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The collective electromagnetic wave excitations in layered conductors in an external quantizing

magnetic field are studied theoretically. A set of coupled equations for the electric field components and

the Greens functions describing collective electromagnetic modes in such a system within the linear-re-

sponse approach are obtained on the basis of a model of conducting planes embedded into a dielectric

matrix. These equations, written in the layer-site representation, provide a basis for studies of the

electromagnetic waves in the general case which does not imply either the spatial uniformity across the

layers or the homogenity within the conducting planes. The dispersion equations are obtained for the

uniform and homogeneous layered conductors, which give a rich structure of collective electromagnetic

modes in layered conductors in an external magnetic field. The dispersion and damping of helicons in

layered conductors in the regimes of conventional and quantum Hall effects have been studied, both

analytically and numerically. Two new modes propagating perpendicular to the magnetic field with

frequencies of the order of the plasma frequency have been found.

PACS: 73.20.Dx, 73.20.Mf, 73.40.Hm

1. Introduction

It is known that weakly damped electromagnetic
waves of different types can propagate in metals in
a strong magnetic field at low temperatures [1,2].
Among them are the spiral waves, or helicons,
whose frequency w is proportional to the intensity
of the magnetic field H, (Ref. 3) the magneto-
plasma waves [4,5], the Alfven waves, the cyclo-
tron waves [6], surface waves [7], magnetoimpurity
waves [8,9], and other waves.

A progress gained in fabrication of various artifi-
cial superlattices as well as recent extensive re-
search of different types of layered metallic, or-
ganic, and other (semi) conductors and
superconductors, including high-T, cuprates, en-
hances activity in studies of collective electromag-
netic oscillations in these systems.

A quasi-two-dimensional (2D) nature of the elec-
tron spectrum in superlattices exerts a substantial
impact on the shape of a 2D conductivity tensor
which, together with Maxwell’s equations, deter-
mines the spectrum and the damping of the electro-
magnetic waves in superlattices.

The practical interest in such systems is deter-
mined by the possibility of varying the spectral
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properties of the electromagnetic waves in superlat-
tices by modifying their structural parameters and
varying the strength of the external magnetic field.

Extensive literature on the plasma and electro-
magnetic modes in different types of superlattices is
available [10—-21]. At the same time, the electro-
magnetic waves in layered conductors in an external
magnetic field have been studied less extensively
[22-26]. The 2D dynamics of electrons in a quanti-
zing magnetic field produces some nontrivial phe-
nomena and concepts such as the quantum Hall
effect (QHE) (Ref. 27) and anyons (Ref. 28), for
example. The QHE was observed experimentally in
a superlattice [29] and layered organic conduc-
tors [30,31]. The electromagnetic waves (helicons)
in layered conductors under the conditions of the
QHE have been considered in a number of theoreti-
cal studies [22,24-26] within the model of periodic
array of 2D electron gas embedded in a homogene-
ous dielectric substrate. In this model electrons
have no dispersion across the layers so that the
quasiclassical approach of the standard electron
theory of metals based on the concept of the Fermi
surface [2,32] and its version adapted for the semi-
conducting superlattices [10] should be modified.
The dispersion relation for the electromagnetic



waves propagating along the field (i.e., across the
layers) in such quasi-2D superlattices is governed
by the interlayer electromagnetic correlations de-
scribed by the Maxwell’s equations.

The relationship between the electromagnetic
field and the current within the layers is determined
by the 2D conductivity tensor OaB(H) , which is the
key quantity for the electromagnetic wave disper-
sion. The dispersion of helicons is determined by the
Hall components 0, = -0, ., which are quantized
in quasi-2D conductors under the conditions of the
quantum Hall effect and by the longitudinal compo-
nent 0., which is nonzero at frequency w# 0 due
to polarization and displacement currents [26,33] in
QHE. The role of the electron dispersion across the
layers in high-frequency phenomena and propaga-
tion of electromagnetic waves have been considered
in Ref. 34. Some specific features of helicons in
layered conductors related to the quasi-2D electron
energy spectrum were discussed in Ref. 35.

