The Cartesian coordinate axes x, y, z are
believed to be oriented along the crystal-
lographic ones a, b, c, respectively. The en-
ergy density of the REO can be presented
[10, 11] as

1 1 2 a1 a3
w,, = Eam2 +SA(VD +d[ml] + ?lfc + 12 -

m 2 2
— 2MymH + %1)(1111)2 + %D’m212 - )
oMyt H L, — 2MytoH L,

where a, A are the homogeneous and inho-
mogeneous exchange constants, respec-
tively; D, D’, the symmetric exchange inter-
action constants; a;, ag, the second order
anisotropy constants; H, the external mag-
netic field. The quantities t;, 75 take into
account the non-diagonal components of an-
isotropic g-factor for REO in a high-tem-
perature magnetic phase. T; = g,,/8,,» Ta =
g../8xx» i are the anisotropic tensor com-
ponents. The vector d = de,, where d is the
exchange-relativistic Dzialoshynski interac-
tion. The motion equations for m and 1 are
taken within the exchange approximation [12].
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For the case m << 1, similar to the pure
antiferromagnets [10] (provided that the con-
dition A;H/2MyHy << 1, Hp = (a + D')/4M,,
is met), the vector m is related to 1 one by
the relationship

. A . 2
m = X (L1 + 1Xl[l 1 + (2)
2YM, 2yM3

1 1
+ Ejl[l’d] - 2Mo[1(1H) - H]}}(l +el el

where v is the gyromagnetic ratio; o, A, Ag,
the relativistic relaxation constant and the
exchange ones; X, = M,/Hg, the magnetic
susceptibility component perpendicular to
the equilibrium 1 direction; ¢; = 1/ H,/2Hp,
€9 = ToH,/2Hp,.

Using (2), it is easy to obtain (provided
that conditios A H;/2MyHpg; 2AH/A << 1,
H,;=d/2M, are met and taking into ac-
count that t; terms are small) the equation

. ow
_ 2 Y —‘YZG 21| =
(1,1] — c“[ALI] + 4M(2)[d’l](dl) + 4M(2) ol ’li|

- A HOL - - —=A)[L]] -
K[ ] XL (o M, LY 3)
}lell .. . .
“og MY (1,17} + y2([H, 11 + [[H,11} -

:f2 . .
- 2M0[[H’d]l] + Y(HxTIZZ + Hztzlx) X

XL s X 2M ~ B
X { 2M0Y1[H] + 4M%[ld] +— [H - 1(H)]
i
i

Note that when m =1 =19 =0, the
Eq.(3) coincides with the known equation
for 1 in [2]. The account for m, and T; re-
sults in new terms in that equation, includ-
ing the gyroscopic kind ones.

Eq.(2) is very complex and cumbersome,
so it is difficult to solve it even in the
simplest case of bidimensional DW with a
single line. That is why in what follows, we
will make use of a simplified description in
the frame of collective variable method.
Since the exchange ralaxation effect is
studied in detail in [5], we will believe
A4 = Ay = 0. The sole line presence influ-
ences only slightly the dynamics of DW it-
self. So it can be believed that the appear-
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ance of new terms in (2) does not affect
very considerably the expression for the
DW speed that is studied quite comprehen-
sively (see, e.g., [5]). Therefore, we will re-
strict ourselves by consideration of the line
motion speed in a DW of a REO.

For definiteness sake, let the high-tem-
perature magnetic phase G,F, be considered
where in a domain m|[OZ and 10X, and a
Neel type DW with a rotation of m (the DW
plane being parallel to YZ) containing a
180-deg vertical line without an m rotation.
At K, >> K, >0 where K, =d?/a - a,
K., = d?/a — a3, using the method described
before [4, 5], we can derive an equation for
the speed of the center of a sole line vpy,
vy that described the line dynamic in REO:

2
1%
. DW
(ag — ag)vpw + a7
2
1. bw
c? 3)
2
ta UDwlL N
2 N 9 1/2
g UDw
1-—=| |1-
c? c2
5 172 1/2

where
o = TH, A 4 :nszo H,
O aHp8y ' 6 8§ yHuHp' )
TH A
a, = %, 116 - LozmsHE,
12aAoH%y aH g 3§,
n2 T HZ Ty
Qo =25, Qo= —5——,
87 16aH%’ 2 3y2H,H 3
nYH g
a5:“%H, M%ZSOCHE.

When deriving Eq.(3), the speed of DW
itself (weakly depending on the presence of
a sole line) is believed to be the same as for
homogeneous DW [4].

