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The processes at high temperature annealing of non-stoichiometric MgO-nAl,O, spinel
crystals (n = 2.2) in O, atmosphere at 1300-1500°C have been investigated. A gradual
non-stoichiometry increase up to n = 2.8 has been found with increasing annealing time
due to MgO evaporation followed by formation of polycrystalline a-Al,O; phase. The
structure and composition MgO-nAl,O5 layer grown at the sapphire surface in MgO vapor
of at 1500-1800°C have been studied. The formation of amorphous phase in transition
zone from hexagonal sapphire structure with a piling sequence ABABAB into spinel cubic
one with sequence of atomic layers ABCABC was established.

HWccneqoBaubl IpOIeCChl BHICOKOTEMIIEPATYPHOTO OTIKUIA KPUCTAJJIOB HeCTeXMOMeTpudec-
roit mmumreau MgO-nAl,O, (n = 2,2) B armochepe O, mpu 1300-1500°C. YcraHOBIEHO IIO-
CTEIIeHHOE yBeJWYEHUEe HEeCTeXWOMETPUU KPHUCTAIJIOB H0 N = 2,8 ¢ yBelHWUYeHUEM BpeMeHU!
orskura Bejgencteue ucnapenuss MgO u mociiemyromniero o6pasoBaHUs MOJUKPUCTANLINYECKON
dassr a-Al,0,. HccnenoBaner crpykTypa u cocrtas ciaoes MgO-nAl,O;, BEIpamieHHBIX Ha IIO-
BepxHocTu candupa B mapax MgO mpu 1500-1800°C. Vcramosieno dopmMupoBaHue aMmopd-
HOU (passl B 30HE Iepexojia M3 reKCcaroHaJbHON CTPYKTYPHI candupa ¢ M0oCIeL0BaTeILHOCTHIO
yraagku caoes ABABAB B KyOuuecKyio CTPYKTYpPy ILIIIMHEIN € IOCJEJ0BATEIbLHOCTHIO YKJIA-
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kn aromubrx ciaoes ABCABC.

Magnesium aluminate spinel is wused
widely due to combination of dielectric and
optical properties, hardness, durability,
density, resistance against high temperature
corrosion and radiation. Spinel is recom-
mended for application as a component in
forms for storage of nuclear wastes [1], and
Qnuclear fuel [2], as an inert matrix for
transmutation of actinides [3], as insulator
for magnetic coils [4] and windows for radio
frequency heating plasma in reactors [5]. In
any indicated applications, this material is
subjected to high-temperature aggressive
media which may cause changes in func-
tional properties of devices. The purpose of
this work is to study the crystal structure
changes of magnesium aluminate spinel
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under high-temperature annealing in oxy-
gen atmosphere using X-ray diffraction
(XRD), namely, the composition changes
and phase transformations. These transfor-
mations were investigated across the thick-
ness of spinel layer obtained on the sapphire
surface (a-Al,03) at high-temperature an-
nealing in MgO vapor.

It is known that magnesium aluminates
spinel crystals MgAl,O, or MgQO-nAl,O5 are
of cubic structure and could be formed in
the wide ratio range of constituent oxides
(n =1.0-7.3) [6]. In stoichiometric crystals
(n = 1.0), Mg2* ions occupy mainly tetrahe-
dral positions formed by oxygen ions, AI¥*
ions are situated mainly in octahedral sites.
As the crystal composition deviates from
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stoichiometric one (n > 1.0), the spinel
structure is formed with excess of cationic
vacancies, mainly in octahedral positions
[7]. If in MgAL,O, spinel all Mg2* ions are
replaced by AI°* ones, then, according to
charge compensation, the reaction
Mg2*,,rq = l1/3 + AI¥*5/5 takes place, where I
is unoccupied cation vacancy. As a result, a
defect spinel structure corresponding to
oxide y-Al,O3 is formed [8], which usually is
considered as the limit composition of this
solid solution line. As the Al,O3 content in-
creases, the lattice parameter in non-
stoichiometric spinel crystal is diminished.
To date, several equations have been pro-
posed for dependence of the lattice parame-
ter (a) on the degree of deviation extent of
spinel composition from stoichiometric one
(n). The dependences a = f(n) was derived
mainly from the limit composition of the
continuous sequence of solid solutions in-
cluding the stoichiometric magnesium alu-
minate spinel MgO-Al,O; and aluminum
oxide y-Al,O3. The knowledge of precise de-
pendence a = f(n) could be used to deter-
mine the spinel composition basing on pre-
cisely measured lattice parameter.

