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The interaction of electromagnetic radiation with a low-density disordered system of fine metallic

particles located in a dielectric matrix is considered in a quasi-static approach with allowance for

dipole-dipole interaction. The electric dipole moment of the system is calculated in a pair approximation.

The case of nonidentical particles differing in their sizes or dielectric functions is presented. Allowance

for particle nonidentity leads to doubling of the number of their surface modes and to the appearance of

band gaps in the spectrum. The spectrum peculiarities are revealed in the fine structure of electromag-

netic absorption.

PACS: 78.20.Ci

Examination of oscillation spectra of metals is of
great importance in connection with the problem of
investigation of their absorptive properties. The
nonuniform metallic layers, whose thickness is
small compared to the skin depth, demonstrate an
anomalously large absorptivity. Thin metallic gra-
tings possess a variety of unusual transmissive and
reflective features in a wide frequency range [1]. A
layer of fine metal particles soluted in a host dielec-
tric absorbs nearly totally the radiation incident
onto its surface [2]. These properties are attributed
to the resonant excitation of the proper oscillation
modes in a system and are very sensitive to the
interaction between metal particles. Here we con-
sider the last case — a small density system of
disordered fine metal particles placed into a dielec-
tric. The volume fraction of metal particles deter-
mined by the filling factor f = %3 103n, where r is
the particle size and n is the particle density, is
assumed to be small, f << 1 (in fact, f [10.1-0.2).
Because of this circumstance, we can restrict the
discussion to only the pair interaction between
metal particles which we consider as electric di-
poles. This approach is developed in the theory of
interacting hard sphere gas [3] and is commonly
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used to describe the vibrational spectra of a crystal
lattice [4].

In this paper we study the interaction between
nonidentical particles that differ in their sizes or
dielectric properties (permittivities). This non-
equivalence leads to the appearance of new spectral
branches and band gaps. These results are similar to
those found in one-dimensional vibrational chain of
atoms when some of them are replaced by atoms of
other kind [5,6]. It would be interesting to trace
this analogy (and distinctions) in the case of infi-
nite chain of metal particles with long-range mul-
tipole interaction. However, this will be the subject
of another study.

The specific feature of the electromagnetic radia-
tion (EMR) absorption in a system of fine metallic
particles is a resonance caused by the existence of a
surface mode (SM) in a single particle at the
frequency [7]
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Here it is assumed that a metal dielectric function
has the form
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where € is the lattice dielectric function; w, and

v are the electron plasma frequency and the colli-
sional frequency, respectively; and g is the dielec-
tric function of the environment.

This mode usually called Frohlich’s mode is
related to uniform dipole electron oscillations in a
particle [7]. In the electrostatic limit the polariza-
tion inside the particle is determined by well known
relation [1]

g(w) - €

P(w =7TSE,
) g(w) +2,

where 7 is the particle radius and E; is the external
alternating electric field which we consider quasi-
static. Using the dielectric function of a metal
particle in the form (2), we can rewrite it in the
form

w(1-a) O

g
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where a , = (g, — €y)/(€, + 2€) is the Clausius-Mo-
sotti factor. This expression clearly shows the reso-
nance at the frequency of the surface mode. Thus,
the interaction of an alternating field with a metal-
lic particle results in oscillator excitation at the
Frohlich frequency w, .

The EMR absorption in a system of metallic
particles is sensitive to the magnitude and character
of the direct multipole interaction between particles
even though their concentration is sufficiently
small [8-11].

This problem was analyzed theoretically by many
authors [12-20]. In those studies alternative me-
thods of calculating the effective dielectric parame-
ters of the disperse systems containing different
inclusions were developed. At the same time, com-
paratively not much attention was given to the
investigation of the proper surface mode spectra in
these systems. Even when considering a very simple
system of two or three particles one finds there
some peculiar singularities caused by multipole in-
teraction between particles [9,10,20].

