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A mechanism which relates the upturn of the perpendicular upper critical magnetic field Hch(T) in

layered superconductors and thin films with the structural inhomogeneity in the bulk of the sample,

provided that the local critical temperature TcD inside the inhomogeneity is higher than in the rest of the

sample (7)) is proposed. Within the Ginzburg-Landau approach an equation which describes two types

of experimentally observed nonlinearities in HCDz(T) near T for ISN (insulator-superconductor-normal

metal) and NSN layer configurations, is found. In the NSN case a crossover from the linear branch
HCD2(T) O (T,-T), for fields H<H_ , to the nonlinear branch with the upturn, if H > H, , takes place.
The crossover field H  is inversely proportional to the local enhancement of the critical temperature
(TCD— T,) and the distance R to the surface (the nearest surface, in case of a thin film). In the ISN case

the upturn holds for H < H, , whereas for higher fields Hch(T) crosses over to the linear branch. In the

IS7 case the HCDZ(T) is a linear function.

PACS: 74.60—w, 74.60.Ec, 74.80.Dm

1.Introduction

The nonlinear behavior of the upper critical field
H_, has been observed first in the layered dichalco-
genides of transient metals in the beginning of the
1970s [1] and was given then much attention as a
possible signal of non-BCS pairing in these materi-
als. In the 1980s, an artificially prepared supercon-
ducting superlattices (SL) have been an object of
intensive studies which revealed a number of non-
linearity types in the temperature behavior of the
H_,(T): the positive curvature [an upturn of the
H_(T) near the critical temperature T ], square-
root and linear crossovers, the Takahashi-Tachiki
crossover (in S/S' superlattices), and the power
law Hl, O[1 = (T/T)]Y with 1,2 <y < 1 in quasi-
periodic [2] and fractal [3,4] superlattices. The
control over the width of layers, their number and
content, as well as the deposition sequence order
made it possible to clear up in detail the relation-
ship between the structure of the artificial superlat-
tices and the form of the H_(T). A review of the
temperature behavior of the upper critical field
H ,(T) in superlattices is given in Ref. 5. The non-
linearities of the H . (T) have been observed in
different types of high-T, layered cuprates and su-
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perlattices made from novel materials such as
YBaCuO ,/PrBaCuO superlattices [6].
Theoretically, the problem of calculation of
H (T) reduces to the eigenvalue problem for a ficti-
tious particle in an external magnetic field. In the
case of parallel fields this problem has been solved
both numerically [7] and analytically [8—10] for
different types of periodic ST and SN superlattices.
A theory of the temperature dependence of the
Hll2(T) for quasi-periodic SL. was developed in Refs.
10,11.In contrast with the parallel field HHQ(Y),
where the nonlinearities are due to the lifting of
degeneracy of the lowest Landau level on the orbit
center position, the perpendicular field HCD2(T) in all
existing theories is a linear function of T, because
the lowest Landau level in this geometry equals its
standard value Q2 (Q = eH /mc is the cyclotron
frequency). Setting this value equal to the coeffi-
cient a(T) of the Ginzburg-Landau expansion, we
obtain the linear dependence HCD2 01 -(r/T) .
The exceptions are twinned crystals of the YBaCuO
type and the artificial superlattices PbTe,/PbS
(Ref. 12) where the mismatch dislocations make a
quasi-square two-dimensional lattice at the bounda-
ries between the neighboring layers. A theory for
the positive curvature of the H|C|2 in PbTe/PbS



