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TARGETING THE ANTI-APOPTOTIC BCL-2 FAMILY MEMBERS FOR 

THE TREATMENT OF CANCER

B. Weyhenmeyer, A.C. Murphy, J.H.M. Prehn, B.M. Murphy*
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Most cells express a variety of both anti-apoptotic and pro-apoptotic Bcl-2 proteins and the interaction within this family dictates 
whether a cell survives or dies. The dysregulation of the anti-anti-apoptotic Bcl-2 family members is one of the defining features 
of cancer cells in comparison to normal cells, and significantly contributes to the resistance of cancer cells to current treatment 
modalities. This anti-apoptotic subfamily of proteins is now a major target in the development of new methods to improve treatment 
outcomes for cancer patients. Several drugs directed at inhibiting Bcl-2 and related anti-apoptotic proteins have been developed 
with some showing considerable promise in the clinic. This Review presents the current knowledge of the role of the anti-apoptot-
ic Bcl-2 family in cancer cells, as well as current and future perspectives on targeting this subfamily of proteins for therapeutic 
intervention in human malignancies. This article is part of a Special Issue entitled “Apoptosis: Four Decades Later”.
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INTRODUCTION

The term apoptosis originates from the Greek ex-
pression “the falling of leaves from a tree” and refers 
to an evolutionary preserved mechanism of controlled 
cell deletion. It was first introduced into scientific litera-
ture in 1972, when John Kerr et al. published a detailed 
description of the distinct morphological features 
of dying cells; chromatin condensation, nuclear 
fragmentation and cell shrinkage [1]. Cell death via 
apoptosis plays a role in many diverse fundamental 
processes. Apoptosis enables the removal of super-
fluous or damaged cells from the body of multicellular 
organisms during embryogenesis and contributes 
to cellular homeostasis [2–4]. Apoptosis is also essen-
tial in the defence against infectious microorganisms 
and the removal of cancerous cells [5].

The demolition of a cell during apoptosis is primarily 
achieved through the cleavage of numerous cellular 
proteins by the proteolytic caspase (cysteinyl aspar-
tate proteinases) enzymes [6]. Two major pathways 
lead to caspase activation in mammalian cells: the 
extrinsic or death receptor pathway and the intrinsic 
mitochondrial pathway [7]. The extrinsic apoptotic 
pathway can be induced by the association of death 

receptors belonging to the tumour necrosis factor 
(TNF) receptor superfamily, such as Fas or TNF-
R1 and their respective ligands, FasL and TNF-alpha 
[8, 9]. Such association results in the recruitment 
of adaptor proteins and either procaspase-8 or pro-
caspase-10 to form the death inducing signalling com-
plex (DISC) [8]. Depending on the cell type, extrinsic 
apoptotic signalling can proceed via two pathways: 
in type I cells, active caspase-8 cleaves and activates 
executioner caspase-3, directly leading to nuclear 
fragmentation and ultimately cell death [10, 11]. In type 
II cells, active caspase-8 cleaves the BH3-only protein 
Bid to fom truncated Bid (tBid), which activates the 
intrinsic mitochondrial apoptotic pathway [12, 13]. 
The intrinsic apoptotic pathway is primarily induced 
by developmental cues and diverse cytotoxic events 
including DNA damage and exposure to drugs or ra-
diation during cancer treatment, leading to changes 
in Bcl-2 family interactions, which converge on the 
outer mitochondrial membrane culminating in pore 
formation [14]. Mitochondrial outer membrane per-
meabilisation (MOMP) results in the release of various 
mitochondrial intermembrane space proteins, such 
as cytochrome c [7]. Released cytochrome c binds 
to apoptotic protease-activating factor 1 (Apaf-1), 
thereby inducing the oligomerisation of Apaf-1 and 
the formation of the apoptosome [15]. In the presence 
of (d)ATP, initiator procaspase-9 is recruited to the 
complex and activated [16]. Active caspase-9 in turn 
triggers the activation of executioner caspases, 
caspase-3 and -7, leading to a cascade of caspase-
mediated cleavage reactions that lead to cell death 
(Fig. 1) [16].