In this paper we investigate the spectrum of
surface plasmons of two nonidentical metallic parti-
cles with different radii and different dielectric
functions. In determining the polarization of the
system with allowance for the interaction, we have
used the results of the previous paper [11], where
the calculation formalism for the effective dielectric
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Fig. 1. Geometry of the particle location.

function of disperse systems with metallic inclu-
sions was proposed. In present analysis we restrict
the discussion to a very simple model:

1. The analysis is carried out in the long-wave
approximation, i.e., the wavelengths are large com-
pared with the size of the particle and the mean
distance between them, A >> r, L.

2. The particle size is assumed greatly exceeds
the electron mean free path, r >> [.

3. The allowance for the interaction between
particles is carried out in a pair approximation
which we assume to be sufficient because of a small
concentration of inclusions.

1. The N-particles case

Let us choose two particles ¢ and b from the
ensemble. We can now find the polarization of
coupled particles with allowance for multipole in-
teractions with other N—2 particles.

We define R as the radius-vector of the center
of sphere a, R, as the radius-vector of the center of
sphere b, and R is an arbitrary point outside the
spheres in the medium (see Fig. 1). In the case of a
uniform external field E, , the potential inside sphere
a (which is regular at R =R ) has the form [21]

o=y 3 AR - ¥, ®RER), @
Im

where R =R is an unit vector along R - R, and
Y, (R - R)) are spherical harmonics. The poten-
tials at the point R outside sphere a can be repre-
sented in the form
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where the first term is the potential of the external
field, the second term is the potential created by the
particle a, and the third term includes the effect of
the remaining particles.

The potentials (4) and (5) must satisfy the
standard boundary conditions at the surface of
sphere a:

in _ gout
N N ©
in — out
aa(Dq)a na)R =R - SO(Dq)a na)R =R - )

Accordingly, we must reduce the expressions for the
potentials to a single center of the sphere, which
can be done with use of the following transforma-
tion of tesseral harmonics [22—24]:

Y, (R-R)
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Here we define
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where R -R | <|R, -R | .

After putting expressions (4) and (5) in the
boundary conditions (6) and (7) and using (8), we
obtain a system of equations for the coefficients

Bg“lzl :
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Equation (9), in principle, gives the general solu-
tion for finding the polarization of a single particle
(B%;Q) with allowance for the multipole interactions
with other particles.

In the case of two particles (@ =i, b=7) we
obtain the following expressions from (9):

(Z)

I'm _

b~ Hot + 1)@1 + 204 1)( + m)l(l - m)\(I+ m)(I— m)!E

and afd = Ie, - €,) 7,21+1 /lle; + (I + 1)gy], where

|R] R and r; is the radius of the particle i.

We will dlSCUSS only the case of the dipole-dipole
interaction (I = I' = 1). We choose the axis Z along
the vector (R, - R)). From (5) and (10) we then
obtain the dipole moment of the particle i [11]:
1
p()ih=-Em 3 BLY, ®-R)=

m=-1

= 1x® ()
= [X1’0n2m + XZ 1(nm + nymy)] E,, (12)
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are the longitudinal and transverse polarizabilities,
respectively, and agl) =(g; — &) r?/(ai + 2g) is the
polarizability of an isolated single particle.
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2. Surface modes in a system of two particles

To obtain the spectrum of surface modes we
represent the expressions (13) and (14) in a conve-
nient form

A (w) + 28%]

= r, (15)
A, (@A) w) - 4875 !
A(w) - a)
X . = r, (16)
1A (WA () - A !
where A=r,/r , o,=r/R, and A(w)=

= [g,(w) + 2¢)]/[g,(w) — gyl (i=1,2).

The spectrum of surface modes is determined by
the polarizability singularities, i.e., from the fol-
lowing relations:

A (@A) - 48%6% = 0 (17)

and

A, (@A) - 5% =0 (18)
for the longitudinal and transverse modes, respec-
tively.

Relations (17) and (18) determine the frequen-
cies of the electron homogeneous oscillations of
particles of different sizes and different dielectric
functions.

2.1. In the case of the same particles (v, = r, =7,
€, =& =¢&) we have A = 1, A, (w) = Ay(w), the extra
poles in expressions (15) and (16) are cancelled,
and we obtain the two known surface modes [10]:
for the longitudinal mode

, 1-20/R)

W =w

, (19
S1-20/R)’a
where w_ is Frohlich’s surface mode defined by (1),

and for the transverse surface mode defined from
(18), which is
3
P = % . (20)
1+ @#/R) a

We see, therefore, that allowance for the dipole-
dipole interaction between particles in the presence
of an external alternating field leads to doubling
the proper mode number — to the appearance of
longitudinal and transverse modes.

