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The spatially homogeneous spin dynamics of the superfluid ®He-B with dissipation is considered for

the general spin-orbital configurations. It is demonstrated that the possibility of new coherent spin-

precessing modes appears explicitly in the equations of motion describing the relaxation of the spin

variables towards various attractors (resonance states) found previously as the stationary solutions and

observed experimentally.
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1. The order parameter rigidity of the superfluid
phases of liquid 3He gives life to a number of the
long-lived excitations at the background of the
Cooper pair condensate. Among them a great impor-
tance, since the discovery of ultralow-temperature
ordered states of 3He, has been attributed to the
investigation of the coherent spin dynamics. A cru-
cial role here is played by a weak spin-orbital
coupling stemming from the dipole-dipole interac-
tion between nuclear magnetic moments of 3He
atoms. In the ordered (superfluid) states the dipole-
dipole potential U, lifts the spin-orbital degene-
racy and stabilizes the appropriate equilibrium or
dynamical spin-orbital configurations of SHe-A and
SHe-B.

The spin dynamics of the superfluid phases of
SHe is a coupled motion of the nuclear magnetiza-
tion M = g8 and the spin part of the order parame-
ter. In the dissipationless approach a starting point
is the Leggett Hamiltonian (in what follows we
consider a spatially homogeneous spin dynamics)
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where X is the magnetic susceptibility, an external
magnetic field Hy = - Hyz and the Larmore fre-
quency W, = gH,, . The order parameter here enters
through the dipole-dipole potential U, and intro-
duces the characteristic features of superfluid
phases. Below we concentrate on the properties of
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the spin-precessing modes of 3He-B. For the B
phase
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where Q, is the frequency of the longitudinal NMR
and the orthogonal matrix R is the B-phase order
parameter describing 3D relative rotations of the
spin and orbital degrees of freedom. Introducing the
triples of Euler angles (ag, B, Yg) and (a,, B,,y,)
describing 3D rotations in the spin and orbital
spaces, respectively, it can be shown that
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In the strong magnetic field case (w, >> Q) the
spin dynamics is governed by a set of the Hamilton
equations for two pairs of the conjugate variables
(SZ, a) and (S, y) with S being the magnitude of S.
According to Eq. (1) this set of equations reads as
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where S, = )((;)O/g2 (the magnitude of equilibrium
magnetization M, = gS).

The angle a is a fast variable in the sence that
la| >> Qg and the same is true for y (except the case
with § << S, which we do not considered here).
On the other hand, the combination ® =a +
+(8,/S)yis aslow variable. The significance of this
resonance becomes clear when considering the struc-
ture of the dipole-dipole potential U, . Inserting
Eq. (3) into Eq. (2) we conclude that
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where € 0 (QB/(,OO)Z.
Assuming that € = 1/10(93/(”0)2’ it follows from
Egs. (2) and (3) that f,,=f, =f_, for the B
phase and the non-zero coefficients are given as:
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It is easily verified that at [, =1, which corre-
sponds to an equilibrium orbital states of 3He-B
(the so called Leggett configuration), f,, are
nonzero only for k£ =1 =0, +1, £2. This means that
for an orbital state with [ =1 the dipole-dipole
potential depends only on the combination @ =
= o + yand, as we have seen, it is a slow variable at
S =S, This well known resonance is operative
even at [, # 1 because all other linear combinations
of a and y are fast variables at § =S5, for the
strong-field case (¢ << 1) and they disappear on
the average. The conventional spin dynamics at
S = S, has been explored thoroughly in the past
[1,2].
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On the other hand, at [, # 1 (non-Leggett orbital
configuration) an unconventional spin dynamics is
also possible since a new resonance regime can
develop. Indeed, an inspection of the coefficients
fz; shows that a new combination ® =a + 2y ap-
pears in the expression for U, which turns out to
be a slow variable at a special value of S =.S,/2
(another resonance at S = 25 is also possible). This
has been noticed in Ref. 3 (for more details see
Ref. 4) and the corresponding experimental investi-
gations where undertaken recently [5,6].

The stationary solutions for s, , [, and @ corre-
sponding to the particular coherent spin-precessing
modes at the fixed resonance values of S are found
by minimizing the time-averaged dipole-dipole po-
tential U, (the Van der Pol picture). On the
other hand, in order to explore the time evolution
of S starting from some initial value, and to find
out the routes leading to the mentioned resonance
regimes, a full description of the spin dynamics,
including the dissipation effects, is necessary. In
what follows a theoretical background for the
analysis of the relaxation processes in the spin
dynamics of 3He-B will be presented. It is a direct
generalization of the approach adopted in Ref. 7
and allows us to consider the case of the non-Leg-
gett orbital configurations. It should be noted that
using the computer simulation programs (like a
package elaborated by A. A. Leman) the spin dy-
namics including the Leggett—Takagi dissipation
mechanism can be explored quite effeciently. At the
same time, an analytical approach has the merits of
its own and gives, as we shall see, a transparent
insight into the essence of the problem.