The majority of anti-cancer treatments act by in-
ducing stress signals that can activate the intrinsic mi-
tochondrial pathway of apoptosis in tumour cells [17]. 
This Review presents the current knowledge of how 
cancer cells overcome such treatment strategies, with 
particular reference to the role of the anti-apoptotic 
Bcl-2 family in this process, as well as current and 
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future perspectives on targeting the anti-apoptotic 
Bcl-2 family of proteins for therapeutic intervention 
in human malignancies.

Fig. 1. Caspase Activation Pathways. (A) Engagement of plasma 
membrane-associated death receptors results in recruitment 
and activation of procaspase-8 via the adaptor molecule 
FADD. In type I cells, active caspase-8 can directly activate 
procaspase-3. Active caspase-3 can then initiate a caspase 
activation cascade. In type II cells, the reduced level of activated 
caspase-8 cleaves the BH3-only protein Bid. This 15 kDa frag-
ment, tBid, activates the mitochondrial pathway by stimulating 
cytochrome c release via Bax and/or Bak oligomerization and 
insertion into the outer mitochondrial membrane. Once in the 
cytoplasm cytochrome c promotes apoptosome assembly and 
thus caspase activation. (B) Diverse forms of cellular stress, 
(DNA damage, cytotoxic drugs, cytokine withdrawal), may 
trigger the release of cytochrome c from mitochondria via the 
death-promoting Bcl-2 family members, such as Bax and/
or Bak, oligomerization and insertion into the outer mitochondrial 
membrane. Cytochrome c release from mitochondria is inhibited 
by the death inhibitory Bcl-2 family members, such as Bcl-2 and 
Bcl-xL. (Adapted from [110])

THE CLASSIFICATION OF THE 

BCL-2 FAMILY OF PROTEINS

The rapid and irreversible release of cytochrome 
c from mitochondria is generally recognised as the 
“point of no return” in the life of a cell [18]. Unsurpris-
ingly therefore, the process of cytochrome c release 
from mitochondria is tightly controlled, primarily by the 
B cell lymphoma-2 (Bcl-2) family of proteins [19, 20]. 
The name of this diverse family originates from their 
first identified member, Bcl-2, an oncoprotein that was 
activated via chromosome translocation in human fol-

licular lymphoma [21, 22]. To date, there are 25 known 
proteins in the Bcl-2 family that can be subdivided into 
3 groups, according to their pro- and anti-apoptotic 
effects and the presence of Bcl-2 homology (BH) 
domains [23]. The anti-apoptotic Bcl-2-like proteins, 
comprise 1 group and has amongst its members Bcl-
2, Bcl-2-related gene long isoform (Bcl-xL), Bcl-w, 
myeloid cell leukemia-1 (Mcl-1) and Bcl-2-related 
gene A1 (A1). These anti-apoptotic proteins have 
similar 3D structures, possess four BH domains, 
and all promote cell survival by inactivating their pro-
apoptotic Bcl-2 family counterparts and preserving 
outer mitochondrial membrane integrity [23]. The pro-
apoptotic Bcl-2 family members may be subdivided 
into 2 classes: the multidomain effector proteins and 
the BH3-only proteins. The multidomain members 
include Bcl-2-associated-x protein (Bax), Bcl-2 ho-
mologuous agonist killer (Bak) and the much less 
studied, Bcl-2 related ovarian killer (Bok) and contain 
structural features of all four BH domains, similar 
to the antiapoptotic proteins [24]. Once activated, 
the effector proteins, Bax and Bak promote apoptosis 
by enabling pore formation within the mitochondrial 
outer membrane [25].

Structurally, the BH3-only proteins are homologous 
to the rest of the Bcl-2 family members in only one 
small sequence, the BH3 domain (Fig. 2). 

Fig. 2. Schematic representation of Bcl-2 family members. 
Bcl-2 family members are the key regulators of cytochrome 
c release from the mitochondria. As is illustrated, all members 
of the family contain at least one of 4 BH domains, designated 
BH1, BH2, BH3 and BH4. Some members also contain a trans-
membrane domain that tethers these proteins to intracellular 
membranes. The anti-apoptotic members most similar to Bcl-2, 
such as Bcl-xL contain all 4 BH domains. There are 2 very distinct 
pro-apoptotic sub-families: the multidomain effectors and the 
BH3-only subgroup. The multidomain effectors, Bax, Bak and 
Bok are very similar to Bcl-2 and contain structural features 
of all 4 BH domains. The “BH3-only” proteins such as Bad, Bid 
and Bim contain a central BH3 domain that is essential for their 
killing activity. The “BH3-only” proteins are a very diverse family. 
(Adapted from [110])