superlattices was given in Ref. 10. On the other
hand, the positive curvature of the HCDZ(T) has been
observed in a periodic SL [13—16], fractal SL, su-
perconducting SI. with magnetic interlayers [17],
and intercalated layered crystals [18,19], including
high-T', cuprates [20]. (In the latter a positive cur-
vature close to zero temperature also has been
observed [21]. We do not consider it here.) In
contrast with the specific case of PbTe,/PbS super-
lattice, in other artificially fabricated SL this non-
linearity cannot be related to some superstructure in
the plane perpendicular to the external field, so
that the above-mentioned mechanisms of the Lan-
dau level broadening cannot explain an upturn in
the HCDZ(T). The positive curvature of the HCD2(T) is
a property inherent to all types of SL, regardless of
the layer stacking sequence order. On the other
hand, it seems rather sensitive to the quality of
layers in SL, because an upturn in the HCD2(T) was
observed only in a small portion of the samples
studied so far. The physical reason behind this
phenomenon is not understood yet. The relationship
between the quality of a layered crystal and the
positive curvature of the HCD2(T) has been clearly
demonstrated in Refs. 18 and 19, where a positive
curvature was observed after the intercalation of
layered single crystals of 2H-NbSe, by molecules of
TCNQ and Sn atoms.

Very instructive observations were made in some
experimental studies [4,17]. An upturn in the
H cD2(T) of a single Nb layer deposited on a dielectric
substrate was not found in those studies [4,17],
whereas it has appeared in triple layers and Sls
Nb /Gd and Nb /Cu fabricated in the same series of
experiments. These results show that boundary con-
ditions at interfaces between superconducting and
metal (or insulator) layers play a crucial role in
physics driving the nonlinearities in the Hch(T)'

In this paper we propose a mechanism of the
positive curvature of the HCD2(T) near T, due to the
structural inhomogeneities in the bulk of a layer.
This mechanism gives a qualitative description of
all types of nonlinearities in the HCD2(Y) observed
near T in artificially fabricated SLs.

Our paper is organized as follows. In Sec. 2 the
problem of calculations of the perpendicular critical
field is reduced, in the adiabatic approximation, to
the eigenvalue problem for a «particle> in a one-di-
mensional potential well which experiences an addi-
tional action from the surface. In Sec. 3 the equa-
tions for HCD2(Y) are derived. They describe
nonlinearities in the HCDZ(T) of a thin film and SLs
near T, with a decrease in temperature. The discus-

12562

sion and comparison of the results with experiments
on layered superconductors are given in Sec. 4.

2. Formulation of the problem and the model

The problem of calculations of the upper critical
field HCDQ(T), as is well known, reduces to the
eigenvalue problem for the lowest Landau level. In
the case of the Ginzburg-Landau approach an ap-
propriate Schrodinger equation for a «particles is

HY = - (¥, (1)

where W is the order parameter, and a(T’) stands for
the coefficient in front of the term |W? in the
Ginzburg-Landau expansion. The physics of non-
linearities of the function HCDZ(Y) in different types
of regular and quasi-periodic superlattices is based
on the fact that in these structures, due to the lift
of the Landau level degeneracy on the orbit center
position, the lowest edge of the energy spectrum
€in(F) is below Q2. Nonlinearity of the function
€nin(F) results then in the nonlinearity of the
function HCD2(T), which is a solution of the equation
€nin(H ) = — a(T). This approach proved to be very
useful for studies of the HLZ(T), as was discussed in
the previous section. In the case of a perpendicular
orientation of the magnetic field, the problem of the
positive curvature of the HCD2(T) in thin layers and
superlattices remains unsolved. The explanation of
the positive curvature of the perpendicular critical
fields in superlattices of the type PbTe /PbS, given
in Ref. 10, is essentially based on the same idea that
holds for calculations of the HHZ(T) in superlattices,
because the upturn in the HCDZ(T) in these materials
is attributable to the two-dimensional net of mis-
match dislocations.

The situation with the Hch(T) is absolutely dif-
ferent because artificial SLs are assumed to be
uniform along the layers and, hence, cannot broad
the Landau levels into bands. On the other hand,
among the numerous superlattices fabricated so
far [5] only a few [4,13—19] have displayed a posi-
tive curvature in the HCDZ(Y), while the great major-
ity of them yield a linear temperature behavior near
T, . This linearity in T is in agreement with theory,
since the lowest energy level, € o 10 this case is
7Q,/2 and, hence, HCD2 [l T,-T. Of course, per-
fectly uniform SL is no more than a mere theoretical
model and real SLs are far from being ideal periodic
structures because of uncontrollable inhomogenei-
ties introduced during the process of their fabrica-
tion. We will show in what follows that a struc-
tural inhomogeneity of content, which locally
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enhances the superconductivity of a layer or thin
film, gives rise to the positive curvature of H (7).

