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An optical method of generation of the first and second sounds in superfluid *He—*He solutions is

proposed. The method is based on illumination by amplitude-modulated laser beam with wavelength

corresponding to a region of absorption. Numerical calculations of pressure and temperature as a

function of time are carried out. It was found that the presence of *He isotopes in the solution provides

strong coupling between these parameters and, as a result, the waves of the first sound involve

oscillations of the temperature, while the waves of the second sound involve oscillations of the pressure.

PACS: 67.60.—g

1. Introduction

As in He-1II, the waves of the first and the second
sounds can propagate in superfluid SHe—*He solu-
tions [1]. Rudavsky and Serbin have considered
generation of acoustical waves involving oscil-
lations of pressure and temperature in the solu-
tions [2]. They extended the method, which was
developed by Lifshitz [3] for superfluid helium, to
the superfluid 3He—*He solutions. It was shown
that a surface with periodically varying temperature
generates waves of both the first and second sounds
in the solutions, and that intensities of the waves
are of the same order of magnitude. Such an impor-
tant difference between the solutions and He-II is
due to strong coupling between the density of the
medium and the concentration of 3He isotopes. This
coupling gives rise to a strong relation between the
oscillating parts of the pressure P'(f, r) and the
temperature T'(f, r). As a result, the waves of the
second sound lead to oscillations of the pressure,
while the waves of the first sound give rise to
oscillations of the temperature. This effect has been
observed and studied in detail experimentally [4,5].
Because of its simplicity, this method is now widely
used.

In this paper we propose an optical method
allowing one to generate waves of the first and
second sounds in superfluid 3He—*He solutions. The
advantage of the proposed method is that it is
contactless. It is worth mentioning that there are
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many theoretical and experimental studies of opti-
cal generation of acoustic waves in classical liquids
and solids (see the review article [7]). In the case
of He-II such a method of generation of the second
sound was studied theoretically [8]. It was shown
that waves of the second sound can be generated by
laser radiation. In this paper our aim is to extend
the results obtained in Ref. 8 to superfluid
3He-*He solutions.

Let us assume that the system under considera-
tion has regions of absorption in various ranges of
the spectrum (for example, the He isotope has an
absorption line in the ultraviolet region [1600 A
with the absorption coefficient about 1 cm™
(Ref. 9 and 10) and is described by the absorption
coefficient a. Then, generation of waves of the first
and second sounds by amplitude-modulated laser
radiation (for example, an excimer laser) is possi-
ble. The illuminated medium due to periodically
changing temperature and thermal expansion emits
waves of the first and second sounds. Due to the
strong coupling between P'(t, r) and T'(¢, r), the
oscillations of one of these parameters give rise to
the oscillations of the other parameter.

2. Equations for waves of the first and second
sounds

We assume a solution of 3He—4He to be confined
in a cylindrical container with volume V and radius



R. A monochromatic laser beam with the amplitude
and Gaussian shape of the spatial distribution,
changing in time is assumed to move along the axis
of the cylinder. Absorption in the system provides
dissipation of the radiation energy and generation of
acoustic waves according to the thermal mechanism
described in Ref. 7. We assume that the amplitudes
of oscillations of hydrodynamic parameters are
much lower than their average magnitudes. This
allows us to apply a system of linear hydrodynamic
equations. This system consists of the mass conser-
vation law, the equation describing the movement
of the liquid, the equation for entropy taking into
account the heat source, the equation for concentra-
tion taking into account the solvent only to the
normal mode, and the equation for the superfluid
component [1]. Further, we ignore the dissipation
terms in the hydrodynamic equations and use the
system of equation [1]
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where p = p_+p, , 0, and ¢, are the average values
of the mass, the entropy per unit mass, and the
concentration, p', o', and ¢' are their amplitudes,
p, and p, are the densities and v, and v, are the
velocities of the superfluid and the normal compo-
nents, respectively, and
Z = p(HS - IJ4) )

H=clg+ (1 -y, , (6)

where My 4 1S the chemical potential of 3He and
“He, and f(t, r) is the heat source due to the
absorbed light.

We then ignore the terms on the right side of
(4), i.e. we consider the case of small concentra-
tion. Excluding from (1)—(5) v, v, , and ¢’ and
using the thermodynamic expression [1] which con-
nects W' and o' with the perturbations of pressure
P' and temperature T", we obtain
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Heat sources of sound are taken into account on the
right-hand sides of Eqs. (7) and (8). The system of
wave equations (7) and (8) describes the depen-
dence of temperature and pressure of superfluid
3He-*He solution on time and spatial coordinates
when an electromagnetic wave with varying ampli-
tude and wavelength corresponding to the absorp-
tion range propagates in the sample. For example,
the terms with the factors AT in Eq. (7) and AP’ in
Eq. (8) due to large value of |B = 0.1-0.4 provide
the strong relation between the amplitudes of tem-
perature and pressure as the first and second sound
waves propagate.

3. Solution of the system of acoustical
equations for the first and second sounds.
Analysis and numerical results

The heat sources in Eqs. (7) and (8) provide a
transfer of electromagnetic wave energy to acousti-
cal energy. The transfer goes according to the heat
mechanism, i.e., due to the heat expansion, the
strong dependence of the density on the concentra-
tion (/(c,/py) (9p/0c) >> a;), and the periodical
changing of the temperature at the surface of the
illuminated volume.