BH3-only group members include, Bcl-2-as-
sociated death promoter (Bad), BH3 interacting-
domain death agonist (Bid), Bcl-2-interacting killer 
(Bik), Bcl-2 interacting mediator of cell death (Bim), 
Bcl-2 modifying factor (Bmf), Harakiri (Hrk), Noxa and 
p53-upregulated modulator of apoptosis (PUMA). 
BH3-only protein signalling is essential for the initiation 
of the mitochondrial apoptotic pathway, but MOMP 
requires the presence of either Bax or Bak [25–27].
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THE INTERACTIONS BETWEEN THE 

BCL-2 FAMILY OF PROTEINS

Most cells express a variety of both anti-apoptotic 
and pro-apoptotic Bcl-2 proteins and the interaction 
between proteins within this family dictates whether 
a cell survives or dies [20]. The exact mechanisms 
of how Bcl-2 proteins interconnect to regulate MOMP 
and apoptosis has been controversially discussed. 
The “direct activation” model proposes that BH3-only 
proteins Bim, truncated Bid (tBid) and maybe PUMA 
act as “direct activators” of Bak/Bax and the rest of the 
BH3-only proteins act as “sensitisers” or decoys but 
do not directly activate Bax/Bak. Such “sensitisers” 
prevent the antiapoptotic Bcl-2-like proteins from 
binding to the activators, thus freeing these proteins 
to interact with and activate Bak and Bax, leading 
to MOMP and cytochrome c release [28, 29]. The 
second “derepression” model suggests that Bax and 
Bak are always active and the anti-apoptotic proteins 
prevent cell death by binding to them. In this model 
the role of the BH3-only proteins is to target and bind 
the anti-apoptotic Bcl-2 family members to release 
active Bak and Bax. While certain members of the 
BH3-only family (Bim, PUMA and tBid) can bind to all 
anti-apoptotic proteins, other proteins, such as Bad 
and Noxa, only interact with a specific Bcl-2 protein 
family member to regulate MOMP [30, 31]. The more 
recently proposed “embedded together” model 
combines features of both. Under this model, BH3-
only sensitisers are thought to displace Bax and the 
BH3-only activators from the anti-apoptotic proteins. 
Bax is then free to oligomerise and the BH3-only 
activators can bind and recruit additional Bax, which 
also oligomerises, resulting in pore formation and 
MOMP. These important interactions occur at the 
mitochondrial outer membrane [32, 33]. Although fur-
ther work is required to more thoroughly elucidate the 
intricate interactions between the Bcl-2 family of pro-
teins, the shared theme of all proposed models is the 
engagement of anti-apoptotic Bcl-2 family members 
by the BH3-only subfamily of proteins. Anti-apoptotic 
Bcl-2 family members contain a hydrophobic binding 
pocket, formed by the folding of their BH1, BH2 and 
BH3 domains and BH3-only proteins can bind into 
this groove via their BH3 domain [20, 26, 34]. When 
the abundance of active pro-apoptotic Bcl-2 family 
proteins exceeds the binding capacity of the anti-
apoptotic Bcl-2 family proteins, MOMP occurs and the 
mitochondrial pathway of apoptosis proceeds [20].

THE ROLE OF THE ANTI-APOPTOTIC 

BCL-2 FAMILY PROTEINS IN CANCER 

DEVELOPMENT AND MAINTENANCE

The discovery that Bcl-2 did not drive cell prolifera-
tion, as for previously characterized oncogenes, but 
rather promoted cell survival, led to the realisation that 
the inhibition of apoptotic pathways was a critical step 
in tumourigenesis [35]. Indeed many studies have 
since highlighted that the dysregulation of Bcl-2 and 
other anti-anti-apoptotic family members is one of the 

