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Magnetooptical properties of materials with periodically modulated dielectric constant
— photonic crystals (or photonic band gap materials) have been examined with relation to
their possible applications for the control of electromagnetic radiation in the integrated
optics devices. For this investigation we propose the original theoretical approach based on
the perturbation theory. Magnetooptical Faraday and Voigt effects have been studied near
extremum points of photonic bands where their significant increase takes place. Basing on
the elaborated theory, some experimental results are discussed. Experimental frequency
dependence Faraday rotation angle agrees well with our theoretical predictions.

MarauToonTuyecKue CBOMCTBA MAaTePUAJIOB C MEPUOAUUYECKN MOAYJIUPOBAHHOH NUAJIEKT-
PUYECKOH MOCTOAHHON — (POTOHHBIX KPHUCTAJJIOB (MJIM MaTepuayoB ¢ (GhOTOHHOI 3ampeleH-
HO# B0HOIT) MCCJIEMOBAaHBI C TOUKM 3PEHUSA BO3SMOMKHOCTH WX NPUMEHEHUS [IJs yIPaBIeHUS
2JIEKTPOMATHUTHBIM M3JIyUeHHEeM B YCTPOMCTBAaX HMHTETPAJbHOIN OUNTHMKHU. [IJIsS 3TOrO MCCIemo-
BaHUS MNPEIJOKeH HOBBIII TeOpeTUUYECKUil IMOAXOMd, OCHOBAHHBIN Ha TEOPUU BO3MYII[EHUIH.
UccnenoBansl MarHuTOoOnTHUecKue 3bhdeKTsl Papazea u Poiirra BOIM3U 9KCTPEMATbHBIX
ToueK (DOTOHHBIX 30H, TJle UMeeT MeCTO UX 3HaUuUTeJbHOe ycuieHume. Ha ocHoBe paspaboTaH-
HO#l Teopmu OOGCYKIAIOTCA HEKOTODPBIE JKCIEPUMEHTAJbHBIE DPe3yJbTaThl. JKCIEPUMEHTAb-
Hasg YacTOTHAsA 3aBUCHUMOCTH (hapaZieeBCKOTO yIJjia BpallleHUSA XOPOIIO COTJIaCyeTCsI C TeOPeTH-

YeCKUMMMU IIpeJCKa3aHUuAMMU.

Recently, much attention is paid to a
new kind of dielectric composites referred
to as photonic crystals (PhC). The photonic
crystals (also referred to as photonic band
gap materials) are micro-structured materi-
als where the dielectric constant is peri-
odically modulated on a length scale compa-
rable to the desired wavelength of electro-
magnetic radiation [1, 2]. Multiple interference
between electromagnetic (EM) waves scat-
tered from each unit cell results in a range
of frequencies that do not propagate in the
structure — photonic band gaps (PBGs). At
these frequencies, the light is strongly re-
flected from the surface of the crystal,
while at other frequencies, light is trans-
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mitted. This phenomenon is of great theo-
retical and practical importance. It can be
used to study a wide range of physical prob-
lems related to the light localization and
light emission [3]. The photonic crystal ma-
terials with PBGs make it possible to pre-
pare micro-cavity lasers [4], single-mode
light emitting diodes, high-efficiency wave
guides [5], high-speed optical switches, etc.
PhCs, even those without a PBG, possess
also many other interesting properties re-
lated to the dispersion, anisotropy, and po-
larization characteristics of the photonic
bands (PB). For example, these properties
of PhCs offer an opportunity to provide ef-
ficient dispersion compensation [6], in-
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creased nonlinear frequency conversion [7],
novel superprism devices [8], optical polar-
izers, optical filters, etc.

Tunability of PhC optical properties open
new applications of these materials in the
integrated optics devices. Tunability in
semiconductor structures may be provided
by varying temperature or by varying volt-
age [9]. Other ways to provide tunability
are application of elastic stress [10], liquid
crystal infiltration [11], application of ex-
ternal magnetic fields or use of magnetic
constituents [12-21]. The latter two possi-
bilities are of prime interest because they
not only permit significant tunability but
also may result in some new interesting
phenomena of magnetooptics (such as in-
creased magnetic circular and linear bire-
fringence [18-21], mode conversion) essen-
tial for novel readout devices and some de-
vices of optical microcircuits.