Note that in the case of identical particles with
arbitrary orientation of the external field the dipole
interaction between particles shifts the longitudinal
mode to low-frequency side and the transverse mode
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to high-frequency side. These shifts are nonsymmet-
rical that lead to some absorption peculiarities in
the many-particle system [see Eq. (10) in Ref. 11].

Let us now consider the changes in the surface
mode spectrum caused by the nonidentity of the
particles.

2.2, Let us consider particles of different sizes
(A #1) but with the same dielectric properties
(g, = ¢&,). In this case from Egs. (17) and (18) we
obtain, in contrast with the case of identical parti-
cles, the four surface modes instead of two:

t - 28%%(r, /R)’

2
= w , (21)
wﬁ 1 =20 /R)’a
~ 1 +208%(r, /R)
=W ; (22)
wﬁ 1+ 20°%(r /R0

, t+08%(r /R)’

W = W < 5 (23)
T+ 8% /R

. t -8 /R)’
002 =W

O 7y - N %(r /RYa '

(24)

We see from these formulas that allowance for the
interaction between particles with different sizes
leads to splitting of the longitudinal and transverse
frequencies, which are shifted (for longitudinal and
transverse modes) to the opposite sides. The de-
pendence of the proper frequencies on the particle
size ratio is shown in Fig. 2. Note that by setting
A =1, i.e., passing to the case of identical partic-
les, the extra modes @y and (:)D formally do not
disappear. The point is that the oscillator forces
corresponding to these modes turn to zero when
A =1 [see below Egs. (30) and (31)]. The situation
considered here reminds one of the appearance of an

0/ 0s

VAL

Fig. 2. Dependence of proper frequencies on the particle size

ratio:i701‘/@5;27&1‘/@3;3fwt/ws;4f<5u/w3-
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Fig. 3. Graphic solution of Eq. (29) for I > 1.

optical mode in the one-dimensional infinite chain
of two kinds of atoms with different masses in the
unit cell.

2.3. Let us examine now another limiting case of
particles with the same sizes but with different
dielectric properties (g, # €,). In this case Egs. (17)
and (18) give the following relations for finding the
surface modes:

for the longitudinal mode

81(00) + 280 az(w) + 280 _ 45756 ; 25)
g(@-g &@-g 7
for the transverse mode
g (W) + 2, &, (w)+ 2, 6
£(@) -8 &) -¢ EQD (26)

Using Eq. (2), we can write these relations in the
form (here we set € =&, = 1)

(@ - W’ )W -

510052
where
W
o = -PL2 (28)
s1,2 v3

are the proper modes of surface oscillations of the
separated spheres; y=4 or 1 in the case of the
longitudinal or transverse mode, respectively.

Introducing a variable x = w?/ 0)31 , we transform
(27) to the form

]
,35
=
I N

=B, (29)

OO0 e

(x - 1)(I'x—1)=y%

O
)
]
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Fig. 4. Frequency spectrum versus the distance between parti-
cles.

The graphical solution of (29) for [ > 1 is shown
in Fig. 3; x, and x., are the roots of Eq. (29). We
see in this figure that the frequency region between
(,02 /3 and (,0; /3 creates the band gap. For the
longltudmal mode (y=4), when the distance be-
tween particles is R = 2r, we have x, =0.22 and
xy =1.02. In this case the analogy with the appea-
rance of band gaps in the one-dimensional vibra-
tional chain is appropriate.

The dependence of the proper frequencies on the
distance between particles is shown in Fig. 4.

The general case of nonequivalent spheres
(r, # 7, , € #¢,) will be reported elsewhere.