Let us assume that an inhomogeneity eX1sts in a
thin superconducting film at a distance a from its
surface, where local conditions for superconducti-
vity are better than those in the rest of the sample,
so that the local critical temperature TCD is higher
than the temperature T, . In high-T, cuprates, for
example, such an inhomogeneity may be due to the
oxygen concentration fluctuations since the local
oxygen content is a factor which mainly determines
the local T, . Nonuniform distribution of intercala-
ting molecules can also cause a local enhancement
of the superconductivity in intercalated layered su-
perconductors. For simplicity we assume a cylindri-
cal-shape inhomogeneity, so that the Schrodinger
equation can be written in the symmetric gauge,
A =Y [Hr], in the form

HY(p, 2) = EW,(p, ) , )
where
H=H@)+H)+UP,2).  (3)

Here H,(2) is a Hamiltonian which is related to the
particle motion along the field, p = (p, ¢) are the
polar coordinates in the plane perpendicular to the
external field H; z is the coordinate along the field
H, and U(p, 2) <0 is a «potential well» associated
with the inhomogeneity. The Hamiltonian, relevant
to the motion of a «particle» in an external mag-
netic field in the plane, is

- Ao a9 1 92 eH-~
i, o=-" 2o 0,1 0 g
2u % op O0p p° 0P hic g
+ €2H2 p2 (4)
8mc” .

The eigenfunctions of the Hamiltonian (4) can be
written in the form

eim¢
o 9=

where f(p) satisfies the equation

Vpfp) , (5)

.2 DUE eHm m’-1/4 >0
R e e ALY
p Dﬁ ch p 4L 0
(6)
The solution of Eq. (6) is given by
p’ o
Tof(p) = CeXPT%D Firng, b+ 1, P8
ad
(7)
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The energy spectrum is determined by the condi-
tion that the hypergeometric function F(a, b, c)
reduces to a polynomial, which yields

s
E =hQm+ 20 (8)
0 20

n=n,+ (ml +m)/2 and m=-o... -1,0,..n
Here n and n_ are integers; Q =eH/ /uc is the
cyclotron frequency, and L = (%/pQ)!/? stands for
the magnetic length.

The normalization constant C in Eq. (7) is

Wl + n 10"
575 (m1L)™! 9
0 0

Since TCD is only slightly greater than T, we can
assume that influence of the potential U(p, 2) is
weak compared to the action that the external field
exerts on a particle. This means that an adiabatic
approximation can be applied to the eigenvalue
equation (2). Since we are interested in the lowest
energy level n = 0, the adiabatic approximation in
this case means that the energy and the wave
function should be taken in the following approxi-
mate form [22]:

WindD) =%y (0, )W (2), (10)
E = ETQ + e (11)

where

m| 5

_Op & 0 p° O, —=r—

W , 0) = exp amd — ——r/ V21im|l L
omP> ) WZLE Pg b 4LZE/ i |(12)

Substituting (10) into Eq. (2) and eliminating
W0, 9), we obtain the Schrédinger equation for
the wave function W_ (2)

H W (2) +

where H 9= —(R2/2u)(d?/dz%), and the effective po-
tential energy is introduced

U -el¥_ =0, (13)

Um(2) = I Ulp, 2) |¥,, (P d%p . (14)

Since (13) is a one-dimensional Schrodinger
equation, and U7i(2) is negative, there should be at
least one bound state in the potential well made by
Ult(2). In the case of boundless sample the eigen-
value € in Eq. (13) is negative and strongly de-
pends on the magnitude of the external field H, so
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that the minimal energy in the eigenvalue problem
(2) in adiabatic approximation is given by

_ma

min ~ 9

E — e (H) . (15)

Thus, E_, (H) is lower than #Q/2 and, in gen-
eral, is a nonlinear function of H, because e (H) is
a nonlinear function of H, as one can see from
Egs. (12) and (14), which yield the following ex-
pression for the potential well in this case:

29

Uaki® =1l _[ Ulp, 2)p 2" exp (- p%) dp , (16)

where p = p/VZL.