First works about magnetic PhC operat-
ing in near infrared and optical regions ap-
pears in 1997 when M.Inoue et al. consid-
ered theoretically Faraday effect in the ran-
dom multilayer films composed of
Bi-substituted YIG [18]. Such structures are
in fact one-dimensional PhCs. They an-
nounced about 300-fold increase of Faraday
effect when some appropriate structure pa-
rameters are chosen. Later, several other
similar one-dimensional (1D) PhCs were
considered theoretically and experimentally,
namely, multilayer films with differently
ordered magnetic and nonmagnetic layers.
Thus, M. Levy et al. predicted high trans-
mission and Faraday rotation for the 1D
PhC consisting of alternating magnetic and
nonmagnetic layers of quarter-wave thick-
ness with the layer free of structural de-
fects [20]. For such structure, Faraday rota-
tion by 45° is realized at the distances of
only 15 um, while this length is 200 times
larger in the same homogeneous magnetic
medium. So such 1D magnetic PhCs are
very promising in development of tiny opti-
cal isolators.

1D PhC consisting of alternating anisot-
ropic dielectric and ferromagnetic layers
was investigated theoretically by Figotin
and Vitebsky [16]. They found the effect of
strong spectrum irreversibility that is a
property very important for practical appli-
cations: this material can be transparent for
a certain EM wave traveling, for example,
from the left to right, and absolutely
opaque for the EMW traveling from the
right to left. During the last several years,
fabrication of 2D and even 3D magnetic
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Fig. 1. Structure of a two-dimensional pho-
tonic crystal.

PhCs became possible and many interesting
structures were manufactured (see, e.g., re-
view [21]).

In this paper, we will study magnetoopti-
cal effects in two-dimensional PhCs com-
posed either of dielectric or magnetic mate-
rials; that implies a study of the magnetic
field influence on EM waves propagation in
PhCs. We consider an inhomogeneous di-
electric medium that can be characterized
by the dielectric constant eij(r) =8ij£ (r).
The function &(r) is a periodic one: &(r + a)
= &(r), where a = {a e, + ase,} is the unit
vector of the two-dimensionai] PhC (Fig. 1).
The influence of magnetic field is taken
into account by means of polarization
vector

Pm({r) = iSOS({r)Q(r)[m’E]’ (1)
where ¢, = 8.85 - 10712 F/m, m is unit vec-
tor of magnetic field (or magnetization); Q(r),
the medium magnetooptical parameter, or the
Voigt one (see e.g. [22]). For ferromagnetic
substances, @ is of the order of 1073 + 10~4: for
yttrium iron garnets, @ = 0.5 - 103 (A = 1.15 pum),
and for terbium iron garnets @ = 1.07 - 1073
(A = 1.06 um), [22]. For non-magnetic sub-
stances, it is proportional to the external
magnetic field B,,: for Si, @ =1.2-1076
(A =0.41 um, B,,, = 0.1 T) [23]; for europium
glass, @ = 7-107° (A = 0.435 um, B,,=01T
[24].

Assuming u =1 it is straightforward to

obtain from Maxwell’s equations the follow-
ing eigenvalue equation:

2

(ﬁ] +V - (%j ] ¥(r) = 0, @)
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where ﬁI‘I’(r) = ﬁv X {V X ﬁ‘l’(r)},

2
V¥(r) = —i(%] Q - m x ¥(r),

and ¥(r) = Ve(r)E(r).

It is worth noticing that eigenvalue
equation (2) has a very important property,
namely, the scaling law. This law says that
PhCs which are similar to each other have
essentially the same PB structure, that is,
the difference between the two band struc-
tures is simply the scales of frequency and
the wave vector. It is easy to prove that
both operators H and V are Hermitian. The
operator H has been studied rigorously else-
where [25]. One of the main features of
operator H is that its eigenfunctions can be
divided into two types: quasi-longitudinal

‘I’g‘k)(r) and quasi-transverse LI"(nq];)(r)

modes [25]. The ‘*I‘(nl‘k)(r) modes do not satisfy

the Maxwell divergence equation and, con-
sequently, are non-existent. However, these
modes are essential mathematically, since
without them, the eigenfunction system
{‘Pnk(r)} is not complete. At the same time,

modes

the transversal eigenfunctions ‘-Pgl?(r) sat-

isfy the Maxwell divergence equation and
do really exist. Their eigen-angular fre-

(T)

quencies w,; are generally non-zero.

