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Uterine fibroids (also called leiomyoma) are the 
most common pathology of the genitourinary system 
in women of reproductive age with an estimated cu­
mulative incidence as high as 70–80% by age 50 [1]. 
Leiomyoma consists mainly of smooth muscle cells 
originating from myometrial smooth muscle, but in 
contrast to parental tissue it exhibits elevated rates of 
mitotic activity [2]. Historically, uterine fibroids have 
not been considered a genetic disease [3]. At pre­
sent, however, clinical studies are beginning to identify 
DNA polymorphisms that influence leiomyoma risk. 
Growth of fibroids is believed to depend on ovarian 
hormones and some intermediate elements such as 
cytokines and growth factors through which the ovar­
ian hormones may be exerting their growth-stimulatory 
effects on leiomyomas [4]. Correspondingly, polymor­
phisms in the IL-12Rbeta1 and IL-6 genes appear to be 
related to a higher susceptibility to leiomyoma [5, 6]. 
The polymorphism of a steroid hormone metabolizing 
gene, CYP17, seems to play a role in increasing risk in 
Black African women [7]. 

Until recently the genetic background of leiomyoma 
has not been studied as thoroughly as that of cancer, 

mainly due to benign nature of this kind of tumors. In 
some cases, however, leiomyoma may transform to 
a malignant phenotype, although this phenomenon 
is uncommon. Malignant transformation is generally 
thought to be associated with the changes in the ex­
pression of several genes and/or with the sequential 
acquisition of multiple mutations.

Since the year 2000, several gene array studies 
have examined the differential gene expression 
between uterine fibroids and normal myometrium 
[8–17]. These studies resulted in significantly diffe­
rent gene expression patterns, although some genes 
belonging to defined developmental pathways have 
been detected as differentially expressed in several 
experiments. The variation in the results may be at­
tributed to differences in microarray techniques and 
data analysis methods used in these studies. Also, the 
different genetic statuses of the investigated tumors 
and race/ethnicity of the patients may have an influ­
ence. Subtle variations in patient characteristics or 
laboratory conditions may also dramatically alter mic­
roarray results. It is clear that no single gene list from a 
single study is sufficient to make definite conclusions 
regarding the role of the differentially expressed genes 
in tumorigenesis.

In this study, we have compared gene expression in 
tissues of uterine leiomyoma and normal myometrium 
taken in matched pairs from eight patients of varying 
age undergoing surgery for symptomatic fibroids. 

MATERIALS AND METHODS
Microarray fabrication. For microarray analysis, 

genes were selected that were known to be highly 
associated with the occurrence of various forms of 
cancer. Selection was based on publicly available data 
as well as analyses performed with comprehensive 
microarrays that represented all human genes. The 
appropriate cDNA library clones were obtained from 
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the RZPD Resource Center of the German Human 
Genome Project (http://www.rzpd.de). Since they are 
part of the IMAGE collection (http://image.llnl.gov), 
they are cloned in different vectors systems. However, 
all cDNAs could be PCR-amplified using the universal 
M13 primers. Amplification reactions were carried out 
in 96-well microtiter dish plates with amino-modified 
forward primer M13for (5’-GTT TTC CCA GTC ACG 
ACG TTG-3’) and amino-modified reverse primer 
M13rev (5’-AGC GGA TAA CAA TTT CAC ACA GG-3’). 
PCR was done in a total volume of 100 µl with 20 µM of 
each nucleotide triphosphate, 0.1 µM of each primer, 
0.5 U Taq DNA polymerase (Qiagen, Hilden, Germany) 
and the corresponding PCR-Buffer. Using PTC200 
cyclers (MJ Research, USA) inoculation was done by 
transferring clones from bacteria culture using 96-pin 
replicator. Initial denaturation was done at 95 °C for 
5 min, followed by 40 cycles of 30 s at 92 °C, 30 s at 
62 °C (initially) and 2 min at 72 °C, followed by a final 
step at 72 °C for 10 min. After each cycle the anneal­
ing temperature of 62 °C was decreased 0.2 °C per 
cycle. Quality of PCR products was verified by agarose 
gel-electrophoresis; most products had a length of 
0.5–2.0 kb. They were purified with Multiscreen PCR 
(Millipore GmbH, Schwalbach, Germany) and resus­
pended in spotting solution (TeleChem International 
Inc., Sunnyvale, USA) at a minimum concentration 
of 300 ng/µl. The PCR products were arrayed onto 
slides with epoxy surface (Schott Nexterion AG, Jena, 
Germany), DNA spotting was done with a MicroGrid II 
arrayer (BioRobotics, Cambridge, UK) using SMP3 pins 
(TeleChem International Inc., Sunnyvale, USA). Each 
microarray has 7680 spots divided into 32 blocks, which 
each containing spots in duplicate. After fabrication the 
microarrays were treated following the protocols of the 
manufacturer (Schott Nexterion AG, Jena, Germany). 
After washing, denaturation at 95  °C for 3 min and 
blocking, the microarrays were dried with nitrogen.

