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Free-standing, infinitely long, and homogeneous quantum wires of square cross section
are considered using the chessboard-like supercell model. The optical transition properties
of Ge nanocrystals are studied by means of an sp3s” semiempirical tight-binding approxi-
mation. The calculations have been carried out for light polarized in the [100] direction,
i.e., perpendicular to the wire alignment. Dependence of the imaginary part of the dielec-
tric function on the quantum confinement is presented within two different schemes:
intra-atomic and interatomic matrix elements, which are applied and compared. The
principal results show that although the intra-atomic matrix elements are small in magni-
tude, the interference between these terms and the interatomic matrix elements contrib-
utes about 25 % of the total absorption. Thus, it appears that a quantitative treatment of
nanostructures may not be possible (in general) without the inclusion of intra-atomic
matrix elements.

CBoGOIHO-CTOSAIIIE OXHOPOAHBIE KBAHTOBBLIE IIPOBOJIOKH KBAAPATHOrO IIOIEPEUHOro cede-
HUA PacCMaTPUBAIOTCH C IIPHMEHEHMEM IMaxXMAaTHOU Mogean sdueiiku cBepxpemierku. OmTu-
YeCKHe [IepeXOoJHble CBOMCTBA HAHOKPUCTAJIIOB IeéPMAHUA UCCIEIYIOTCH C IIOMOIIBIO OJIYIM-
[IPUYECKOr0 IPUGIUIKEHAS CUIBHON ¢BASK Sp3s”. PacueTsl BHIIOJHEHbL AJIS CBETa, IIOJAPH-
sopanHoro B Hampasaenuu [100], T.e. NEePpHEHAUKYJAAPHO BBLICTPANBAHUE IIPOBOJIOKH.
3aBUCHMOCTb MHAUMOM YaCTH AUSJIEKTPUUECKON (QYHKIUM OT KBAHTOBOTO OMPAHUYEHUS IIPEJ-
CTABJIEHA B PaMKax [IBYX PAsJIMYHBIX CXe€M: BHYTPUATOMHBIX M MEXKATOMHBIX MATPUYHBIX
2JIEMEHTOB, KOTOPBIE COMOCTABJIEHBI MEXIY c060ii. OCHOBHBIE PE3YJILTATHI IIOKA3BIBAIOT, UTO,
XOTH BHYTPHATOMHBIE MATPUYHBLIE 9JI€MEHTHl MMEIOT MAJIYIO BEIMUYHHY, BKJAL HHTepHEepeH-
OAKM MEMXJIy STHMU TepMAMHA W MEXATOMHBIMA MATPUUYHBIMU DJIEMEHTAMU B CyMMapHOe
MIOTJIOIIe e cOocTaBiaseT npubiausutenabHo 25 % . Takum o0pasom, OKasbIBAETCA, UTO KOJU-
YeCTBEHHOE PACCMOTPEHHE HAHOCTPYKTYD, B O0IeM, HEBO3MOMKHO 0e3 BKJIOUEHUS BHYTPH-
ATOMHBIX MATPUYHBIX 9JIEMEHTOB.
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nanometer scale diameters, such as nano-
tubes and nanocrystals, offer great possi-
bilities for testing and understanding fun-
damental concepts about the roles of di-
mensionality and size in, for example,
optical, electrical, and mechanical proper-
ties and for applications ranging from
probe microscopy tips to interconnection
in nanoelectronics. The synthesis of crys-
talline semiconductor nanowires, such as
Ge, holds considerable technological prom-
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ise for device application and for improving
the optical properties of this indirect gap
material but is difficult to carry out.

There are many reports of a strong vis-
ible PL in Ge nanocrystals prepared by sev-
eral methods [1-3]. In all the cases, the PL
maximum is above 2 eV quite independently
of the nanocrystal size (2 to 15 nm). These
results cannot be explained by a simple
quantum confinement effect [4]. However,
Takeoka and co-workers [5] have observed a
size-dependent PL in the near infrared re-
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gion which is close to the band gap of bulk
Ge (0.66 eV at 300 K) and which seems
more compatible with the quantum confine-
ment model. In addition, it has been sug-
gested that the radiative recombination in
Ge nanocrystals could be fast because of the
small energy difference between the indirect
gap and direct gap of Ge [3] (0.14 eV be-
tween I' and L conduction band minima).

A lot of theoretical work has been car-
ried out on the band structure and on the
behaviour of the excitons in such nanoscale
structures [6]. On the other hand, investiga-
tions concerning the dielectric function are
sparse. This is due to many factors. Experi-
mentally, it is not easy to separate the di-
electric function of one phase from a multi-
phase material such as porous silicon [7],
and theoretically, it is very difficult to cal-
culate the dielectric function, since the
number of atoms to be considered is usually
large and it is time-consuming to use the
state-of-art ab initio methods to obtain the
dielectric function in a wide energy range
and in high resolution. A main attraction to
consider the dielectric function is that it
contains information about the different
phases of the multiphase material and also
the possible deviation from perfect phase,
like strain, disorder, confinement, and sur-
face effects [8].