Eigenfunctions ¥, (r) form a complete set

in the Hilbert space. Those are not orthogo-
nal to each other but can be orthogonalized
by Schmidt method. Eigenfunctions of H
are vectorial Bloch functions

¥, (r) = u,(r)elk, 3)

where k is quasi-momentum and n is a num-
ber of a specific PB; unk(rH) = Uy (x| + a),
r| = xe, + ye,. The corresponding eigenval-

ues 0, form a band diagram with alternat-
ing permitted bands and band-gaps. The
eigen-angular frequencies w, could be found
by solving the eigenvalue problem for the
set of linear equations obtained from Max-
well ones. There are several algorithms to
that end. In our calculations, we used a
procedure that was proposed in [26]. We
will assume as usual that the vector k be-
longs to the first Brillouin zone. These
properties of eigenfunctions and eigenval-
ues are well-known in the crystal physics
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and follow directly from periodicity of the

operator H.
Substitution of (3) into (2) gives

n” oA 2 4)
(H+V_c_2unk20’
where
~ 1 U ik U,k
H =—=VXVX—+-"=XVX—F—+
Unk \e Ne o Ne \e
i Ur k
+——Vxkx—-—xkxu,,,
Ve Ne € nk
(5)

2
5 .0
Va,, =-i C—ZQ(rH)m X .

Here, the analysis is restricted to the
consideration of some highly symmetrical
extreme points in the first Brillouin zone
(points I' and X) where the properties of EM
radiation propagation differ substantially
from those in a homogeneous medium. Let
us assume that the wave packet in a PhC is
constituted by Bloch functions ¥, (r) from

the one or two PBs (depending on the spe-
cific situation) and k lies near the critical
point. This assumption is similar to the adi-
abatic approximation in solid state physics
and is applicable when the value of pertur-
bation V is small enough. Thus, the quasi-
momentum k = (k; + x,0,0), where ky=10
for I" point and £y = n/a for X point. In the
zero order on k¥ and @, the solutions of (4)
are Bloch functions for different wave
zZones unok(rH) that form complete basis for

the expansion of any function that pos-
sesses a translational symmetry. Hence,
those could serve as a basis for the expan-
sion of unok(rH) into series in perturbation

theory for any specified PB number n.
While dealing with magnetooptical ef-
fects, two main geometries are considered:
(i) longitudinal, or Faraday, geometry when
an EM wave propagates along magnetic
field, i.e. k|m, and (ii) transversal, or
Voigt, geometry when k 1L m. Let us con-
sider first the longitudinal geometry where
k|mle, and investigate how the presence of
magnetic field affects PB with arbitrary
number n,. Here, several cases are possible:
(i) the ny-th PB is not degenerate and se-
cluded, (ii) the ny-th PB is not degenerate,
but has a close neighbor PB, (iii) the ny-th
PB is doubly degenerate (possible only for
I' and M points). The meaning of word
"close” in (ii) will be discussed further. We
examine two first possibilities in turn.

Functional materials, 11, 3, 2004
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For two-dimensional PhC symmetry,
z — —z enables to classify all eigenmodes
into two kinds: TE modes (E,,H,, H,) and
TM modes (E,,E,, H,). Each of those is
characterized by additional parity with re-
spect to the reflection in the corresponding
vertical planes. Therefore, function unok(rH),

that represents the eigenfunction of (4) for
ng-th PB, can be written in the first order
of perturbation theory as

— TE T™M
unok(r”) = clunoko(r”)ez + cgunoko(ru)ey + (6)

L
+ c3un0k0(r”)ex,

where u’E ul™M

and ul , are eigenfun-
noky’ noky ] noky g

ctions of operator H with eigen-angular fre-
quencies mgf/ TM/L, In Faraday geometry,

c3 = 0 because TA/'u%k = 0. Substitution of
0”0

(6) in (4) leads to the following equations
set:

¢ (w%’ﬁf - 02| - chi?<@>=0 )
¢y (oa;[l'é}f)g - 02| + ¢qin?<@>* = 0
where (m%‘(ﬁ(TM)y - (m%‘OE(TM))Z + c2k2RTE(TM),
1
TE(TM) — 1, TE(TM)|~|,, TET

BTETM) = <un0k(0 )|€|un0k(0 M),

<@>= <u££0|Q(r)|u£é‘,Z0>.