Further, for simplicity we ignore the variation of
the intensity in the medium caused by absorption.
We assume that the laser beam propagates along the
axis of the cylindrical container. This allows us to
set
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where ¢(¢) is a function describing the oscillating
part of the intensity, ¢, (r) = (2 /Tew?) exp [-2r%/w?]
describes its radial distribution, and I, and @ are
the power and radius of the stretching of the light
beam, respectively. We also assume that @ is much
smaller than the radius of the cylindrical container.

Taking the Hankel transfer of Eqs. (7) and (8)
with respect to

29
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where {0 is the Bessel function, and
A'(t, s) =T'(t, s) or P'(t, s), we obtain
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It is assumed that T'() » 0 and 0T'(r)/0r — 0 as
r — . We also use the notation
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We will consider two cases: instantaneous switch-
ing and harmonical law.

Instant switching

In the case of instantaneous switching ¢(f) is
equal to the Heaviside unit step function 6(£) and
its time derivative is equal to the Dirac function
3(t). Using the Laplace transform of Egs. (12) and
(13)
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with the initial conditions T"(0, s) = P'(0, s) =0, we
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The system of linear equations (16) has a solution if
A Ay, — AyAy = 0. This condition can be rewrit-
ten as
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where U, 5 are the velocities of the first and second
sounds, respectively. It should be ment1oned that
we have simplified expressions for p1 o using the
small parameter (p /p )B2 << 1. A ‘solution of
Eq. (16) is given by
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To find P'(t, r) and T'(¢t, r) one should use the
inverse Laplace and Hankel transforms of Eqs. (20)
and (21). The inverse Laplace transform gives rise
to
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Using the Hankel transfer of Eqs. (22) and (23),
we can write
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If we set in Eq. (24) U% = C% , we obtain
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The first term in Eq. (25) corresponds to impulse of
the first sound, and the second term corresponds to
the variation in temperature of the first sound
wave. It always has an opposite phase. Since
B =(cy/Py(0p/dc) <0, the amplitude of the first
sound, P . =-al, BU1/T 00(U2 U2) is always
positive. The first term in the expression for
T'(t, r) is a heat impulse of the second sound, while
the second term corresponds to the variation of
pressure when temperature waves pass in the con-
sidered solution. It is worth mentioning that ac-
cording to Eq. (26) or Eq. (28), a sign of the phase
of P depends of the sign of G, and can either be
opp051te to the sign of the phase of the impulse or
coincide with it. In the range of temperature and
concentration where a,. <0 the phases of P'( )(t r)
and T (t r) are opposite to each other, but for
oy > 0 Wthh provides o BU2 < oyor G, <0, the
phases coincide.

Figures 1,a,b show the amplitudes of the pres-
sure and temperature against time. The calculation
was carried out on the basis of Egs. (25) and (28)
for r=1cm, w=0.05cm, a=1cm™!, I,=1W,
Ty=1.5K, a; =-12007 K™, B=-0.3 (Ref. 11),
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Fig. 1. Pressure () and temperature (b) against time for a su-
perfluid 3He—“He solution. The calculation was carried out for
instantaneous switching and r = 1 cm.

U, =220m/s, U,=20m/s, 0=0620]/(kgK)
(Ref. 6), 0, =2.300° J /(kgK), p, =0.12 g/cm?,
and Cp = 3000° J /kg3. Tt is easy to see in the
figures that there are signatures of impulses of the
first and second sounds at ¢, =7r/U, and
Loy = r/U, . The amplitudes of the impulses are
large enough to be recorded by using modern me-

thods.

Harmonical law

Let us now consider the case where the intensity
of the laser beam changes in time with acoustical
frequency w. It is instructive to carry out calcula-
tions using the complex functions

d(t) = exp (~icat) | %qt’— = —iob(t), (29)

but keep in mind that we should finally take only
the real parts. We assume that all the other vari-
ables vary according to the same law:
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P'(t, s) = P'(w, s) exp (—iwt) ,
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The solution of Eq. (32) is similar to that of
Eq. (16). It is given by
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Simple calculation allows one to express Egs. (33)
and (34) in the form

: 2
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The inverse Hankel transfer of Eqs. (37) and (38)
yields
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where Hg” is the Hankel function. It is evident
from Eqgs. (39) and (40) that the system generates
a cylindrical wave. In the far zone, where
r>>U /o, the needed expressions take the form
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The expressions obtained by us show that the
amplitudes of excited oscillations are proportional

to Vw. There are maxima at the frequencies
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, =V2 Uy, /win the dependence of the am-

IIlZiXL2
plitudes of impulses on frequency. For @ = 0.05 cm

and W, = 10° 57! for the first

and second sound, respectively. Note that signals of
heat impulses were reported [12] to be firmly re-
corded, and that their amplitude is of the order of

they are w, = 106 71

1076 K. This allows one to reduce I, by a factor of

10—-100, while @ can be reduced to a tolerable
possibility (with allowance for the diffraction ef-
fects). The maximal amplitudes of the recorded
signal of the second sound can be increased up to

107-108 s71.

4. Conclusions

We have considered the possibility of an optical
generation of the first and second sounds in the
superfluid 3He—4He solutions. It has been shown
that a synchronous generation of waves of the first
and second sounds is quite realistic if a solution is
illuminated by amplitude-modulated laser radiation
with the wavelength corresponding to the range of
absorption of the system. It has been shown that
this method covers the range of frequencies of the
second sound, which is hardly achievable by means
of other methods.
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