The purpose of this paper (which is the first
publication of a series of studies on the wave propa-
gation in layered conductors and superconductors)
is twofold. First, we derive a basic system of equa-
tions describing electromagnetic field propagation
in layered conductors and superlattices in the most
general form, in particular, for nonuniform spatial
distribution of the dielectric substance between the
layers, nonperiodic layer sequence and inhomo-
geneities within the conducting layers. These equa-
tions provide a basis for subsequent studies of the
problem in question which will be published else-
where.

Another aim of this paper is to study further
some problems, which have so far not been resolved
completely, on the basis of our model in the limi-
ting case of a uniform and homogeneous layered
conductors. In particular, we consider the disper-
sion and damping of the helicon waves in layered
conductors under conditions of conventional and
quantum Hall effect and study their coupling to the
intra-layer plasmons.

2. The model and basic equations

Consider an infinite stack of conducting planes
separated by dielectric layers of thickness @, which
is large enough so that one can ignore hopping
between adjacent layers. This model is known to be
a good approximation for some natural layered
crystals, such as TI- or Bi- based high-T', supercon-
ducting copper oxides, for example, and evidently it
may be perfectly well realized in an artificially
fabricated semiconductor or metallic superlattices.
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In this section we consider the wave equations
within the frame of the above model. To this end,
we direct the z axis perpendicular to the layers and
assume that a constant external magnetic field H is
also directed along this axis. We adopt that the
permeability of the substance between the layers
equals to unity, g = 1 and also assume its dielectric
constant, € = g(2), to be a function of z.

Under these assumptions, the Maxwell’s equa-
tions, written in terms of the electric field E,

€ 02E+4T[a

rad (divE) —~AE = - — —— + — —
8 ( ) 2 o2 2ot

J, )

after the substitution

E;=E(q, 2, o) exp [igp- )], (I=x,4,2),

(2)
takes the form
E) 420 g0, 02 62DE ATHO
- q(qE) g, EO T ™ 5,208 — I
(3)
1 9
E =-——(GqE.) , (4)
T 5, (9ED)
2 2 W’
q,2) =q —?8(2% (5)

Here p, q, and w are the in-plane coordinate, the
wave-vector and the frequency of the collective
mode, and Ej and J are the in-plane field and the
current, respectively.

Choosing q to be parallel to y axis, we obtain the
system of equations

00> 0. _ 4Tiw
S NG
O C
. 9
09 0 9 4mig,
-¢’fE +U(@@, w,2) —E =~ ,
522 Tely @ @2 Ey ™ ) T
(7
E :—%EE N (8)
° g 02 Y
2
4, .0
U(g, w, z)=DLE £'(2) =) (9
gyw(z)m 0z

Thus, we see that all three components of the
electric field are determined by the two equations
(6) and (7), which can be rewritten as follows:
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We took into account here that the current can flow
only within the layers and therefore its z axis
distribution contains a system of d-functions

Jq = Z OGB(q’ W, H) 6(2 - an) EB(Qr W, 2) . (11)
B,n
The subscripts a and B can take two values x and
y. The Green’s functions in (10) Gg (n, n) =
= G(q’ (an, an') satisfy the equations ¢

2
- A@0G (5, ) =8z - 2),  (12)
4 g

2
2+ U, w,2) 2 - @RGY 6, 2) =86 - 2) .
@ 0z w 0 qm

(13)

The in-plane conductivity tensor OB has off-diago-
nal Hall components because of the external mag-
netic field H, which we assume to be applied
perpendicular to the layers.

The principal difference of our approach from the
one developed in the previous papers [22,23] is that
we do not imply a spatial uniformity of the &(2)
across the layers. We also do not imply periodicity
of the layer sequence in Eq. (10) since &(z) between
the layers in fact may have an arbitrary constant
value. [In the case of aperiodic layer sequence the
quantities @ and 7z in Eq. (11) should be replaced by
a, — the discrete coordinates of the conducting
planes].

In this paper we consider the bulk modes in the
case of a regular and uniform layered conductor
under conditions of the conventional and quantum
Hall regimes, leaving the nonuniform case for sepa-
rate publication.