To reveal general features of the magne-

tooptical effects in this geometry, we as-
sume that

ofF=ofM=ow, and 76 =pTM=4. (8)

From these assumptions, Eq.(7) leads to
the following solutions for

+ <@

9 1/2 (9)
cfir(f-(ens] o]

and corresponding eigenfunctions:

W(r) = (10)

K, + K
; —— Ax AK

= elko¥el™ 2 ulE (x)cos—x ul™ (x)sin—5-x |,
(( ”oko( ) 2 ”oko( ) 2

where Ak =k, — K_. These eigenmodes can be

called "quasi-circularly polarized” modes.
The prefix "quasi” means here that waves

qli(r”) in (10) are the product of fast oscillat-

ing functions ugge(fm(r”) and comparatively
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slow changing envelope functions ei(%y + KJ)x,
Equation (10) shows that while light propa-
gation along OX-axis, a mode conversion
takes place. If at the PhC entry, EM radia-
tion is a TE-wave, then, while spreading, it
becomes transformed into a TM-wave be-
cause of the medium gyrotropy, and so on.

2
Usually, condition |<@>| << |1 - gmno/w |

is satisfied and Faraday angle or angle of rota-
tion of envelope wave polarization plane is

-1/2

(11)

2

_ ™
()2
From (11), it can be concluded that the

specific Faraday angle grows sharply when
W= 0, . This occurs in compliance with

fundamental property of PhC: near extreme
points of Brillouin zone, a critical decelera-
tion of radiation takes place that causes an
increased interaction time between radia-
tional mode and the matter system and,
thus, magnetooptical effect is increased.

It is interesting to compare the result
obtained with experimental measurements
of Faraday rotation angle for a 3D magnetic
colloidal crystal consisting of a fcc packing
of silica spheres with voids that are filled
with a saturated glycerol solution of dys-
prosium nitrate [26]. Though formula (11)
is obtained for the 2D-PhC, one can expect
that it is valid for some cases in 3D. For
example, the propriety of its application at
I' point for cubic 3D PhC becomes intui-
tively clear when we conduct an analogy
with the electron zones of some semiconduc-
tors (e.g. GaAs). Continuing this analogy,
one can conclude that conditions (8) are sat-
isfied there and (11) remains valid. Ap-
proximation of experimental curves by the
theoretical dependence is quite good that
confirms our assumption (Fig. 2). From the

|<@>
VIBT

could be found. For the curve in Fig. 2,

approximation, value of the ratio

|<@>| _
=22 _6.55-10°9.
VIR

When o becomes very close to W s then
inequality |<@>| << |1 - (mno/w)2| is no

longer satisfied, so to determine the specific
Faraday rotation, Eq.(9) should be used di-
rectly without any approximations. More

careful analysis of ®(w) dependence reveals
that it has extreme for mzmno(l i1/2Q)
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Fig. 2. Faraday rotation angle vs. A/A, .
0

Points, experimental data for 3D magnetic
collodial crystal consisting of a fcc packing of
silica spheres with voids filled with saturated

glycerol solution of dysprosium nitrate
(dspheres =260 nm, ey, = 2.0, Cliquid = 2.2,
B, =33.5mT, @ =1-107) [26]. Solid curve,

theory (in accordance to (11)), A, = 566.5 nm.
0

(choice between "+" and "—" here depends
on the sign of P, i.e. on the sign of the
second derivative of PB dispersion curve).
This formula is very important because it
shows that the Faraday effect takes its
maximum value not exactly at the extreme
angular frequency Wy s where the transmis-

sion is negligibly low, but at its close prox-
imity where transmission is higher. The
maximum value of specific Faraday rotation
is given by

® = (0, /1B )‘\/%. (12)

At the same time, Faraday rotation for a
homogeneous medium is

o (13)
@ 26\/§Q.

uniform =

From (12) and (13), one can estimate the
relative gain in Faraday effect in PhC as
comparied to the same homogeneous me-
dium under similar conditions:

DPpj e ~ \/I (14)

q)uniform Q

Thus, for @ = 1075, the Faraday effect in
PhC could be increased by three decimal
orders. We define the conversion coefficient
R as the ratio of the maximum squared am-
plitudes of the TE and TM modes if at x = 0,
the TM-wave is supposed to exist. For the
conditions (8), R ~ 1.