For small (compared to %ZQ) potential U(p, 2)
the one-dimensional potential well, given by
Eq. (16), is shallow and €,(H) can be evaluated
as [22]

mU(z)
el = 5 (17)
U, = J' U%(2) dz . (18)

—00

The presence of a boundary, as is well known,
can dramatically change the situation with the
bound state because the value which W takes at the
boundaries of a film strongly affects the possibility
of a potential well to create a bound state. Two
different types of the boundary conditions take
place at the interfaces: W =0 for insulator-super-
conductor (IS) boundary and dW,/dx =0 for the
NS boundary of the normal metal with the super-
conductor [23]. Thus, we have three different cases
for the superconductor layer (S) sandwiched be-
tween the insulating (/) or the normal metal (N),
which we denote as ISI, ISN, and NSN. The
analysis given in the next section shows that condi-
tions for the creation of a bound state of the particle
in the potential well are different for these three
cases.

Since the depth of a well, Ugff(z), grows with the
enhancement of an external field H, we can expect
a crossover from the regime E_. (H) = 71Q/2 to the
regime where E_. (H)=71Q/2 - ¢,(H), when H
crosses over some value HY. The crossover field H"
corresponds to such a depth of the potential well
which permits to create a bound state in the well for
a given value of distance between the boundary and
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the well. In the context of our analysis, this cross-
over corresponds to the transition from the linear
branch, HCD2 oT,-T, to the nonlinear branch
which goes above the linear branch as the field H
increases to a value larger than H". The temperature
dependence of the upper critical field, Hcljz(T)’ can
then be determined from the equation

mln(H )=—-0a(T). To simplify further calcula-
tions, we will make some additional assumptions
which do not change the physics beyond the above
crossover. We first assume that the radius of the
1nhomogene1ty, R, is less than the magnetic length,

= (fic/eH, )1/2, which near T, is of the order of
the coherence length &(T) =&,/ (1 -T/T, )12 be-
cause H , = ® /2T[EZ(T) Therefore, the condltlon
R<<L reduces to the inequality R << &(T'), which
is easy to satisfy near T, even for sufficiently large
(in the lattice constant scale) R. The quantity ®,
stands for the flux quantum. Under this con-
dition assuming U(p, 2) = - |U(z)| if p<R and
U(p, 2) = 0 otherwise, we have from Eq. (16)

Uge == UGN I(H) (19)
where

2
I(H) = 2R7H i (20)

0

Thus, the effective potential well depth is pro-
portional to the flux, ® = 2nR%H,

Ueff - U@ g 21)

0

Since the precise form of the potential well is
unknown, we will simulate it, as is generally ac-
cepted, with the &-well:

(0]
vl =-v o 5z) , (22)
0

where

=J'dz UE) .

In the particular case of a layered superconductor
such as NbSe, or the one from the family of high-T',
cuprates, the approximation given by Eq. (22) is
quite acceptable because the inhomogeneity that
belongs to a certain layer has a form of a «pan-
cake». Such «pancakes» may be due to the nonuni-
form distribution of intercalating molecules in di-
chalcogenides of transient metals or oxygen (in the
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case of cuprates) since local concentration of these
elements determines the local value of the critical
temperature T, .