Note that in Eq.(3), new terms (with co-
efficients ag, as, and 1) appear along with
the known ones. Those are, first, the gyro-
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scopic type term proportional to m, and in-
creased as compared to that proportional to
ag because of exchange. Second, the terms
in proportion to v2,y, and v2;. Third, it is
a term mixed with respect to vpy and v;.
Eq.(3) can be reduced to one quadratic with

respect to variables vpy /(1 — vy /e2)i1/2
and v; /(1 — v?/¢2){1/2} having the solution
of the form

f(va) )

1/2°
(1 . f(Uow)]

v =

where

f(vmv)—b + Vb2 + da,q (6)

P ) A
Ya - o3y /c?) %

Note that for the case a4y <<1 and v << ¢,
Erq.(5) has two possible solutions:

vy =—q/b, 7

ve=b/ay+q/b. ()

When H, =0, the expression for f can
be simplified significantly:

(@g — a5 vpw(l — Vi /)" 9

(1 - v}/ 2 + agvh)

=

The solution obtained before without ac-
count for the g-factor anisotropy,
vy = —AgUpq [4], differs from (7) in that now
the numerator and denominator of (7) con-
tain new terms proportional to vZpy. Al-
though no values for t; parameters have
been found in literature, it is seen from (4)
that the new terms (in proportion to T;) are
considerably smaller than the former ones.
Beginning from high speeds, however, the
g-factor anisotropy can influence signifi-
cantly the line dynamics. It is also of inter-
est to consider the case H, = 0 when there
is no usual gyroscopic force. It is seen from
(5) that in this case, the form of vi(vpy)
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depends substantially on a,. While at small
a, the function vy (vpy,) is almost a straight
line parallel to abscissa axis, it tends to a
parabola at large a,.

Let now the m # 0 appearance mecha-
nism be discussed. One possible mechanism
consists in that the nonzero component of
magnetic susceptibility longitudinal with
respect to the equilibrium 1 direction, s is
taken into account [10]. For simplicity, we
can restrict ourselves to the case when
mssz)’(lU/ZMO both in statics and in dy-
namics. Then the coefficient a( in (4) can be
LAO(H _x”_x) 1t
aHg8\ ¥ M,

is seen therefrom that a new gyroscopic
force is appeared. It is, however, in propor-
tion to the external magnetic field as it was
before, but this time, to its H, component.
As the theory of DW with 180-deg lines
is unable now explain completely the experi-
mental results [8], it is of interest to study
the static and dynamic DW with zero-deg
lines at arbitrary values of the material
quality factor @. In what follows, let the
features of the static structure be consid-
ered for a 180-deg Neel DW (similar to that
considered above) but this time containing a
zero-deg line. Numerical methods will be
used to that end. By analogy with [13], it is
assumed that in general case, 0(x,y), @(x,y).
But now a system of equations describing
the bidimensional DW structure using an-
gular variables 1 = 1(cos0,sinfsing,sinBcose):

renormalized to ay =

2
A® — ( K, — Kc08%¢ + A(Vo) ) sinfcosd (=10

0)

AsinbAg - K ,,sin20sinpcosp +  (11)
+ 2sinBcosbVOVe = 0,

has in the initial approximation the form

0o = arctg(exp(x/9)),

28
= t ’
Po = are g{exp(y/Ql/ 28,) + exp(—y/Q1/ 260)]

(12)
where 6y(+<) = 0, 7, Pg(Fec) = 0,
8 =§p(1 + @ lsin%¢py)"1/2 is the DW width;
S, amplitude (maximum deviation of the
vector 1 in the DW center from the turn
plane of a homogeneous Neel type DW); 6,
describes the 180-deg DW while ¢,, the
"thin" structure of the DW with a zero-deg
vertical Bloch line. The cases where @ =1,
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Fig. 1. Distribution structure of antiferro-
magnetism vector in a 180-deg Neel type DW
with a zero-deg Bloch line localized at the
(0,0) point. @ = 3, S = 10.

3, 5, 10 and S =0.5, 0.75, 1, 3, 10 were
considered.

The system of equations (10)-(11) was
solved using the iterative method [13-15].
Note that the method mentioned realizes
automatically the minimum energy per unit
line length. Using angular variables, this
energy is expressed as

W, = (13)

= %j £ ((VO)2 + sin0(Vip)? + sin0(1 + @ sin’) dxdy -
_ W,

where W, is the homogeneous DW energy;
S, the integration region; A, the integration
region dimension along the y axis. By nu-
merical calculations, the 0(x,y), ¢(x,y) de-
pendences were found; proceeding from
those, classical parameters defining the
"thin” DW structure (the magnetization
turn law, DW and line widths, energy of
the structure obtained, etc.) were deter-
mined for different @ and S values. Fig. 1
presents the obtained distribution of antif-
erromagnetism vector in a 180-deg Neel
type DW with a vertical zero-deg line local-
ized at the point (0,0) for @ = 3, S = 10.
Schematically, the 1 turn in such DW can
be described as follows. First, along the x
axis, the vector 1 goes out of the ac plane
(what is its turn plane in homogeneous DW)
at a maximum deviation in the DW center.
Second, in the DW center, the vector 1 de-
viation from the ac plane is increased addi-
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Fig. 2. Dependence of the 1 maximum devia-
tion angle y, .. from the ac plane on y coor-
dinate at different @ and S values: @ = 3,
S =10, analytical (1); @ =3, S =10, calcu-
lated (2); @ = 3, S = 1, analytical (3); @ = 3,
S =1, calculated (4).

tionally as it approaches the line center
where the maximum deviation is attained
defined by the amplitude S and then the
vector 1 returns to its initial position. The
dependence of the maximum deviation angle
VY,ar On the y coordinate for different @
and S values is shown in Fig. 2.