In the case of an infinite regular and uniform,
€(2) = const, layered crystal the U-term in Eq. (13)
vanishes and the Green’s functions G* (z, z') and
Gg (z, 2') become identical since they %‘bth satisfy
Eq” (12), in which ¢ (2) is independent of 2. The
Green’s function of Eq. (12) can then be easily
found
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Making the Fourier transform
T a
E.(n) = “J’dk exp (ikan) E,(k)  (15)
-T/a

and completing summation over the layer index in
Egs. (10), we can rewrite them in the matrix form

2w
5 0@, 0, M)V 0S(q, , w)%s(q, k, w)=0.

%%as"c a0
(16)

The structural formfactor S(q, k, w) in Eq. (16) is
given by
S kow) =y et

n=—00

sinh (q,, a)

cosh (g, @) — cos (ka)

)
and the components of the matrix Va[3 are
- o
Vigm Vi =1l Vo =V ==55,  (18)
now

where n, = Ve is the refraction index.
The system of two uniform equations has nonzero
solutions if the following condition is satisfield:

21w 0

o " g oaB(q, w, H) Vap S@, k, w)=0,

O &) u
(19)

which is the dispersion equation for the bulk modes
which determine the frequency w = w(q, &, H) of a
wave that can propagate in the volume of a layered
conductor. The key quantity in (19) is the 2D
conductivity tensor Oy which depends on the layer
structure and the external magnetic field. Thus, the
specific type of the electromagnetic wave is deter-
mined by the particular form of the tensor g,g .
We consider some types of bulk waves in the fol-
lowing sections on the basis of the dispersion equ-
ation (19).

det

3. The helicon modes

According to the Eq. (19) the wave dispersion in
layered conductors is determined by the in-plane
conductivity tensor which depends on the electronic
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properties of the layer and the intensity of the
external magnetic field.

The in-plane conductivity may be anisotropic
without the external magnetic field as is the case,
for example, in some layered organic (super) con-
ductors [30,31].

We consider here a more simple case of a two-di-
mensional electron gas in a perpendicular magnetic
field. The conductivity tensor for this model was
calculated elsewhere (see Ref. 36) and has the fol-
lowing components:

_ -1 _
oxx—ooy(1+y2) , 0. ==0,+y0_, (20)

xy
o =0 , 0_=-0__, (21)
where
2 .
g =Ne Vo (22)

O mQ Y Q
Here Q =eH/mc stands for the cyclotron fre-
quency, V = 1,/T is the Landau level damping due to
the impurities, and N is the 2D electron density.

Substituting Eqs. (20) and (21) into the disper-
sion equation (19), we have

1+

; NAA all
oS ko) g, a0
20, ot 2

mw
2
+ S%q, b o) E%E 412 0. (23)
n
0

The dimensionless notations adopted in this relation
are

=2 @4
w
P
and oolzj = 4TiNe? /ma is the plasma frequency.

The helicons, as is well known, propagate along
the magnetic field direction in the bulk conven-
tional metals [2,3] and in the layered conduc-
tors [22,23]. Thus, to study their dispersion and
damping we must consider the case ga = 0. The

layer formfactor S(q, £, w) in this case takes the
form

iooD(:mO

S0, k, w) = .
1 = cos (ka)

(25)

We have taken into account also that Q)D(:mo << 1,
(this statement will be verified below), so that we
can approximate cosh (w-wny) = 1 in the denomina-
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tor of Eq. (17). Using (25), we rewrite the disper-
sion relation (23) in the form
1+ —iX)? - il —iX) X24 - X?A%>=0, (26)

where

W
J . QD

r=—, X=—, A=————
2(1 = cos ka)

The equation (26) has an exact solution in the
complex form X =Re X - i Im X, which deter-
mines the dispersion of helicons along the magnetic

field
Q sin’(ka,/2)

Re w(k) = . (28)
e b (@/2)* + sin? (ka,2)
and their damping
. 2
Im (k) = v sin” (ka/2) (29)

(@,/2)” +sin” (ka/2)

In the long wavelength limit, ka - 0, the helicon
dispersion relation (28) gives the well-known re-
sult [22,23]

Re w(k) = =5 k22 . (30)

oufe)

The damping of helicons, as one can see from
Eq. (29), is proportional to v and vanishes in a pure
conductor (v = 0). The small quantity w, << 1 may
vary in a wide range, depending on the values of the
plasma frequency w and the distance between lay-
ers a. The appropriate dispersion Re w(k) and the
damping Im w(k), considered as functions of the
wave vector k, are shown in Fig. 1 for different
values of v.