In [6], the following equation has been
proposed for a = f(n) which describes well
the experimental data of the authors:

a=a,-18.660n — 1)/ M, (1)

where a3 is the lattice parameter of
stoichiometric spinel (¢y = 8.086 A); M, the
molecular mass of non-stoichiometric spinel.
In [9], another expression was proposed:

ay + 3(n — 1)a;/4 (2)
C 1+3(n-1)/4"

where a; is the lattice parameter of alumi-
num oxide y-AlbOj5 (a; = 7.922 A). Finally,
according to [10] the n value as a function
of lattice parameter is described as

, . 8.61109-a (3)
"~ 8a - 28.7195

We have used all three expressions to
calculate the function a = f(n). In Fig. 1,
we present this function is presented as av-
eraged calculated values using the empirical
expressions (1-3). We have used also data
from other sources on the measured lattice
parameter values for spinels of different
compositions [11-13] and plotted the aver-
aged experimental data. We found that
none of empirical formulae (and thus none
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Fig. 1. Dependences of lattice parameter on
composition (a = f(n)) for magnesium alumi-
nate spinel crystals. 1 —[12], 2 —[11], 3 — [13],
4 — averaged experimental data, 5 — aver-
aged calculated data.

of averaged empirical curves) does not coin-
cide with experimental one. Therefore, in
this work, the experimental curve was used
to determine the influence of changes in the
spinel crystal composition on the measured
lattice parameter.

Non-stoichiometric spinel crystals
MgO-2.2Al,0; grown by Verneuil methods
were polished to optical quality and an-
nealed in oxygen atmosphere at 1500°C or
1300°C for different time. The spinel layers
were obtained at the sapphire surface dur-
ing the annealing in MgO vapor at 1550—
1800°C.

The spinel layers modified by annealing or
obtained on the sapphire surface were exam-
ined using a DRON-3M diffractometer. To de-
termine the lattice parameter, the diffraction
angle was measured at the diffractional reflec-
tion center of X-ray line Cuy,q =1.54051 A
from the (931) plan using 0.05 mm slit width.
The lattice parameter measurement accuracy
was 21074 A. X-ray phase analysis of spinel
layers was provided from XRD pattern taken
in 6 — 20 mode in the 20 angle range 0-80°
using 0.25 mm slit width.

In non-stoichiometric spinel crystals
MgO-2.2A1,0; annealed in oxygen atmos-
phere at 1500°C, the lattice parameter was
measured and composition of crystals was
derived using Fig. 1 (Table). It can be seen
that increasing the annealing time of dur-
ing 0.5 and 1.0 hour results in increasing
deviation of crystal composition from
stoichiometric one. The annealing at lower
temperature 1300°C but for a longed time
(3 h) results in formation of more non-
stoichimetric (n = 2.8) and thin layer of
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Table. The changes in lattice parameter (a¢) and composition (n) of spinel crystals MgO-nAl,Oq4

after annealing in oxygen atmosphere

T, °C t, hour 20, deg a, A n
As-grown - 133.36 8.0014 2.2
1500 0.5 133.5 7.9972 2.3
1500 1 133.72 7.9906 2.5
1500 10 Polycrystalline a-Al,O4
1300 3 134.01 7.982 2.8
Spinel + polycrystalline a-Al,O4

polycrystalline phase of a-Al,O5 at the spinel
crystal surface. At the XRD pattern, the
maxima of reflections from (104) and (110)
plans in polycrystalline o-Al,O5 are seen and
at the same time the reflection from (311) in
spinel single crystal is present (Fig. 2). The
measured lattice parameter a = 7.982 A
which corresponds to n = 2.8. We can sup-
pose that at n = 2.8, a formation possibility
of polycrystalline a-Al,O3 at the spinel crys-
tal surface occurs. Finally, annealing dur-
ing 10 hours at 1500°C causes formation of
polycrystalline o-Al;Os.

The diffusion activity of Mg2* cations
and evaporation of MgO from the crystal
surface are in accordance to the reaction:

rr r rrr 1
MgA|204 = VO + AIMg + VAl + 502(9) +

+ Mg + Aly, + 803. 4)

It is quite possible that the evaporation
process could cause the critical concentra-
tion of aluminum oxide and formation of
7-Al,O5 having cubic lattice structure, which
transforms into hexagonal «-Al,O5 structure
near 1000°C.