In spite of the lack of agreement about
the detailed microscopic mechanism of the
luminescence, it is generally accepted that
quantum confinement in nanometer sized
Ge wires plays a key role in the optical
properties, similarly to the case of porous
silicon. The aim of the present work is to
calculate, optical properties of Ge struc-
tures such as hydrogen-terminated Ge quan-
tum wires similar to porous Si, using an
accurate and efficient microscopic electron
structure method. We take into account
both intra-atomic (local) and interatomic
(nonlocal) matrix elements of r. The imagi-
nary part of the dielectric function is ob-
tained through the one-particle tight-bind-
ing (TB) eigenvectors and eigenvalues, and
using k-points in the irreducible wedge of
the Brillouin zone. However, by eliminating
the intra-atomic matrix elements, one ob-
tains a TB model that is not valid in the TB
limit of isolated atoms. Thus, although the
model should provide a reasonable descrip-
tion of interatomic description between ex-
tended states, one has less confidence in its
ability to describe localized states, which
may be important at surfaces or interfaces.
Below, a theoretical model is proposed capa-
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ble of addressing this problem. Then, the
calculation results of imaginary part of the
dielectric function are presented. Finally,
some conclusions are drawn.

In this work, we employ a semiempirical
TB model of the electron structure that, by
construction, reproduces the correct band
gap of bulk Ge in the limit of infinite su-
percell size. As we are interested in describ-
ing the band structure modifications around
the gap, the minimum basis capable of de-
scribing an indirect band gap along the L
direction is the sp3s”™ one. We have used the
parameters of Vogl, Hjalmarson, and Dow
[9], which reproduce an indirect gap in bulk
crystalline Ge. One point of this method is
that it makes it possible to investigate the
properties of large supercells while avoiding
the computation difficulties involved in the
first-principle method.

We employ a chessboard-like supercell
model of crystalline Ge wires along the di-
rection [001] (z axis). The cross-section of
the narrowest wire considered is illustrated
in Fig. 1, where nine 8-atom supercells are
represented, each one is a cube of a = 5.65 A
side with translational symmetry in the z
direction; a 32-atom supercell is built by
joining four such cubes in the XY plane,
resulting in a structure with parameters
a,=a,=2a and a,=a. We suppose that
the nanostructures have the same lattice
structure and the same interatomic distance
than bulk Ge and that all the dangling
bonds are saturated with hydrogen atoms.
For simplicity, we suppose that there are no
hydrogen-hydrogen interactions. The hydro-
gen atoms are used to simulate the bonds at
the wire surface and sweep surface states
out of the fundamental gap. We assume that
the H-saturated dangling bonds on the sur-
face of the cluster have the natural H-Ge
bond length.

The on-site energy of the H and Ge-H
orbital interaction parameters are taken to
be Ep=0.205 eV, s$50ge_y = —3.618 eV,
and spoge y = 4.081 eV, respectively, which
are obtained by fitting the energy levels of
GeH, calculated in Local Density Approxima-
tion [10]. We solve for the electronic states
by diagonalizing the TB Hamiltonian directly.

To obtain optical constants from this
model, it is necessary to evaluate also the
dipole matrix elements (or oscillator
strength). Within the TB method, there
exist various approaches to the calculations.
As a starting point, we repeat the deriva-
tion of the TB momentum matrix elements
following the line of [11]. The real (g;) and
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Fig. 1. A 32-atom chessboard-like supercell.

imaginary (eg) parts of the dielectric func-
tion (g =g + iey) are related by the Kra-
mers-Kroning dispersion relations and e,
can be calculated as

e2l0) = )
T 2 Pk 5[Ec(k') - E(k) - 7103}

¢,k v,k

2n2ﬁe2
moV

where the oscillator strength is given by

_ o, [eKle - vv, k)2 2
ka,ck’ 2m Ec(k’) _ Ev(k) . ( )

In the above expression, |v,k) and |v,k’)
represent the valence and conduction states
[with energies E (k) and E.Kk'), respec-
tively]; e is the polarization vector; v, the
electron velocity operator; and k, the wave
vector. The integration is carried out over the
whole Brillouin zone. In the TB scheme, the
Bloch functions in Eq.(1) are linear combina-
tions of atomic orbitals [Rju), e.g.,

v, k) = % Y ek Brway (k)| R,juy. (3)

Rjp
Here, R are the Bravais vectors defining
the position of the supercell; j enumerates
atoms within the supercell; p identifies the
atomic orbital; u; is the position of a specific
atom in the supercell; N is the number of

supercells. The matrix elements of the elec-
tron velocity in Eq.(1) can be expressed, ap-
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plying the definition v = i/A[H,r], via the
matrix elements of the electron coordinate r.