It follows from Eqgs. (28) and (29) that the ratio

Tm w(k) _ v 31)
Re w(k) Q

is independent of the wave vector k, so that for
v << Q helicons are damped only slightly at any
ka. The above-required smallness of the parameter
(LOD(:)nO holds since, according to the Eq. (28),
wQ/w, and w wn, JQa,/c << 1 because in at-
tainable fields for thicknesses @ = 1077-10" cm,
Q is much lower the frequency ¢/a [11017-101> s71,

4. The helicon waves under the conditions of
the quantum Hall effect

The dispersion equation (19) is a general relation
which may be applied to various layered conductors
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Fig. 1. The dispersion relation (@) and the damping (b) of heli-

cons in a layered conductor under the condition the Hall effect.
The parameter w = 0.01 for both pictures. Re  is independent
of the Landau level broadening, whereas Im w is proportional
to v, taken in (b) equal to 0.1, 0.01, and 0.001, respectively,
from the top line to the bottom line [see also Egs. (28) and
@91

with different types of conductivity tensors. The
helicon waves of the preceding section are caused by
the Hall currents and formally stem from the Hall
components of the conventional conductivity tensor
Oy of the 2D electron gas. On the other hand,
0, has a very simple form in a 2D system under the
conditions of the quantum Hall effect. In view of
this circumstance, it is rather logical to consider the
problem of the helicons in layered conductors under
the QHE conditions on the basis of our approach,
especially since QHE was observed in some layered
organic conductors [30,31] and superlattices [29].

Early theoretical studies of helicons under the
conditions of the QHE (Refs. 22, 24 and 25) disre-
garded the effect of the polarization currents on the
O4p(®) at nonzero frequency [26,33], which makes
the Im o (w) # 0. The longitudinal conductivity in
this case is

_ . O
o (=i %SEOW , (32)
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where 0,, = -0, . is the quantized, in units of the
conductance quantum, 62/h, static component of
the conductivity tensor [27]

=—, (n=1,2,3,..) . (33)

With respect of Eq. (33), the dispersion equation
(19) gives

Lo O
g +as(@, k ) £, 5x
0 g g
_ LwO 0O 9 2 _
x @ BSla. & @) (0, 2 aBSa, k 97, =0
(34)

where

oy
= 22]-[00 and p=—2. (35)
¢ qoo (*mo

Setting in Eq. (34) ga = 0 and using the formfactor
S(0, w, k) in the form (25), we obtain a very simple
dispersion equation for helicons under the QHE
regime

1 +2X%4 - A2X%(1 - X% =0, (36)
where X = w/Q, and

_ na, Qa

= - , (n=1,2,3,..).
" 1 -cos(ka) € (37

Here o = ¢2/hic =1,/137 is the fine structure con-
stant.

The solution of Eq. (36) is trivial and yields two
modes w,(ka) and w_(ka);

2 e _
O 2-A +VAW@A =37)
00 = ? o (38)
molu 24,

For small ka << 1 (when A~ 1) we have the
following relation for the w (ka) mode, which cor-
responds to the «minus» sign in Eq. (38),

2c | o ka
W (ka) = —— sin’ 5 (39)
anq,

Formally, the magnetic field does not enter Eq.
(39) but, in fact, it does since (39) is valid only for
fields H which fall within the plateaus in the
quantum Hall conductivity [27].