3. Analytic consideration of the positive
curvature and crossover of the upper critical

field H_(T)

Consider a thin superconducting film of thick-
ness d, which amounts to a few & or less and which
contains an inhomogeneity with the effective poten-
tial (22) located at a distance a from the surface.
The problem of calculation of the HCDZ(T) then
reduces to finding the lowest eigenvalue of the
Schrodinger equation (13) with

vl =-v ‘:o 5z - a) (23)

and appropriate boundary conditions. We first con-
sider the case of NSN sandwich, for which the
boundary conditions are W(0) = W(d) = 0. To satisfy
these condition, we write the solution in the form

W (x) =Asinhkx, for0<x<a,
(24)
W (x) =B sinh K(x -d), forasx<d.

Here k% = 2mle| /%2 . The constants A and B can be
found from the corresponding boundary conditions
at the d-well

2mVo

h'dJO

Wi(a) - W (a) = - W (a) ,

(25)
W (a) = W,(a)

It follows immediately from Eqs. (24) and (25)
that the energy of the bound state €, is determined
by the only root of the equation

H
H7m =YRY), (26)
where
F(Y) = coth Y + coth (Yb/a) . Q7

The energy of the bound state is then given by

R*Y?
€, =——— .

0 2m d
We have assumed here for certainty that
b=d -a>a. In the opposite case a should be

replaced by b. It is easy to see that the eigenvalue
equation (26) has a solution only if H > H", where

(28)
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H=H,  +41, (29
m 0 bD )
and H, is a threshold field given by
® 7
H =—0@7—. (30)
" TR?maV

A sample which occupies a half-space corre-
sponds to the limit & — o in Egs. (27)-(29). We
thus obtain the following picture. If H < H,, the
lowest eigenvalue of the problem under study is
E .. =7Q/2. For fields H> H, the minimal ener-
gy is E_. =1Q/2 - ¢,(H). Equating then E_. to
the Ginzburg-Landau coefficient a, we have

if H<HY,  (31)

T

o _ 0

HY = H©0) s
O ‘<O

62~

0.80 0.85 0.90 0.95 1.00

O L 1 L 1 L 1 L 1 .“:::.J. L
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Fig. 1. The dependence of the reduced perpendicular critical
magnetic field B, on the temperature T,/T, for the NSN (a)
and ISN (b) cases calculated from the Eq. (26) with: (a) F(Y)
given by Eq. (27), W=(§/2)?=0.1 and G=10; 20; 30
(curves 1, 2, 3 ); (b) F(Y) given by Eq. (34) W =0.1 and
G =1; 2; 3, (curves 1, 2, 3). The parameter G = H(O)/Hm and
the ratio b/a = 1.5 for both cases.
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H) =H0) H - r D+ y2H(0) £ %D ifH>HY,
. (32)
where H(0) = ¢0/(2TW2), and Y(H/H,) is deter-
mined by Eq. (26). We see that for H < H, the
perpendicular critical field, given by Eq. (31), is a
linear function of temperature T and at H = H
crosses over to the nonlinear branch of Eq. (32),
which goes higher than (31) and has an upturn or a
so-called «positive curvatures>. The dependence of
the reduced critical field, B, = HCD2/H , on the
reduced temperature T,/T, for different values of
the parameters G = H(O)/H and W =(E/a)’ is
shown in Fig. 1.
Since Eq. (13) is valid for

nQ

|€0| << o

(33)
the second term on the right-hand side of Eq. (32)
should be small compared to the first term. This
condition determines the formal validity of
Eq. (32). It follows then from Eq. (32) that the
smallness of the parameter W O a2 is favorable for
the applicability condition (33). On the other hand,
H, O a ', so values of W and H ., decrease with
increasing of the separation between the surface and
the inhomogeneity.

In the case of a film sandwiched between an
insulating and a normal-metal (or ferromagnet)
layer, i.e., in the ISN case, the boundary conditions
are d¥(0)/dx=0 and W(L) =0. The appropriate
function F(Y) in Eq. (26) is

F(Y) = coth Y - tanh %’ EE (34)
0 “0

The solution of Eq. (26), with the F(Y) given by
Eq. (34), yields a nonzero root only for H<H,
This means that a crossover in H 2(T) for the ISN
case is somewhat different from that we have des-
cribed above for the NSN sandwich: an upward-like
branch (32) for H < H" crosses over to the linear
branch (31) when the field exceeds the value H
The results of a numerical analysis for the H (1) 1n
the ISN case is shown in Fig. 1,b.