key defining features of cancer cells in comparison 
to normal cells [36]. BCL-2 transgenic mice develop 
spontaneous tumours [37] and BCL-2 gene and 
protein amplification has been discovered in vari-
ous malignancies, including chronic lymphocytic 
leukaemias [38], small cell lung cancers [39], breast 
carcinomas [40], non-Hodgkin’s lymphoma [41] and 
glioblastomas [42]. Mcl-1 overexpression predisposes 
mice to B-cell lymphomas [43]. In humans, Mcl-1 ex-
pression is markedly high in many cases of acute my-
eloid leukaemia and multiple myeloma, and diverse 
cancers demonstrate overexpression of Mcl-1 and 
BCL-x genes [44, 45]. Pertinently, it has also been 
demonstrated that not only does the overexpression 
of the anti-apoptotic members of the Bcl-2 fami-
ly play a role in cancer development; their elevated 
expression can also be correlated with resistance 
to cancer therapeutics, including chemotherapy and 
radiotherapy [23, 46]. Miyashita and colleagues first 
demonstrated the link between Bcl-2 and resistance 
to DNA-damaging agents in various lymphoid cell 
lines [47, 48]. Since then overexpression of Bcl-2, Bcl-
xL or Mcl-1 has been shown to protect against many 
diverse anti-cancer agents, in both mice [49–52] and 
humans, reviewed in [23, 53]. More recent studies 
have extended these observations even further with 
evidence of “oncogene addiction”. This concept, 
based on work from the laboratories of the late Stan-
ley Korsmeyer and Anthony Letai, implies that even 
in the absence of an anti-cancer agent, many cancer 
cells are addicted to the presence of Bcl-2 proteins 
and their survival is dependent on the activity of these 
oncogenes. Under these circumstances, the upregula-
tion of proapoptotic Bcl-2 family members in response 
to oncogenic signals in tumour cells is not sufficient 
to overcome the increased antiapoptotic Bcl-2 family 
protein signalling within the cells [54, 55].

ANTI-APOPTOTIC BCL-2 FAMILY 

MEMBERS AS TARGETS FOR THE 

TREATMENT OF CANCERS

The outcome of these collective observations from 
over three decades of research on Bcl-2 family pro-
teins is that these family members are now extremely 
attractive targets for the treatment of numerous 
cancers. As previously mentioned, structural studies 
have elucidated a hydrophobic groove on the surface 
of anti-apoptotic Bcl-2 family proteins that binds the 
BH3 dimerization domain of pro-apoptotic family 
members [20]. Thus, treatment with molecules that 
mimic the BH3 domain of the pro-apoptotic proteins 
may potentially overcome the increase in anti-apop-
totic Bcl-2 proteins and thus induce cancer cell death.

The first drug developed to pharmacologically 
inhibit Bcl-2 was Oblimersen sodium (G3139, Genas-
ense), an 18-mer antisense oligonucleotide designed 
to target the first six codons of BCL-2 mRNA [56]. 
Initial preclinical and clinical studies showed that the 
combination treatment of Oblimersen with a given 
anti-cancer drug increased the chemotherapeutic 
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effect in various types of cancers [57–60]. However, 
after failing to result in survival differences in a pivotal 
melanoma trial this agent did not obtain US Food and 
Drug Administration approval [61]. Factors considered 
as contributory to the failure of this drug included the 
sole targeting of Bcl-2 by Oblimersen and the po-
tential increased expression of other anti-apoptotic 
Bcl-2 family members as a result of the downregulation 
in Bcl-2 expression. To circumvent these difficulties 
efforts were next directed at neutralizing a broader 
range of the anti-apoptotic Bcl-2 family members.

HA-141 was identified via in silico screens for 
compounds that bound the hydrophobic groove 
of Bcl-2 [62]. In preclinical studies it has been shown 
to inhibit the binding of Bcl-2 and Bcl-x to Bax and 
Bak [63, 64] and induce apoptosis in a wide variety 
of cancer cells, including glioma cells [64] and colon 
cancer cells [65]. Additionally, in combination with 
etoposide, HA14-1 has been demonstrated to slow 
the growth of glioblastoma in vivo [64]. However, the 
binding affinity of this compound for Bcl-2 is quite 
high and is significantly higher than affinities of other 
inhibitors for Bcl-2 [62].