Patients, sample preparation and hybridiza-
tion. Eight patients with uterine leiomyoma, who 
underwent hysterectomy in the Clinic of Odessa State 
Medical University, Odessa, Ukraine, were included in 
this study. All patients were informed and gave written 
consent to participate in the study and to allow their 
biological samples to be genetically analyzed. Ap­
proval for this study was obtained from the Scientific 
Council of Odessa State Medical University. None 
of the patients received any hormonal medication 
3 months before hysterectomy. Sample pairs of tumor 
and normal myometrium from the same patients were 
taken within 10–20 min of extirpation of the uterus, 
placed in RNAlater RNA Stabilization Reagent (Qiagen, 
Hilden, Germany) and then transported to the labora­
tory, where they were frozen to –80 °C. Snap-frozen 
surgical samples were ground on dry ice with a mor­
tar and pestle and resuspended in RLT buffer. Total 
RNA was isolated using the RNEasy Mini Kit (Qiagen, 
Hilden, Germany). The RNA was analyzed on a Lab­
Chip® using a Bioanalyzer 2100 (Agilent Technologies, 
Palo Alto, CA, USA) for quality control. The labeling and 

hybridization reactions were performed in duplicate. 
An RNA-pool created by mixing all normal samples 
was used as reference.

For labeling, 10 μg RNA in a volume of 15 μL were 
mixed with 5 μL Oligo dT primer (Invitrogen, Carlsbad, 
CA) before heating at 70 °C for 10 min. After placing the 
RNA/primer mixture on ice for 5 min, 21 μL cDNA master 
mix containing 8.5 μL 5 × first strand buffer (Invitrogen, 
Carlsbad, CA), 3.5 μL DTT (Invitrogen, Carlsbad, CA), 
3 μL 10 mM mix of dATP, dTTP and dGTP (Fermentas 
GmbH, St. Leon Rot, Germany), 2 μL 1 mM d CTP 
(Invitrogen, Carlsbad, CA), 1 μL RNAseOUT (Invitro­
gen, Carlsbad, CA), 2 μL Superscript II RT (Invitrogen, 
Carlsbad, CA) and 2 μL either of Cy5-dCTP (Amersham 
Bioscience, Freiburg, Germany) for reference RNA; 
or Cy3-dCTP (Amersham Bioscience, Freiburg, Ger­
many) for tumor or normal myometrium RNA from one 
patient were added, the contents gently mixed, and 
the reaction incubated at 42 °С for 1 h. After that 1 μL 
Superscript II RT (Invitrogen, Carlsbad, CA) was added 
and the reaction continued at 42 °С for 2 h. The reaction 
was stopped by heating to 70 °С for 10 min. Then 1 μL 
RNAse H (Invitrogen, Carlsbad, CA) was added and 
the mixture incubated at 37 °С for 20 min. The resulting 
cDNA was purified using QIAquick PCR Purification Kit 
(Qiagen, Hilden, Germany), followed by quantification of 
the cDNA by spectroscopy using an ND-1000 spectro­
photometer (PeqLab Biotechnologie GmbH, Erlangen, 
Germany). Cy3- and C5-labeled and amplified cDNA 
was mixed and dried by a SpeedVac concentrator. Pellet 
was dissolved and resuspended in 5 μL 10 mM EDTA 
and kept at 95 °С for 5 min. After that 35 μL hybridization 
buffer #1 (Ambion Inc., Austin, USA) heated at 68 °С 
in advance was added and the mixture was hybridized 
under glass coverslips to the DNA chip at 62 °С for 16 h 
in a humidified chamber water bath.

Detection and data analysis. The hybridized 
slides were washed in 2 × SSC (300 mM NaCl and 
30 mM sodium citrate) + 0.2% SDS for 10 min, then in 
2 × SSC for 10 min and finally in 0.2 × SSC for 10 min, 
and then spun-dried to scanning at room temperature. 
Fluorescence signals were detected on a ScanArray 
5000 confocal laser scanner (Packard, Billerica, USA). 
Quantification of the signal intensities was done with 
GenePix Pro 6.0 analysis software (Axon Instruments, 
Inc., Union City, USA). 