In the IST case the function F(Y) is determined
by the Schrodinger equation (13) and by the boun-
dary conditions dW(0)/dx = dW(L)/dx =0, which
yield

F(Y) =tanh Y - tanh %’ é% (35)
0 0

Substitution of Eq. (35) into Eq. (26) gives an
equation which has no solution for positive Y. This
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means that €, =0 and HCDQ(T) for the IST sandwich
is given by the linear function (31) in accordance
with the experiments [4,17]. In the next section we
will discuss the physical meaning of the results
obtained in the context of a current experimental
situation in the field.

4, Discussion and conclusions

Let us summarize the results obtained in the
previous sections from the viewpoint of their rele-
vance to experiments done so far. We see that at
least two major preconditions are necessary for
deviation of the HCD2(T) from the linear behavior
(31): a) structural inhomogeneities with local en-
hancement of the critical temperature and b) an
appropriate boundary condition of the NSN or ISN
type. Therefore, structurally perfect films and mul-
tilayers should not display nonlinearities of the
Hy, ] o(T) near T, . This assertion is in agreement with
the fact that an upturn in H o(T) has been observed
only in limited number of experlments on different
superconducting SLs, whereas the rest of them show
linear behavior of the perpendicular critical
field [5]. But even the prerequisite a) is satisfied in
a single film; it does not display a nonlinearity in
HCDZ(T) when sandwiched between the insulators,
i.e., in the IST case. This conclusion of our theory
is confirmed by experiments reported else-
where [4,17]. Those experiments showed that the
Hch(T) of a single Nb film deposited on a dielectric
substrate in vacuum is a linear function of T near
the phase transition, but it becomes upturned in
triple layers and multilayers Nb/Gd (Ref. 17) and
Nb,/Cu (Ref. 4) fabricated from the Nb films. The
latter, as was found in Nb,/Gd and Nb,Cu super-
lattices, have a grained structure necessary for our
approach. Thus, we can explain the above experi-
mental observations as follows. A single layer de-
posited on an insulating sapphire substrate in va-
cuum belongs to the IST case in our classification
and, hence, has no nonlinearities in the H 2(T)
behavior. The situation changes in the case of triple
layers Nb,/Cu /Nb and Nb,/Gd /Nb, because they
are of the ISN type (since each of the two Nb layers
in the triple layer makes contact with one insulator
and one normal metal layer) and should display a
crossover of the kind shown in Fig. 1,6. The multi-
layers Nb,/Cu and Nb,/Gd are of the NSN type in
the bulk of the sample and of the ISN type for the
marginal layers at the top and the bottom of a SL
(where the superconductor layer contacts either
with the vacuum or with an insulating substrate).
Therefore, the nonlinearity (see Fig. 1) which dis-
plays a specific SL. depends on which of its layers
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(marginal or the one in the bulk of a SL) yields the
largestH o(T).