Gossypol, a polyphenol derived from the cotton-
seed plant, was the first natural compound discov-
ered that demonstrated inhibition of Bcl-2, Bcl-xL and 
Mcl-1 [66]. Originally gossypol was studied as a male 
contraceptive [67], but was later shown to have po-
tent anti-cancer effects [68, 69]. Natural gossypol 
is a racemic mixture and studies have found that the 
levo enantiomer (l-gossypol) has more potent pro-
apoptotic effects than d-gossypol [70]. In preclinical 
studies many groups have shown gossypol’s potent 
pro-apoptotic activity [71, 72]. However, the results 
of a Phase II clinical trial in which, L-gossypol (AT-
101, Ascenta) was tested in patients with recurrent 
chemosensitive extensive-stage small cell lung can-
cer (SCLC) were disappointing [73]. More promising 
results were achieved in a PhaseI/II trial, evaluating 
AT-101 in prostate cancer [74] and when AT-101 was 
administered in combination with docetaxel, in a Phase 
II trial of non-small cell lung cancer [75]. Further 
Phase I and II trials are ongoing to further evaluate 
AT-101 in combination with conventional chemothera-
peutics across a range of malignancies, including small 
and non-small cell lung cancers, chronic lymphocytic 
leukaemia, prostate cancers and glioblastoma multi-
fome (AT-101, http://clinicaltrials.gov).

Gossypol has toxicity problems however, most 
likely due to two reactive aldehyde groups [76] and 
as a result many derivatives of gossypol have been 
generated, ranging from Apogossypol, the first de-
rivative designed, to the more recent BI-97C1 (Sabu-
toclax). These compounds bind with even greater ef-
ficiency to the anti-apoptotic Bcl-2 family members but 
do not confer the same level of toxicity [77, 78]. While 
preclinical results are promising [79], at present there 
are no reports on clinical trials using such derivatives 
but it is expected that these derivatives will enter trials 
soon. Finally and of special interest are the observa-

tions by Vogler and colleagues that gossypol and its 
derivatives may kill even in the absence of Bak and 
Bax, indicating that the mechanisms of action of these 
drugs may in fact be independent of the intrinsic mi-
tochondrial pathway [80]. Autophagy has been sug-
gested as the mechanism by which gossypol induces 
death in cells with very high levels of Bcl-2 [81]. While 
not a direct focus of this review, autophagy is a sec-
ond process of cell death in which the Bcl-2 family 
have also been described to play a role. Briefly, the 
BH3-only protein, Beclin-1 is essential for the initiation 
of autophagy and can be inhibited by binding to Bcl-2/
Bcl-xL at the endoplasmic reticulum [82–84]. Gossypol 
has been shown to induce autophagy by blocking this 
Bcl-2-Beclin 1 interaction [81].

The two Bcl-2 inhibitor drugs furthest in clinical 
development are obatoclax (GX-15-70) from Gemin 
X Biotechnologies and ABT-737 from Abbott. Obato-
clax was discovered as a result of a high-throughput 
screen of natural compounds that disrupted protein 
interactions in the Bcl-2 family and was the first pan 
anti-apoptotic Bcl-2 protein inhibitor to be described 
[85]. This small molecule bipyrrole compound 
has been shown to bind to Bcl-2, Bcl-x, Bcl-w and 
Mcl-1 in vitro [86]. Preclinical experiments showed 
that Obatoclax has pro-apoptotic effects when used 
alone and enhances the in vitro efficacy of bortezo-
mib in human multiple myeloma [87] and mantle cell 
lymphoma cell lines [88]. Obatoclax has been tested 
in Phase I clinical trials in patients with haematological 
and myeloid malignancies and was well tolerated [89, 
90]. In a more recent phase II study in patients with 
relapsed or refractory classical Hodgkin lymphoma, 
obatoclax displayed limited clinical activity [91] but 
more promising results were observed in a phase I trial 
of obatoclax in combination with carboplatin and eto-
poside in patients with extensive-stage small cell lung 
cancer [92]. Again, the mechanism of action of this 
putative anti-apoptotic Bcl-2 family inhibitor is not 
fully understood as it has been shown to induce cell 
death in the absence of Bax/Bak and caspase-9 [80]. 
Similar to gossypol, autophagy has also been sug-
gested as an alternative method of inducing cell death 
which Obatoclax may utilize to kill cells under certain 
circumstances [93].