Data quality assessment, normalization and cor­
respondence cluster analysis were performed with 
the MIAME-compatible [18] analysis and data ware­
house software package M-CHIPS (Multi-Conditional 
Hybridization Intensity Processing System, K. Fellen­
berg, DKFZ, www.mchips.org [19–20]).

Before high-level analysis, data had to be norma­
lized and filtered. Each hybridization was normalized 
with respect to the gene-wise median of the hybridiza­
tions belonging to the control condition. Furthermore, 
because a sufficient number of non-differential genes 
was available, normalization factors were computed 
on the basis of the majority of spots [21]. Genes were 
defined as being differentially transcribed, if they met 
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the following criteria: first, the relevant signal intensities 
on the microarray had to be above background by at 
least twice the standard deviation of the background 
signal; second, variation of transcript levels had to be 
significant according to the highly stringent “min-max 
separation” criterion [21], which calculates the minimum 
difference between the respective signal intensities of 
tumor and normal myometrium, respectively. Cluster 
analysis was performed with correspondence analysis 
[22], which is an explorative computational method that 
visualizes associations between genes and hybridiza­
tions in a multi-dimensional space. In array-based 
transcription analyses it proved to be a very valuable 
tool for biological data interpretation [20].

RESULTS AND DISCUSSION
In order to find differentially expressed genes, 

we compared fibroids from all patients with normal 
myometrium from the same patients. Allowing a false 
discovery rate of 5% we identified 19 deregulated 
genes (Table). For genes that were represented on 
the microarray by more than one probe the smallest 
and largest values are shown. For example, the gene 
of fibronectin 1 was represented by seven different 
probe molecules. The change found between the 
myometrium and fibroids ranged from 2.07 to 3.64, 
depending on the probe. No other gene had an up-
regulation as strong as this one.
Table. Genes deregulated in leiomyoma relative to matched myometrium

Gene Gene product

Expression 
ratio leio
myoma/
normal 

myometrium

Previous 
reports

CCND1 Cyclin D1 2.05–2.31 [13, 15]
CDC25B Cell division cycle 25 homolog B 

(S. pombe)
1.96 —

CDKN1A Cyclin-dependent kinase inhibitor 1A 2.03 [9–11]
CLDN1 Claudin 1 2.24 —
CRABP2 Cellular retinoic acid binding 

protein 2
1.97 [9, 11–13, 23]

DUSP6 Dual specificity phosphatase 6 1.80 [27]
FGF7 Fibroblast growth factor 7 2.21 —
FN1 Fibronectin 1 2.07–3.64 [14,15]
HBA2 Hemoglobin, alpha 2 1.87 —
HBB Hemoglobin, beta 2.26 —
HBE1 Hemoglobin, epsilon 1 2.29 —
HNRPM Heterogeneous nuclear 

ribonucleoprotein M
2.22 —

ISOC1 Isochorismatase domain containing 1 1.96 —
MAGEC1 Melanoma antigen family C, 1 1.96 —
MAPK12 Mitogen-activated protein kinase 12 2.76–2.97 —
RFC Replication factor C (activator 1) 1 2.19 —
SOX4 SRY (sex determining region Y)-

box 4
2.14 [9, 27]

TIE1 Tyrosine kinase with immunoglobu
lin-like and EGF-like domains 1

2.33–2.97 —

TNFRSF21 Tumor necrosis factor receptor 
superfamily, member 21

2.84 —

We also compared our results with previously pub­
lished data. Based on this comparison, we can divide 
genes deregulated in our study into two groups. The 
first group comprises genes that were also identified 
in the previous studies: CCND1, CDKN1A, CRABP2, 
FN1, SOX4. The second group consists of genes that 
to our knowledge have not been previously reported as 
deregulated in fibroids: CLDN1, FGF7, HNRPM, ISOC1, 
MAGEC1, MAPK12, RFC, TIE1, TNFRSF21.

In agreement with our results, significant over-ex­
pression of CRABP2 (also known as RBP6) — encoding 
retinoic acid binding protein — in uterine leiomyoma 
was one of the most common observations of gene 
array studies to date [9, 11–13, 23]. It had also been 
confirmed at the protein level [24]. Retinoic acid has 
been shown to play a significant role in the develop­
ment of uterine fibroids in an animal model. In turn, 
retinoic acid synthesis and mobilization is affected by 
estrogen which regulates expression of CRABP2 and 
ALDH1A1 [25].