458

_a
2TC

A(Dg

1.35

1.25

1.05

0.95 1 1 1 1 1
0.000 0.002 0.004 0.006 0.008 Q

Fig. 3. Band gap width A(x)g vs. magnetoopti-
2nc
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but under condition BTE =pTM =4, the
birefringence effect appears and, as in bire-
fringent crystals (see e.g. [22]), the conver-
sion coefficient R decreases sharply. Thus,
if the EM radiation is polarized linearly at
the entrance of PhC, then, while spreading
in PhC, polarization remains mainly un-
changed with a very little ellipticity. At the
same time, the TE-TM partial conversion
takes place at much smaller distances. Dis-

tinction in BTE and BTM values complicates
the analysis. For some values of w%‘f/m%’é"f,

the TE mode prevails and for other values,
the TM one at arbitrary entry polarization.

General effect of magnetic field on pho-
tonic band structure is expressed as an al-
teration of PBGs: in magnetic field, the
PBs are shifted by Q(nno. For magnetoopti-

cal parameter Q =6 -1073, the shift is
about several tenths of percent. The shift
value depends on the difference m%’f - w%’é"[

and gets smaller when the difference in-
creases.

The situation when two PB are close to-
gether exists quite often and undoubtedly
deserves special examination. Let us con-
sider two consecutive bands numbered as n
and ng+ 1 with corresponding frequencies
mg'E(TM) —_ ATE(TM) gnd mg'E(TM) + ATE(TM) for

TE and TM modes, respectively, where

Functional materials, 11, 3, 2004
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wfETM) is the mean frequency and ATE(TM)
is the half-width of the PBG between given
bands. To begin, let us define what the term
"close” means at this point. The solitary PB
splitting that arises in magnetic field is of
the order of (D”OQ' That is why we call two

wave bands “close” if the distance between
those is smaller than this magnet-induced
splitting, i.e. 2A < mnOQ .

As for the close bands, the presence of

magnetic field influences on the PBG width

A(ug:

Aw, = g 28/ 00 + Q2)1/2, (15)

making it larger (Fig. 3). Here, the follow-

ing assumptions are supposed:
UJ(T)'E = 03(7;M = W, ATE = ATM  and BiTE =
TM —
BiM =p.
Another important configuration is

Voigt geometry when B,,/e, and kle,. The
analysis of this case can be done in the
same manner as for Faraday geometry. The
eigenfunction unok(rH) of (4) for ny-th PB is

again set by (6), but in Voigt geometry,
coefficient cg in (6) does not disappear. Sub-
stitution of (6) in (4) leads to the two inde-

pendent subsets: one for ugﬁfo’ and the
other for u%’é‘,{{o and u%oko' From these equa-
tions, it can be derived that the relative
phase shift between TE and TM modes takes

place. The phase shift at the unit distance is
B, = Re(k) — k) = (16)

(O] | |2 0),210
= 1-—— B
2¢V[B <Qr> 0?2

where <QL>=<uI,;OkO|Q(r)|uZ;é‘gO>. This effect

of magnetic birefringence is similar to the
magnetooptical Voigt effect (see e.g. [22]).
In comparison to the latter, formula (16)
demonstrates a sharp increase of the phase
shift B,,;, near the extreme points of the
Brillouin zone. It is largely due to the same
reasons as the increase of Faraday rotation.
Magnetic field affects only on TM mode
shifting its corresponding PB. The shift
value is of the order of u)non and, conse-
quently, much smaller than in Faraday ge-
ometry.