Another branch of the ukd), which corresponds
to the positive sign in the dispersion relation (38),
in the long-wavelength limit is given by
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2c | 5 ka
sin” —- . (40)

w,(ka) = Q -

dﬂao

Thus, we have two types of wave in a layered
conductor in the QHE regime: one with the acoustic
dispersion [w (ka)] and one with the opticlike dis-
persion [w,(ka)]. The w,(ka) branch has not been
considered before. It appears in the problem in
question owing to the term o, (w) (32) in the
dispersion equation (34). This term enhances by
unity the power of the polynomial in X2 in the
left-hand side of Eq. (36) and, correspondingly,
gives an additional root [i.e., the new branch of
w,(ka)]. Physically, the frequency-dependent longi-
tudinal conductivity (32), as was shown in Refs. 26
and 33, is caused by the polarization currents.

It follows from Eq. (38) that under the condition
A, (ka) < 4 the right-hand side of Eq. (38) acquires
an  imaginary part, which implies that
Im w(ka) # 0.

An analysis shows that for k& less than the thre-
shold value, k° the quantum waves in question
propagate without damping [Im Xka) = 0]. The
threshold value is

1/2
2 . Om Qal
ko) = _, arcsin D?O Tg , 41)

For k > kD the Tm w,(ka) # 0.

The dispersion and the damping of the two
modes in layered conductors in the QHE regime are
shown in Fig. 2 for the first three values of the
integer n =1, 2, 3. We see from Fig. 2 that the
decreasing modes w,(ka) do exist only for
k < kqn) [they terminate exactly at k = kn), as is
shown in Fig. 2,a] whereas the modes increasing
with ka ) (ka) are damped when & > k), because
- Im w(ka) # 0. This damping, as one can see in
Fig. 2,c, increases rapidly with ka, so that the ratio
IIm w_(ka)/Re w_(ka) << 1 only in a small vicinity
of the threshold value k"

5. The bulk modes with dispersion along the
layers

The dispersion equation (23) which we have used
in Sec. 3 for studies of the helicon waves that
propagates along the magnetic field may be also
employed for analysis of different types of waves in
this model. In this section we will briefly discuss
the waves that propagate perpendicular to the mag-
netic field, i.e., parallel to the layers, and then will
consider the case g # 0, k # 0, both analytically and
numerically.
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Fig. 2. The dispersion relation and the damping of helicons,
given by Eq. (38), under the conditions of the QHE in a lay-
ered conductor are shown in (a—c) for integers n = 1, 2, 3. The
decreasing modes w,(k) in (@) do not exist above the threshold
values k > kn) [see Eq. (4) for Rn)]. The increasing modes
w_(k) in (b) are damped when £ > £qn) since Im w_(k) # 0 in
(¢) under this condition.

The analytic solution of Eq. (23) can be ob-
tained, in particular, for the case of waves propa-
gating exactly parallel to the layers, i.e., when
k =0, provided that |g, af << 1, where g, is given
by Eq. (5). Under these conditions, setting v =0
and taking into account that the layer formfactor
(17) in this limit is
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S, 0, &) = coth G5 —0= ;o (42)
O O 9,9
we have from Eq. (23)
v -y +p+p=0, (43)
where
O D 1 a
Y=g, oM ;d+WED (44)
r0O 00 oo O
The solution of Eq. (43) gives two modes:
2 2
Lo O 0 . W
(AJf:BfPD |j+|]ﬁg 0 and w§=—p. (45)
d% 0 O oo O 0

The mode w, belongs to the so-called propagating
sector g2 <0 (Ref. 23) which can be checked by
the direct substitution of Eq. (45) into the defini-
tion for g, (6), which yields ¢2a? = u)2 Thus,
|qw al = |(,)d << 1, which has been assumed in the
course of the derlvatlon of Eq. (45). We also as-
sume that ) = |w/Q| >> 1, which is true for modes
w, and w, since W, >> Q.

The mode w, after substitution into Eq. (6)
yields gz 242 = (qa)? - n, u)z so that the condition
lg,, al <<'1 holds for qa << 1.