The calculated lattice parameter for
n = 7 spinel solid solution is a = 7.93 A,
the lattice parameter of AlAl,O, aluminum
spinel according to [14] is 7.915-7.92 A.
Finally, the calculated lattice parameter of
y-Al,O4 [15] is 7.911 A. When all cations
are situated in the octa-position, this struec-
ture has minimum energy. In real y-Al,O4
crystals, cations occupy both the tetra- and
octa-positions in 63:87 ratio, but in a-Al,O5
structure, all cations are situated in octa-
positions. The question remains open what
the spinel structure phase precedes the o-
Al,O5 formation. Therefore, at the anneal-
ing of non-stoichiometric spinel crystals
MgO-2.2A1,05 in oxidizing atmosphere the
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Fig. 2. XRD pattern of MgO-2.2Al,0; spinel
crystals annealed in oxygen indicating the pres-
ence of a-Al,0O; phase and MgO-2.8Al,05 spinel.

polycrystalline «-Al,O; was formed along
with n = 2.8 spinel.

The transformation of sapphire structure
into the magnesium aluminate spinel one
was observed at the annealing in MgO vapor
in the temperature range of 1550—-1800°C.
At the surface of annealed single crystals, a
thin layer of polyecrystalline magnesium alu-
minate spinel was formed as a result of
solid-phase reaction. The layer thickness
was changed from 20 to 300 um depending
on the annealing duration [16]. Similar ex-
periments were carried out before, where
sapphire was annealed in hydrogen atmos-
phere and MgO vapor in the 1500-1900°C
temperature range [17]. Our XRD investiga-
tions have shown the practically constant
lattice parameter a = 8.082 A over the
whole sample surface, which corresponds to
lattice parameter of stoichiometric spinel
(n =1.0) (Fig. 3a). After taking off the
near-surface layer at approximately 20 um
and duplicate measurement, the XRD pat-
tern shows much smaller lattice parameter
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Fig. 3. XRD pattern in the region of (931)
diffraction maximum from initially obtained

spinel layer (a) and after taking off 20 um
near-surface layer (b).

value a = 8.051 A corresponding to spinel
with n = 1.5 (Fig. 3b).

The stroke XRD patterns for two neigh-
boring spots (at 2 mm distance) on the an-
nealed sample surface indicates the exist-
ence of differently oriented spinel crystal
grains on the sapphire surfaces. In one case,
the primarily [111] orientation of spinel
crystal grain growth was registered
(Fig. 4.1), in another case, the [110] orien-
tation was found (Fig. 4.2). The taking off
of surface layers by lapping of crystals fol-
lowed by XRD measurements disclose that
at the initial stage of spinel layer growth,
the (111) plans of spinel (Fig. 4.3) are ori-
ented predominantly in parallel to (0001)
plans of sapphire [18]. With increasing
spinel layer thickness, the formation of
growth texture or predominant crystal ori-
entation takes place. Those crystal grains
showing trend to maximal growth rate
along the normal to crystallization front re-
place all others [19].

According to [17], magnesium aluminate
spinel layer formed at the sapphire anneal-
ing in hydrogen atmosphere and MgO vapor
has variable composition through its thick-
ness. The transition layer was changing
from the stoichiometric composition at the
outer surface (n = 1.0) to the inner bound-
ary reaching n = 8.0 in the transition zone
from hexagonal sapphire structure to spinel
cubic one. A peculiarity of the transition
zone is a sharp decrease of microhardness
which may indicate the amorphous strue-
ture of this zone.

Our data also indicate the decrease of
spinel lattice parameter in sub-layer situ-
ated near the transition zone. The diffrac-
tion maxima from (111) plans of spinel as
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Fig. 4. Stroke XRD patterns for two neighbor-
ing spots on the crystal surface: 1, [111] orien-
tation; 2, [110] orientation; 3, transition zone.
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Fig. 5. XRD pattern from transition layer be-
tween hexagonal sapphire lattice and cubic
spinel lattice.

the first, second, and third order reflections
are clearly seen in the XRD pattern from
transition zone. This indicates the diffrac-
tion from anionic sub-lattice. The diffrac-
tion maxima from other plans of magne-
sium aluminate spinel have lower intensity
and are fuzzy. A broad diffraction maxi-
mum at small angles was observed too,
which corresponds to 2—4 A interatomic dis-
tance range (Fig. 5).