2. A standard procedure of incorporating the
relaxation processes into the homogeneous spin dy-
namics is based on the introduction of a dissipative
function
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where K will be considered as a phenomenological
coefficient [7].

During the time interval &t the energy of a
dissipative system changes by
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This last relation allows to pass from the Hamil-
tonian Egs. (4) and (5) to a set of equations for the
spin dynamics with dissipation (from now on the
time is measured in units of 1/, and (S, , ) in
units of S;):
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Since € << 1 a well-known procedure of separat-
ing of the slow (S, , S) and the fast (a, y) motions
can be applied [8] to solve Egs. (10) and (11).
Although the main points are described in Ref. 7,
here we show the principle steps for completeness.

Passing to the new variables S, , S, o and y
according to the prescription
S =S +eu +e%0 + ..,
z z z z
S=S+su, +eo,+..,
S S (16)
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where u, = ui(gz , S, q, y) and v; = vi(EZ , S, q, V),
and adopting that the new variables are subject to
a set of equations

S =¢A +&°B_ + ...,
z zZ z
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V=S+eA +€B + ...,
y y

with A, = Ai(gz , §) and B, = Bi(gz , §), we arrive
at the equations for yet unknown functions «, , and
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In Egs. (18), in describing the first order effects
in €, the functions g, are given as follows:

9,=X(S.S aY|0),

gs =X (S, S, @, ),
(20)
gy =Y (S, S, a,y),
gy = XV (52, 5, a, V) + uS(§2’ §) a: V)

The second order effects in € are governed by
Egs. (19) and the functions %, contain_derivatives of

X, and Y/, with respect to SZ,S, o,y and €
(calculated at € = 0). In particular
0X, 0X, 0X, 0X 0X,
h =—=u+—u+—u +—u +— -
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The other h, have the similar structure. According
to Egs. (12)=(15) and (6) the functions g, are
periodic in d and y :
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and the bounded solutions of Eqs. (18) are given as
®
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where a prime in the summation over k and |
excludes the contribution of £ =1=0. In a similar
way can be found the solutions of Eqgs. (19).

Performing the above-mentioned procedure it
can be established that
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After having calculated hg%) it can be shown that
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where only the dissipative contribution to By is
retained. In a similar way it is concluded that
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In Ref. 7 the set of Egs. (25) and (26) has been
used to explore the dissipative processes in the
superfluid A and B phases for the special orbital
states, the Leggett configurations. For SHe-B,
which we consider here, this corresponds to [, = 1.
At I, =1 only the components with [ =k =1, +2
contribute to the r.h.s. of Egs. (25) and (26) and,
as mentioned in Ref. 7, irrespective of the initial
conditions, S is attracted to the resonance value
S=1.

For a non-Leggett orbital configuration (with
1, # 1) the new possibilities appear. For the general
spin-orbital configurations Eq. (25) can be put in
the following form:
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Here (and below) s, = 52/5. By using Eq. (26) it
can be shown that
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From the set of Eqs. (27) and (28) it is seen
that, along with a conventional resonance at S =1,
the new resonances at .S = (1,/2, 2) intervene for the
case with f,, # 0. It should be kept in mind that,
according to their derivation procedure, Eqs. (27)
and (28) are applicable not too close to the men-
tioned resonance values of .S, but the general ten-
dencies of the various relaxation scenarios, leading
to the attractors at S = (1, 12, 2), can still be
established.

As an illustration of the content of Eq. (27) we
shall consider a non-Leggett orbital state with
[,=0. One can fix this orbital configuration by
applying sufficiently strong superfluid counterflow
in the transverse direction with respect to the mag-
netic field. Such a possibility is realized, in particu-
lar, in the rotating cryostat in the vortex-free re-
gion [9]. From Eq. (27) it is found that at I, =0
and s, » 1§ is evolving according to the equation

-y (5-5)S8-5)

(29)
9 S-S -1,265-2

S =
where S, = (19 £V73)/16. From Eq. (29) it is

immediately concluded that S is tending to its

resonance value S = 1 if initially S is confined to an
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interval S_<§<S+. On the other hand, S is
attracted to 1,2 if S<S_,and S approaches 2 for

S>S + - These conclusions, although rather qualita-

tive, contain interesting hints. More detailed analy-
sis of the solutions of the set of Eqs. (27) and (28)
will be given elsewhere.
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