On the other hand, it is possible to obtain
an analytic solution of Eq. (23) when
ga >> ny w/w, . In this case g, a = ga, so that
the formfactor ofp the layer is independent of

sinh (ga) (46)

S(g, k, 0) = :
4 ) cosh (ga) - cos (ka)

Under these conditions the dispersion relation (23)
in the limit v = 0 yields

02 Dw D 0
as (47)
a +Su) % o

Setting ka =0 in Eq. (46), we have for small ga
(ie., for n, (,oDw/oop << qga<<1) S(g,0,0) =
= 2/qa, which, after substitution into the Eq. (47),
yields

W = an

2 2
o 00 [o []

o =Q*+ o =t0. (48)
doo  dO

We see, therefore, that in this limit the dispersion
relation (47) equals the @, mode, given by
Eq. (45). Since w =w, a/c is of the order of
1074102 for w, = 104-10" and a=107-10°,
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the inequality ga >> n, coDoo/w = wy holds for w,
given by Eq. (48).

The second term in Eq. (47) is exactly the bulk
plasmon dispersion in a layered conductor [12—15]

Eth)D

EVOD

The first term in Eq. (47) under the conditions
ka # 0, ga << 1 may be rewritten in the helicon-
like form

qa sinh (ga) (49)

l(q) ) cosh (ga) - cos (ka)

,8 SED Q2 sin? (kay2)
QE1+2(1D~'2 5 - (50)
0 2990 sin® (ka/2) + (0/2)

We thus conclude that when the wave vector has
both components, parallel (q) and perpendicular
(k) to the layers, the waves in question are the
mixture of helicons and plasmons. For ¢ =0 only
helicons are excited.

The damping of the mode (47) in the linear
approximation on the small parameter v,/Q << 1 is
given by

2
R O R O
v - Ow O a
Imag) =5 1+ {2+ 9 2 -TH, 6
H IS
where
. (g, k 0) &
S = 20 (52)

and (w/oo )2 is determined by Eq. (47).

In the case ka =0 and for small ga << 1 the
formfactor S(g, 0, 0) =2/ga and the damping is
estimated to be

0

Sl <

Im w(q) = 5 [S(g, 0, 0) = 1]

S‘Q
N

SN

(33)

It is easy to find the dependence of helicons on ga
in the case of a small ga, ga << 1. The dispersion
equation (23) in this case yields

1+ (T —iX)> = (X + il x

~2
0
x A @X -1 A+ A2 -

2\ —
Xt -x)=0. (59

This equatlon differs from (26) in the terms con-
taining §°. The latter is defined by the relation

=91 (55)

ny W5 Qp
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Fig. 3. The dispersion relation w(ga) for electromagnetic waves
in a layered conductor in an external magnetic field plotted as
a function of the in-plane component of the wave vector ¢, cal-
culated on the basis of Eq. (23) for three different values of the
component parallel to the magnetic field: 2z = 0.01 (7); 0.1
(2); 0.5 (3). The other w, = 0.01,
Q/(.op =0.001, v =0, and n, = 1.

parameters are:

The §* terms make the dispersion relation be cubic
in powers of X [in constrast with the quadratic
equation (23)] so that when v # 0, it can be solved
only in linear on v/Q << 1 approximation. The
result is

Q sin® (ka,/2) 512

Re = ,
o (@, /2)* + sin? (ka,/2) (56)
v sin?(ka,/2) Vo
Im w= - A,
e (@, /2)* +sin® (ka/2) 2B 7
where
B=1+A(1 +A)§* . (58)

These equations give corrections to the dispersion
relation and damping of helicons given by Egs. (23)
and (29) due to the small terms proportional to the
parameter,

2
~2 0 qa

0
gA= : <<1.
5@0 Q2 sin (ka/Z)E (59)

The numerical calculations of the dependence w(g),
obtained for different values of the parameter ka
both in propagating (q,, a)?> < 0 and in nonpropa-
gating (q,, a)?> > 0 sectors, are shown in Fig. 3.