Our results also confirm the suggestion that the 
cell cycle-regulating protein cyclin D1 encoded by 
CCND1 (BCL1) is involved in leiomyoma growth [13, 
15]. Cyclin D1 forms a complex with and functions 
as a regulatory subunit of cyclin-dependent kinases 
CDK4 or CDK6, whose activity is required for cell cycle 
G1/S transition. Over-expression of this gene alters 
cell cycle progression and is observed frequently in 
a variety of tumors. The ERalpha-dependent involve­
ment of cyclin D1 in the growth of leiomyomas during 
the menstrual cycle has been determined previously 
by Kovács et al. [25]. It is known that the expression 
of cyclin D1 is increased by estradiol. According to 
these authors, the ERalpha and the CCND1 expres­
sion is elevated in leiomyoma during the menstrual 
cycle. In menopause, there appears to be a switch 
from ERalpha to ERbeta expression in leiomyomas, 
and the induction of CCND1 is decreased.

The activity of cyclin-CDK complexes is inhibited 
by the product of the CDKN1A (also known as P21, 
CIP1) gene, which thus functions as a regulator of 
cell cycle progression at G1. The CDKN1A gene was 
also found to be up-regulated in our and several other 
studies [9–11]. It is known, that the expression of this 
gene is tightly controlled by the tumor suppressor 
protein p53, through which this protein mediates the 
p53-dependent cell cycle G1 phase arrest in response 
to a variety of stress stimuli. Shime at al. [26] made 
an observation that the tranilast-induced expression 
of CDKN1A and P53 inhibits proliferative activity of 
uterine leiomyoma cells. Based on this observation 
and our own data we suppose that some inhibitory 
mechanisms may be activated in response to prolife­
ration of leiomyoma and that CDKN1A is a marker of 
such inhibitory processes.

One more up-regulated gene determined by our 
and previous studies [9, 27] is SOX4 (EVI16). This 
single exon gene that is highly conserved in verte­
brates encodes a member of the SOX (SRY-related 
HMG-box) family of transcription factors involved in 
the regulation of embryonic development [28]. The 
protein also participates in the determination of the cell 
fate and may function in the apoptosis pathway leading 
to cell death as well as to tumorigenesis. High levels 
of SOX4 expression have been reported in a variety 
of human cancers, but it is still unclear what role is 
played by SOX4 during tumorigenesis. It is regarded as 
a transforming oncogene in prostate cancer [29] and 
a contributor to the malignant phenotype of adenoid 
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cystic carcinoma cells by promoting cell survival [30], 
while Aaboe et al. [31] propose that strong SOX4 ex­
pression correlates with increased bladder cancer pa­
tient survival and effectively drives cells to apoptosis. 
Over-expression of SOX4 in leiomyoma cells demands 
further confirmation by quantitative real-time PCR 
and immunohistochemistry, and its role in leiomyoma 
pathogenesis still needs to be determined.

FN1 encodes fibronectin, a glycoprotein binding 
cell surfaces and various compounds including col­
lagen, fibrin, heparin, DNA, and actin. Fibronectins are 
involved in cell adhesion, cell motility, wound healing, 
and maintenance of cell shape, embryogenesis, blood 
coagulation, host defense and metastasis. Abundant 
expression of fibronectin is detected in leukemic den­
dritic cells from patients with acute myeloid leukemia 
[32]; this gene is also up-regulated in papillary thyroid 
carcinoma [33]. FN1 is over-expressed in the fibrosar­
comas and is highly associated with the higher grade 
liposarcoma tumors [34]. In our experiment, FN1 was 
represented on expression microarray chip by seven 
probes. This gene had been reported as being signifi­
cantly up-regulated in fibroids in a previous study by 
Vanharanta et al. [15].

Other probe sets also showed markedly consistent 
changes: MAPK12 (fibroid/normal myometrium ratio 
varying from 2.76 to 2.97) and TIE1 (2.33–2.97). To 
our knowledge, these genes have not been previously 
mentioned as deregulated in leiomyoma. The protein 
encoded by MAPK12 functions as a signal transducer 
during differentiation of myoblasts to myotubes, and 
in relation to this over-expression of MAPK12 may be 
regarded as a marker of leiomyoma proliferation. TIE 
signaling is involved in multiple steps of the angiogenic 
remodeling process during development, including 
destabilization of existing vessels, endothelial cell 
migration, formation of tubes and their subsequent 
stabilization by mesenchymal cells. The expression 
levels of TIE1 have been shown to correlate with pro­
gressive tumor growth and development of metastasis 
by many types of carcinoma [35]. However, we are the 
first to report the overexpression of TIE1 in leiomyoma 
as compared to normal myometrium. In a recent study 
by Nakayama et al. [35], immunohistochemical staining 
revealed that about 80% of leiomyomas were positive 
for TIE1 and other components of the angiopoietin 
pathway. Coupled together, these observations confirm 
the hypothesis that the angiopoietin pathway may play 
an important role in the differentiation of fibroids.