To conclude, we have studied magnetoop-
tical properties of two-dimensional PhCs
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composed either of dielectric or magnetic
materials that implies an investigation of
the magnetic field influence on the electro-
magnetic waves propagation in PhCs. Theo-
retical investigation has been performed
basing on solving the eigenvalue problem
obtained from Maxwell equations. Magnetic
part of the medium polarization has been
considered as a perturbation and related
magnetooptical effects were calculated in
the first order of perturbation theory. Two
main geometries have been examined,
namely, the Faraday and Voigt configura-
tions. In Faraday geometry where k|mle,
the TE-TM mode conversion takes place, an
effect similar to the magnetooptical Fara-
day effect. The Faraday angle depends on
the wave frequency ® and increases sharply

when o approaches extreme frequencies w,
0

of wave bands. The Faraday effect takes its
maximum value not exactly at Wy s but

close thereto where transmission coefficient
is not too small. The increase of the Fara-
day rotation in PhC in comparison to the
uniform medium is larger for smaller @ (see
(14)). That makes PhC applications for non-
magnetic substances with magnetic field in-
duced gyrotropy (at @ ~1075— 1077) the
most valuable. At the same time, a substan-
tial increase in the Faraday effect also oc-
curs for ferromagnetic constituents. Thus,
for the magnetic material with magnetoop-
tical parameter @ ~ 1073, the Faraday rota-
tion angle can be as large as 20°/um for
near infrared radiation. This effect is very
promising for construction of the miniature
optical isolators in integrated optics. For
the case of close wave bands, effect of mag-
net-induced band gap widening is predicted.
It is about 10 percent for @ ~ 5 - 1073, Com-
parison of the theoretical formula for Fara-
day rotation with experiment for 3D opal-
like magnetic PhC gives good results ap-
proving more wide validity of the
elaborated theory.

The relative phase shift between TE and
TM modes that originates in the Voigt con-
figuration shows a similar sharp frequency
dependence. This effect is similar to the
linear magnetic birefringence.

Thus, magnetic PhCs evince giant mag-
netooptical effects (circular and linear bire-
fringence) for radiation frequencies close to
the extreme PB frequencies at the vicinity
of high-symmetry points in the Brillouin
zone. Besides, magnetic field can influence
the PBG structure changing their width
substantially. All this proves that magnetic
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PhCs are of importance for light managing
in modern devices of integrated optics.

Theoretical approach presented here can
be applied to investigate magnetooptical ef-
fects in other configurations. It can also be
utilized to study electrooptical effects, for
example, the Pockels effect, that appears
when external electric field is applied. In
this case, one should use electric field de-
pendent polarization term.

This work is supported by RFBR (Ne 01-
02-16595, 02-02-17389, 03-02-16980),
Federal Program "Russian Universities”
01.03.010/-3.
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MarniToonTuuHi epexTn
Y IBOBHUMipHHX (POTOHHHMX KpPHCTaJIax

B.I.Benomenos, Il.Ilepno, A.K.36€30in, H.B.I'anonenko

MarniToonTuuHi BJacTMBOCTI MaTepianiB 3 mepiofWYHO MOAYJIBOBAHOIO HieJIEKTPUYHOIO
KOHCTaHTOI0 — (POTOHHUX KpucTaiaiB (abo marepianiB 3 (GoTOHHOIO 3a60POHEHOI0 30HOI0)
IOCJTiPKeHO 3 TOUKM 30Py MOMKJIMBOCTI iX 3aCTOCYBaHHA AJA YIPABIIHHS €JeKTPOMarHiTHUM
BUIIPOMIiHIOBAHHAM Y IPUCTPOAX iHTETrpaJbHOI ONTUKU. [JIA IBOTO JOCTiAMKEHHSA 3aIIPOIIOHO-
BaHO HOBUII TEOPETMUYHUI MIiaXim, ocHoBaHUiT Ha Teopii 30ypeHb. ocaigsKeHO MarHUTOOI-
TuyHi edpexTu Papames Ta Poiirra mobaM3y eKCTPEeMAaJbHUX TOUOK (POTOHHUX B30H, I€ MAa€E
Micie iX 3HauHe mocuJyeHHs. Ha ocHOBiI po3po6sieHOi Teopuu 0OTOBOPIOIOTHCA AEesdKi eKcIiepu-
MeHTaJIbHi pesyjabTaTu. EKcIepuMeHTalbHa 4YacTOTHA B3aJie’KHicTh (apajeiBCbKOTO KyTa
obepranHA noOpe y3TOIKYETHCS 3 TEOPETUUYHUMU IIepenbadyeHHIMU.
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