ABT-737 was developed using nuclear magnetic 
resonance to screen a chemical library for BH3-like 
analogues that bound with high efficiency to the hy-
drophobic groove of Bcl-xL [94]. ABT-737 does not 
inhibit Mcl-1 but binds to and inhibits Bcl-2, Bcl-xL and 
Bcl-w with nanomolar affinities, closely resembling 
the BH3 domain of Bad and representing a far greater 
potency of action than for the previously discussed 
compounds [80]. ABT-737 is extremely effective at en-
hancing the response to radiation as well as a variety 
of chemotherapy agents in many different cancer 
cell lines in vitro, and displayed significant activity 
as a monotherapeutic in two small-cell lung cancer 
xenograft models [94, 95]. However, drug delivery 
is problematic for ABT-737 and resistance is observed 
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in cells that express Mcl-1 [96, 97]. To overcome the 
delivery problems, ABT-263 (Navitoclax) was deve-
loped by Abbott for use in the clinic. ABT-263 is an oral 
version of ABT-737 and shares a similar binding profile 
and affinities to purified Bcl-2, Bcl-xL and Bcl-w pro-
teins as ABT-737 [98]. Furthermore, ABT-263 has 
demonstrated activity as a single agent in small cell 
lung cancer orthotopic tumour models and has been 
shown to enhance the activity of chemotherapy agents 
in cancer cell lines [98]. Several strategies are also be-
ing developed to complement the activity of ABT-737, 
by neutralizing Mcl-1 [99–101].

A number of Phase I and Phase II trials are currently 
underway or have recently been completed evaluat-
ing the efficacy of ABT-263 as both a montherapeutic 
and in combination with other chemotherapeutics 
in patients with malignancies of lymphoid origin and 
solid tumours (ABT-263, http://clinicaltrials.gov). 
Thrombocytopenia, attributable to the high-affinity 
inhibition of Bcl-xL in platelets, has been recognised 
as a dose-limiting side effect of ABT-263 in preclini-
cal studies [98] and in Phase I trials [102–104]. Due 
to encouraging results of these Phase I trials, Phase 
II trials are proceeding [102–104]. Importantly, unlike 
the other BH3 mimetics discussed, ABT-737 has been 
shown to act in a similar manner to other BH3-only 
proteins and requires the presence of Bax/Bak and 
caspase-9 to induce apoptosis which it is hoped will 
lead to increased selectivity in its cytotoxicity towards 
cancer cells [80, 97].

PREDICTING RESPONSES 

TO BH3 MIMETICS

BH3 profiling was designed as a tool to understand 
addiction to Bcl-2 family proteins [105]. Using this tech-
nique cell lines were divided into three classes based 
on their specific anti-apoptotic block to the intrinsic 
pathway of apoptosis. A “class A” block was defined 
as one that arose from insufficient levels of BH3-only 
proteins. A “class B” inhibition block developed after 
significant loss of Bax and Bak. Finally, a “class C” block 
occurred when the cells overexpressed anti-apoptotic 
proteins [106, 107]. Further investigations highlighted 
that BH3 profiling correctly identified those cell lines 
that were Bcl-2 dependent based on correlation with 
response to the Bcl-2 antagonist ABT-737 [108]. Such 
experiments suggest that BH3 profiling could be a use-
ful in the clinic as a diagnostic tool as it could potentially 
be used to predict patient response to an antagonist 
of an anti-apoptotic protein [105, 109].

CONCLUSIONS AND PERSPECTIVES

The observations that being dependent on, or ad-
dicted to an anti-apoptotic Bcl-2 family member can 
lead to a cancer phenotype has resulted in the devel-
opment of many BH3 mimetics to treat a broad range 
of haematological malignancies and solid tumors. 
As discussed above clinical data has revealed some 
to be more successful than others when trialed in pa-
tients. Evidence also indicates that a single BH3 mimetic 
may not be sufficient as a monotherapeutic to cure 

cancer patients and the best results may be achieved 
by appropriate drug combinations. Identifying the most 
suitable drug combinations may be achieved by using 
techniques such as BH3 profiling or a systems mod-
elling approach examining Bcl-2 family interactions. 
Undoubtedly further understanding of this subfamily 
of proteins is needed to exploit the potential offered 
by their successful targeting and ultimately deliver 
improved therapies for cancer patients.
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