Fibroblast growth factors possess broad mitogenic 
and cell survival activities, and are involved in a variety 
of biological processes, including embryonic develop­
ment, cell growth, morphogenesis, tissue repair, tumor 
growth and invasion. FGF7 protein levels are markedly 
increased in the mucosal epithelium of different gastric 
pathologies, including gastric adenocarcinoma [36]. 
It has been shown that both human myometrium and 
leiomyoma express mRNA for FGF7 (also known as 
KGF) [37]. The elevated FGF7 expression in leiomyoma 
detected in our study, together with the known tumori­

genic potential of FGF7, points to FGF7 as a potential 
target for leiomyoma prevention and treatment.

The protein encoded by СLDN1 belongs to a family 
of more then 20 claudin proteins essential for the for­
mation of tight junctions playing crucial roles in control 
of paracellular transport and in the maintenance of 
cell polarity. Recent investigations have shown that 
claudin gene expression is frequently altered in vari­
ous cancers. It has been hypothesized that changes 
in or loss of expression of claudins can lead to cellular 
disorientation and detachment, which is commonly 
observed in neoplasia. CLDN1 may support tumor 
suppressive functions in tissues and its expression ap­
pears to be decreased in cancer [38, 39]. Correspond­
ingly, decreased expression of CLDN1 correlates with 
short disease-free interval in breast cancer [40]; the 
CLDN1 mRNA level in tumour is also considerably 
lower than that in normal breast tissue [41]. However, 
CLDN1 is frequently up-regulated in a large proportion 
of colorectal carcinomas [42]. This is a first report on 
over-expression of CLDN1 in uterine leiomyoma and 
its role in pathogenesis of this disease. It may be used 
as a tumor marker and target for the treatment. This 
needs further investigation, however.

We also observed some changes that contradicted 
previous results. Quite surprising is the over-expres­
sion of several human globin genes observed in our 
study. The alpha (HBA) and beta (HBB) loci determine 
the structure of the 2 types of polypeptide chains in 
adult hemoglobin, Hb A. The epsilon globin gene (HBE) 
is normally expressed in the embryonic yolk sac. HBA 
and HBB genes were reported down-regulated in two 
previous studies [8, 9]. These conflicting results can­
not be explained from the current data and highlight 
the need to supplement abundant research data.

We conclude that determination of the common mo­
lecular events involved in uterine leoimyoma initiation 
and progression is critical for the development of novel 
strategies for treatment and prevention of this com­
mon category of tumor. DNA microarray analysis has 
been proven to serve as a useful tool in studying global 
gene expression in human tumors. However, a careful 
post-analysis follow-up and validation of microarray 
experiments is needed. In this pilot study, for the first 
time we identified several differentially expressed genes 
between fibroids and normal myometrium. These newly 
identified genes may be regarded as potential diagnos­
tic or prognostic markers and thus may be very useful as 
new therapeutic candidates. In our further experiments 
we will focus on confirming these data.
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АНАЛИЗ ЭКСПРЕССИИ ГЕНОВ ПРИ лейоМИОМЕ МАТКИ

Лейомиома матки является одним из наиболее распространенных доброкачественных новообразований женской репродук-
тивной сферы. В некоторых случаях отмечают злокачественную трансформацию данного новообразования. Цель: иден-
тификация генов, вовлеченных в патогенез лейомиомы. Методы: проведен анализ дифференциальной экспрессии генов в 
образцах лейомиомы и нормального миометрия одних и тех же пациентов методом ДНК-биочип-гибридизации и проведено 
сравнение полученных результатов с данными, опубликованными ранее. Результаты: выявлены различия в экспрессии 
ряда генов, которые можно разделить на две группы. Впервые выявлена повышенная экспрессия генов CLDN1, FGF7 (KGF), 
HNRPM, ISOC1, MAGEC1 (CT7), MAPK12, RFC, TIE1 и TNFRSF21 (DR6) в ткани лейомиомы по сравнению с нормальным 
миометрием. Ко второй группе можно отнести гены CCND1 (BCL1), CDKN1A (P21), CRABP2, FN1 и SOX4 (EVI16), уже 
упоминавшиеся в связи с патогенезом лейомиомы в ряде предыдущих исследований. Наибольшим изменением уровня экс-
прессии (в 2,07–3,64 раз в зависимости от зонда) характеризовался ген фибронектина FN1. Выводы: идентифицированные 
гены могут рассматриваться в качестве потенциальных диагностических и прогностических маркеров лейомиомы матки.
Ключевые слова: ДНК-биочип, ген, экспрессия, лейомиома матки.
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