3. Discussion of the results

As is shown in Sec. 2, allowance for the particle
nonidentity leads to doubling of the number of
proper modes in a system of two spheres. Two
supplementary modes, analogous with the optical
modes in the one-dimensional lattices, appear to-
gether with two known surface modes for equiva-
lent spheres. The longitudinal and transverse parts
of the polarization, in accordance with expressions
(15) and (16), can be represented in the form

o1 s0 { + A3 . {-p32 O
10727 i) - 207207 Aw) +28% %00
(30)
y 10 1-87 t+2%% O
M2 ) - Y%7 Aw) + 6V %00
(31)

where the poles of the denominators correspond
to new modes. The factors 1 + A3/2 are oscillator
forces which characterize the appropriate oscilla-
tions. All the expressions entering into Eq. (30),
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[Eq. (31), respectively], can be represented in the
appropriate form, for instance

1+ A3/2
A - 28%%%

_ (1+273
(1 -A)(1-a_d)

g
£
—~
=
|
Q
L

U

where W is given by (21) and A = 2A3/2(r1/R)3.

We see, therefore, that the response of a system
of two nonidentical particles is given by the sum of
responses corresponding to four independent oscilla-
tors; their frequencies are the proper modes of the
system (21)—(24).

The same is also true in the case of spheres of
equal size but with different dielectric functions.

We appreciate the valuable discussion with
E. Syrkin of the analogy of the considered spectra
with the vibrational ones.

1. Surface Excitations, V. M. Agranovich and D. L. Mills
(eds.), Amsterdam, North Holland (1985).

2. A. Ya. Blank and A. Ya. Sharshanov, Fiz. Nizk. Temp. 24,
336 (1995) [Low. Temp. Phys. 21, 256 (1995)].

3. R. Balesku, Equilibrium and Nonequilibrium Statistical
Mechanics, Wiley (1975).

4. A. M. Kosevich, Theory of Crystal Lattice, Vyscha shkola,
Kharkov (1988).

5. F. G. Bass, V. L. Fal'ko, and S. 1. Khankina, Ukr. Phys.
J. 38, 901 (1993).

1072

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

21.

22.

23
24

. M. A. Mamalui, E. S. Syrkin, and S. B. Feodosjev, Fiz.

Nizk. Temp. 24, 773 (1998) [Low. Temp. Phys. 24, 583
(1998)].

. C. F. Bohren and D. P. Huffman, Absorption and Scatter-

ing of Light by Small Particles, Wiley and Sons (1983).

. U. Kreibig and M. Vollmer, Optical Properties of Metal

Clasters, Springer Series in Material Science 25, Springer
(1995).

. R. Ruppin, Phys. Rev. B26, 3440 (1982).
. M. Inoue and K. Ohtaka, J. Phys. Soc. Jpn. 52, 3853

(1983).

L. G. Grechko, A. Ya. Blank, V. V. Motrich, A. A.
Pinchuk, and L. V. Garanina, Radio Phys. and Radio
Astron. 2, 19 (1997).

A. Liebsch and B. N. Persson, J. Phys. C16, 5375 (1983).
R. G. Barrera, G. Monsivais, W. L. Mochan, and E. Anda,
Phys. Rev. B39, 1989 (1989).

V. A. Davis and L. Schwartz, Phys. Rev. B31, 6627
(1986).

B. U. Felderholf, G. W. Ford, and E. G. D. Cohen, /.
Stat. Phys. 28, 649 (1982).

B. U. Felderholf, G. W. Ford, and E. G. D. Cohen, J.
Stat. Phys. 28, 135 (1982).

W. Lamb, D. M. Wood, and N. W. Aschcroft, Phys. Rev.
B21, 2248 (1980).

L. Fu and L. Resca, Phys. Rev. B49, 6625 (1984).

P. Clippe, R. Evrard, and A. A. Lucas, Phys. Rev. B14,
1715 (1976).

J. M. Gerardy and M. Ausloos, Phys. Rev. B23, 4204
(1982).

P. M. Morse and H. Feshbach, Methods of Theoretical
Physics, McGraw-Hill Book Company, Inc. (1953).

M. Danos and L. C. Maximon, J. Math. Phys. 6, 766
(1965).

. O. R. Crusan, Quart. Appl. Math. 20, 33 (1962).

. R. Nozawa, /. Math. Phys. 7, 1841 (1966).

Fizika Nizkikh Temperatur, 1999, v. 25, No 10