Usually, a circle at Bregg angle was ob-
served in XRD patterns from amorphous
sample and the interatomic distances (d) are
ranged 2—5 A according to Wulf-Bregg rela-
tion [20]. Our data allow to estimate d in
amorphous spinel layer. The diffusion back-
ground shows a maximum at 20 = 21° that
corresponds to d = 4.225 A. At the same
time, a diffraction maximum at 20 = 19.1°
from anionic sub-lattice also can be seen
corresponding to d =4.64 A distance be-
tween oxygen ions O2~ in the spinel struc-
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ture lattice. The difference Ad = 0.415 A
could be related to distortion of spinel lat-
tice at the 9 % level. Indeed, the distance
between anions in hexagonal close-packed
lattice is 8 % smaller as compared to cubic
spinel [21] and this difference results in
formation of an amorphous layer of some
thickness and as consequence in polycrystal-
line spinel growth at non-stoichiometric
composition.

Thus, the transition from sapphire of
hexagonal close-packed ABABAB sequence
into cubic spinel with sequence of atomic
layers ABCABC does not occur by twinning [18]
or by shift of oxygen atoms which take place in
martensitic transformation [19] but due to dis-
ordering structure like amorphous state.

The characteristic structure changes in
magnesium aluminate spinel were observed
in [22]. Under irradiation with 8340 keV
Xe*t ions at 100 K at fluence over
51018 jons/m2, which corresponds to 1.2
displacements per atom (dpa), a metastable
phase was observed to be formed. This
phase is similar in structure to rock-salt of
Fm3m space group where cations occupy
randomly octahedral position, but tetrahe-
dral position are free. Just after the critical
concentration of vacancies in anionic sub-
lattice is accumulated, the phase transition
into metastable phase becomes energy favor-
able. After irradiation at fluence up to
1-1020 jons/m?2, the spinel sample becomes
amorphous and the spinel hardness drops
down by 60 %.

The experiments demonstrate the revers-
ible transformation of spinel structure into
corundum one under annealing of
MgO-nAl,O5 single crystals in oxidizing at-
mosphere and inverse process, the growth
of polycrystalline spinel layer on sapphire
at the annealing in MgO vapor. Mg2* cations
get out from spinel lattice with displace-
ment of those ions from tetra-sites into
octa-sites, transport to surface and finally
leave the crystal. At the sapphire annealing
in MgO vapor in the transition zone of hex-
agonal sapphire lattice into cubic spinel lat-
tice, an amorphous layer forms containing
Mg, Al, and O atoms. The amorphization
takes place due to strong distortion of an-
ionic sublattice in the rearrangement by se-
quential lapping of ABABAB arrangement on
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ABCABC one. The composition of spinel lay-
ers obtained on the sapphire changes from
stoichiometric n = 1.0 at the surface to non-
stoichiometric n = 1.5 in transition zone. In
the transition zone, the orientation of plans
is homogeneous over the sample surface,
but with increasing layer thickness, the
growth texture appears.
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IlepeTBOpPEeHHA CTPYKTYPHM KPHCTAJIB IIIiHEJTi
MgO-nAl,O; npu BHCOKOTEeMIIEpATYpPHOMY Bimmaui

I'.lI.Beaux, B.T.I'puyuna, JI.A.Jluméunoé, B.6.Konvnep

IOocaigskeHo mpolecy BHUCOKOTEMIIEPATYPHOTO Bifmaly HecTexXxioMeTpUUYHUX KPUCTAJIB
mmrirenri MgO-2. 2A1,05 B armocdepi O, mpu 1800-1500°C. BusasieHo mocTymose 36iboIeHHS
HecTexioMeTpii KpucTaniB o n = 2,8 3i 36iAbIIIeHHAM Yacy Bifmany BHACJiZOK BUMIApPOBYBaHH
MgO s macrynauM (opmyBarHAM mOTiKpHcTanndHOl (asu a- Al,O,. ocTifsKeHo cTPYKTypy Ta
cknax mapis MgO-nAl,O;, Bupomenux mHa mnosepxHi camdipy B mapax MgO mpm 1500-
1800°C. BcranoBieHo (popmyBaHHA amMopdHOi (asm y 30HI mepexoxy Bif reKcaroHaJbHOL
cTpykTypu candipy 8 mocaigosmictio ykaagku mapis ABABAB y ky6iumy cTpykTypy
mmigeni 3 mocaizosricTIO yKaanku aromanx mrapis ABCABC.
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