It follows from the numerical calcula-
tions that in the case @ > 10 (i.e. in the
region where the analytical method @ >> 1
works well) the structure determined nu-
merically coincides with the analytical one
at a high accuracy. As @ decreases, the dif-
ference between those results increases in
parallel with the amplitude S. But, unlike
the DW with a 180-deg Bloch line [13], a
maximum difference between analytically
and numerically determined angle (¢g(y) —
¢(x,y)) is observed in the region near @ = 3
and this difference increases with the am-
plitude S. A weaker dependence on the am-
plitude value is found for the angle differ-
ence (Bp(x) — 0(x,y)) that shows no pro-
nounced maximum for the considered @
values. It is also to note that while the
found 6(x,y) values depend only slightly on
the y coordinate for all the @ and S values
considered, the ¢(x,y) depend on x heavily
enough.

The dependences of the effective DW
width (as determined by the "classic” way
after Lilly) and the line one on the coordi-
nate along the DW (y) for different @ and S
values are shown in Figs. 3 and 4. The DW
width is seen to be substantially inde-
pendent of @ and S and to differ only
slightly from the analytical one, & =8y(1 +
Q@ 1sin2¢9)"1/2, In contrast, the calculated
line width differs significantly enough from

484

o

5 Q

Fig. 3. DW and line width dependence on @
at S = 0.5: line width, analytical (1) and cal-
culated (2); DW width, analytical (3) and cal-
culated (4).

dof
9F 1

Fig. 4. DW and line width dependence on S
at @ = 3: line width, analytical (1) and calcu-
lated (2); DW width, analytical (3) and calcu-
lated (4).

the analytical one. The dependence of en-
ergy per unit line length at @ = 3 (normal-
ized to the energy of a DW with a 180-deg
line, (W9 =4A4Q1/2), at @ = 10) on the am-
plitude S is shown in Fig. 5. It is to note
that in our case, as S decreases at a con-
stant @, the calculated and analytical en-
ergy values become closer to one another
while as S increases, the energy increases
and the energy difference AW(Q,S) in-
creases, too. As @ increases, that difference
decreases, because the DW structure be-
comes close to the analytical one. This de-
pendence correlates well with the calculated
@(S) dependence. It is seen from Fig. 5 that
in our case, the calculated state energy at
S < 5 is lower than that of a 180-deg line
[13], so that the zero-deg line is more en-
ergy favorable.

To conclude, it can be stated that the
found 6(x,y) and ¢(x,y) values are substan-
tially bidimensional in the line localization
region and this bidimensionality increases
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W/4A(10)7 12

o

Fig. 5. Dependence of analytical (I) and cal-
culated (2) energy per unit length of zero-deg
line normalized to that of DW with a 180-deg
line (Wg =4AQ1/2) on S at @ = 10. Energy per
unit length of 180-deg line [13] at @ = 3 (3).

as @ decreases and as S increases, thus re-
sulting in a considerable changes in the DW
structure as compared to the solution (12).
Thus, to describe adequately the zero-deg
line dynamics in REO, the bidimensionality
of 0 and ¢ angle values should be taken into
account in a more precise manner.
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BaacTuBocTi "TOHKOI CTPYKTYpPH JOMEHHHX MEIK
y piakicHO3eMeapHUX opTodepurax

€.I' Exomacoe, M.A.lllabanin, O.B.'acea

Hocamimxeno mumuHaMmiky pomenHoi Me:xki ([JM) 3 TOHKOIO CTPYKTYpPOIO 3 ypaxyBaHHAM
aHizoTpomnii g-pakropa. 3HaANJEHO 3aJeKHICTh NMIBUAKOCTI pyxXy JiHii Bixg mBuAKOCTI pyxy
IM, ska BimpisHAeTbca Bifg Bigomoi pamimie. 3a JOIMOMOTOIO0 UMCJIOBUX METOMIB POSTISHYTO
180-rpagycuy M HeeJiBCbKOTO THUIY 3 JIOKAJIi30BaHOIO Ha Hill HYJL-TPafyCHOIO JIiHi€lo.
BusHaueHo 3aKOH ITIOBOPOTY BeKTopa Hamar"iueHocTi Takoi [IM, edpeKTuBHI 3HAUEHHA IIUPU-
Hu AT Ta ninmii, eHeprito Ha oxmHuI0 HoBKMHHU JiHii. ITokasaHo, 10 OiNbIII TOUHE ypaxy-
BaHHA ABoBUMipHOCTI [IM mpUBOAUTH AO iCTOTHUX BiAMiHHOCTE# IOPiBHSAHO 3 HAOGIMKEHUMU

AHAIITUYHUMU MeTOoaMMu.
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