The 1ntercalation of a layered crystal NbSe, , as
was shown in Refs. 18 and 19 also gives rise to the
upturn in the H o(T). Let us consider in a more
detail the case reported in Ref. 18, where the tem-
perature behavior of the HCDZ(T) of layered single
crystals 2H-NbSe, , intercalated by molecules of
TCNQ has been studied. Before the intercalation,
the H 2(T) was found to be a linear function of the
temperature. After the intercalation, the H ()
became a nonlinear function, whose shape near T
reported in Ref. 18 is as follows: a linear branch up
to H,=0.8T and then a smooth upturn with
further decrease in temperature. The critical tem-
perature of intercalated 2H—NbSe2 , TCD= 6.5 K, is
lower than that of a nonintercalated crystal, where
T,=7.2 K. The physical reason behind the lower-
ing of T, after the intercalation is that molecules of
the TCNQ, when placed between the supercon-
ducting sheets, diminish the concentration of elec-
trons in them since the TCNQ is a very active
acceptor. On the other hand, the intercalation pro-
cedure cannot provide a perfectly uniform distribu-
tion of the TCNQ molecules across the sample. The
latter means that after the intercalation some inho-
mogeneities must inevitably appear with the lower
local concentrations of the TCNQ molecules.
The corresponding local critical temperatures in
them are higher than in the rest of the sample. The
above data allow us to estimate the local en-
hancement as AT =T, - Tclj: 0.7 K<< T, . There-
fore, the value of V in Eq. (30) can be taken
as V =AT, d, where d is of the order of the dis-
tance between the superconducting sheets in
the intercalated 2H-NbSe, . Assuming d =10 A,
a=10-100 A, and H,=1T, we can estimate R
from Eq. (28) as R = 103104 A, which seems plau-
sible for the reported [18] concentrations of the
TCNQ molecules in the intercalated 2H-NbSe, .
One can check the above theoretical model by
measurements of the HCD2(T) and by concurrent con-
trol of the spatial distribution of the TCNQ mole-
cules at different stages of the intercalation.

It is rather tempting to apply our model to
another yet unresolved problem — nonlinearity of
the HD o(T) near T in layered high-T cuprates. In
these materrals the oxygen is the agent which con-
trols the local values of the critical temperature.
Thus, spatial fluctuations of the oxygen in the plane
would result in «pancakes» where the local T, is
higher than in the rest of a sample. According to the
previous consideration, such a type of inhomo-
geneity is a prerequisite for the positive curvature of
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the H Dz(T) Although an upturn in the H o(T) near
T, in layered high-T', cuprates has been reported in
many publications, it is well known that to measure
this quantity in detail is very difficult in these
materials because of the resistive transition broade-
ning in an external magnetic field [20]. In contrast,
the melting line B, (¢) is a much better measurable
quantity in high-T cuprates. Its shape via the
elastic moduli, c; ij =G (b) depends on the H ,(T),
where b = H/H (T). Therefore a crossover in the
line H_,(T) inevitably should manifest itself in the
form of the function B, (T). This rather evident
fact, as was shown in Ref. 24, must be taken into
account in calculating the shape of the melting line
B, (T).

Consider now briefly a defect which extends
through the bulk of a layered crystal. In this case
the potential U(e)ff(z) in the eigenvalue problem of
Eq. (13) is given by the infinite set of periodic
potential wells of the form

(o)
U%(2) = = o V'Y &z - an), (36)
0 n
where a is the interlayer spacing. The eigenvalue

problem of Eq. (13) is now exactly the well-known
Kronig —Penny model, whose lowest energy level

E in=" (72Y? /(2ma®) is given by the solution of
the equation
H
cosh Y - Hm % sinh Y =1. (37)

The critical field is determined by Eq. (32) which
describes the curve that gradually upturns with a
decrease in temperature from the point of T, . The
analytic solutions can be easily found for two cases.
Near the critical temperature, i.e., for H << H
the H 0 o(T) is a linear function of the temperature

H(T) = H(O)[1+2 ()[ED a

When H >> H,_, which corresponds to lower
temperatures, and if the additional condition & << a
is satisfied, which implies that [HE /(H,, a)]? << 1
(the latter is the case, for example, in some highly
anisotropic high-T, cuprates), the upper critical
field is given by

-0
m

Here H(T) equals to the right-hand side of

Eq. (31), which is a linear function of the tempera-

- H(T)/H

H(0) Ei 2e mg+ H() .
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ture and, hence, the Hch(T) experiences an upturn
known also in the literature as the positive cur-
vature.

In summary, we conclude that the presence of a
particular type of inhomogeneity in thin films and
layered superconductors, which enhances the local
value of the critical temperature, is one of the
physical reasons beyond the positive curvature in
the temperature behavior of the HCDQ(T) observed in
some multilayers near T, .
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