6. Summary and discussion

We have considered the electromagnetic waves
propagating in a stack of conducting layers em-

1080

bedded into a dielectric matrix in the presence of an
external magnetic field perpendicular to the layers.
We ignored in our model the interlayer electron
hopping and do not imply either periodicity in the
layer stacking or uniformity of the dielectric con-
stant across the layers. The latter distinguishes our
approach, which is based on Eqgs. (10) and those for
the Green’s functions [Eqs. (12) and (13)], from
those presented in the preceding papers on this
subject [22,23]. As a first step toward the studies of
the electromagnetic waves with the help of the
equations which we obtained, we have considered
the case of the bulk modes in the regular and
uniform layered conductors and superlattices.

The fundamental quantity which determines the
specific form of the electromagnetic wave dispersion
is the conductivity tensor of a two-dimensional
layer in a perpendicular magnetic field. We took
O, in the Drude-like form (20)—(22), which yields
in the case ga =0 the well-known helicons that
propagate along the magnetic field in layered con-
ductors [22]. Our new finding here is the expres-
sion for damping of these helicons, given by
Eq. (29). It is shown that Im (k) is proportional
to the Landau level broadening v and is inde-
pendent of H, so that the ratio (31) of the wave
damping to its frequency equals v/Q and is inde-
pendent of the wave vector k. The dispersion and
damping of helicons under the conventional Hall
effect regime are shown in Fig. 1. The corrections to
the dispersion relation and damping of helicons due
to the deviation of the wave vector from the field
direction (i.e., a small portion of the components
which are parallel to the layers, ga << 1) are given
by Egs. (56) and (57).

The helicons in a highly doped InAs-GaSb artifi-
cial superlattice with a two-dimensional electron
gas have been observed in Ref. 29 and it is tempting
to try to search for them in the high-T, layered
cuprates. At first sight, Tl- or Bi-based layered
cuprates seem to satisfy well our model because of
the high anisotropy and low conductivity across the
layers in the normal state. Unfortunately, these
strongly correlated systems display a very high
broadening v = w (Ref. 37), which means that their
damping Im w(k) =v =Q is of the same order of
magnitude as the wave frequency Re (k) = Q.

Helicons in the QHE regime in superlattices
have been studied extensively theoretically [24—
26]. The experimental grounds for this are given by
the observation of QHE in some artificial superlat-
tices [29] and layered crystals [30,31]. The QHE in
organic conductors remains so far unresolved theo-
retically [36].
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Of all the studies of the helicons in the QHE
regime in superlattices, only the paper of Vagner
and Bergman [26] takes into account that at radio-
frequencies Im o, given by Eq. (32), is nonzero.
They used a model with the Kronig-Penney-like
dispersion relation for the electromagnetic waves
across the layers and obtained for ka << 1 the
result (39), which is a particular limiting case of
our more general expression for the helicon disper-
sion at arbitrary wave vector ka (38). In addition
to the low-frequency mode, w_(ka), we found a
high-frequency mode, w,(ka) (40) and showed that
both modes can propagate without damping only if
k < kY. The threshold wave vector depends on the
magnetic field H and is given by Eq. (41). The
dispersion and damping of helicons under the QHE
regime are shown in Fig. 2.

We also have shown that the waves propagating
along the layers have frequencies [given by
Eq. (45)] of the order of the plasma frequency w_,
and we have calculated both analytically [Eqs. (47)
and (48)] and numerically (see Fig. 3) their disper-
sion relations for different values of & and ¢g. For
k # 0 these modes may be considered as a mixture of
helicons and plasmons, since their frequency w = Q
for gqa <<1 [see the Egs. (49) and (50)]. The
dispersion shown in Fig. 3 is qualitatively similar to
that found in Ref. 39 for the coupled hole-like and
electron-like two-dimensional magnetoplasmons in
a semiconductor-insulator structure with metallized
surfaces in the presence of a magnetic field perpen-
dicular to the layers.

In summary, we would like to stress that there is
no way to consider all the possibilities of the
dispersion relations (10) and (19) in one article. In
particular, we leave for the following separate pub-
lication our results obtained, together with
A. M. Ermolaev on the magnetoimpurity modes in
the layered conductors considered above. Studies of
the surface modes in the system in question also will
be published elsewhere.

We wish to thank A. M. Ermolaev for reading
the manuscript and for valuable discussions.
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