There are two approaches in the litera-
ture to evaluate (R'j/Ar[Rju: that by Koiller,
Osorio and Falicov (KOF, nonlocal ap-
proach) [12] and the other by Selloni,
Marsella and Del Sole (SMD, local approach)
[18]. In both cases, the overlapping of orbi-
tals is supposed to be small and the intera-
tomic matrix elements are neglected. Be-
tween the orbitals belonging to the same Si
atom (R =R’ and j =),

(RjL| 7| Rjp) = (R + uj)% +dy (4

where d;, is the intra-atomic matrix ele-
ment, which is independent of R, j and also
is nonzero only for p #A. Within the first
approach (KOF), the polarizability of a free
atom is considered to be much lower than
that of the corresponding semiconductor,
and only the first term of Eq.(4) is consid-
ered. In contrast, the second approach
(SMD) considers the contribution to the di-
pole matrix element coming from different
orbitals at the same atom without neglect-
ing the first term in Eq.(4). For Si, the
nonzero matrix elements dMl in Eq.(4) are
(slxlp,) = 0.2 A and (s¥x|p,) = 1.0 A. In our
calculations of the imaginary part of the
dielectric function, we allowed for both con-
tributions.

For the imaginary part of the dielectric
function (g5), the calculations have been
carried out for light polarized in the [001]
direction, i.e, perpendicular to the wire
alignment. Fig. 2 shows the variation of
go(w) for crystalline germanium as a func-
tion of the photon energy, for both local
and nonlocal approaches (solid line). Also,
for comparison, the experimental results by
Aspnes and Studna [14] are shown in Fig. 2
(dashed line). The position of the low en-
ergy peak is just slightly overestimated
while its intensity is underestimated. Both
these effects can be explained by neglecting
the exciton effects in the calculation of the
optical spectrum. This differences can be
attributed to the limits of the sp3s* first-
neighbor TB parametrization which fails to
describe correctly the dispersion of the con-
duction band.

To analyze the dependence of g4(®) on
the wire width, d, one has to perform calcu-
lations on large supercells, where the width
can be changed progressively. For simplicity
sake, we have calculated only for the 32-
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Fig. 2. Comparison between the theoretical
optical spectrum of bulk Ge (solid line) ob-
tained within sp3s® TB approximation and the
experimental spectrum (dashed line) obtained
from [14].

atom chessboard-like supercell (Fig. 1). The
results of the contribution provided by local
and nonlocal schemes are presented in the
Fig. 8(c) and Fig. 3(b), respectively. When
we take into account the two approaches
[Fig. 38(a)], the energy gap is 2.52 eV. These
two schemes consider rather different con-
tributions. While the nonlocal scheme em-
phasizes the importance of the bulk involve-
ment, in the local work the atomic contribu-
tions are relevant. The energy spectrum is
characterized by very flats mini-bands, and
some of those do not possess dispersion at
all. It results in a lot of peaks in the ab-
sorption spectrum as shown in Fig. 3.

The principal results show that, although
the intra-atomic matrix elements are small
in magnitude, the interference between
these terms and the interatomic matrix ele-
ments contributes about 25 % to the total
absorption. Thus, it appears that a quanti-
tative treatment of nanostructures may not
be possible (in general) without the inclu-
sion of intra-atomic matrix elements.

Thus, we have shown that optical proper-
ties of surface-hydrogenated germanium
nanocrystals can be calculated within a sim-
ple microscopic quantum-mechanical semi-
empirical tight-binding approach. Our re-
sults agree qualitatively with those obtained
from experimental data. Small discrepancies
do not change the conclusion that the con-
finement could be at the origin of germa-
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Fig. 3. Imaginary part of the dielectric func-
tion vs the photon energy for the 32-atom
chessboard-like supercell. The results of the
both contributions (nonlocal and local) are pre-
sented in (b) and (c), respectively, and (a) show
both schemes, local (SMD) plus nonlocal (KOF).

nium nanocrystals luminescence. In this
model, it is clear that we are simplifying
enormously the surface description, ignor-
ing other possible saturators and surface re-
construction
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MikpockoniyHa MoAeJb JieJeKTPUYHOI (PYyHKILil
KBaHTOBUX apotiB Ge

II. Anvgpapo, P.Backec, 1.J/10600a, A.E.Pamoc, M.Kpyc-Ipiccon

Binbao cTosiui ogHOpPiAHI KBAHTOBI APOTH KBaJPATHOTO IEPEPis3y POITVISHYTO 3 3aCTOCY-
BAHHAM I1axXoBoi Mogesi KoMmipkm Hagrpatku. OnTwuyHi mepexigni BIacTWBOCTI HAHOKPUC-
TAJiB TEePMAaHil0 AOCTIMKEHO 3 BUKOPUCTAHHAM HAIIBEMIIPUUHOTO HAOJIMKEHHSA CUJILHOTO
3B’ ABKY spgs‘!:. Pospaxynku BuUKOHaHO AJdA cBiTaa, mojsapusoBaHoro B Hampawmi [100], Tobro
MEPTEeHANKYIAPHO TPOCTATAHHIO [APOTY. SaleKHiCTh YABHOI UACTHHM AieJeKTPUYHOI
GyHKIII Bi KBAaHTOBOTO OOMEKEHHS NPEACTABJIEHO B paMKaX JBOX PIBHUX cXeM: BHYTDi-
HIHBOATOMHMX Ta MiKaTOMHUX MATPUYHUX eJIeMeHTiB, fAKi BicTaBjleHO OAUH 3 JAPYTHUM.
OcHoBHi pesyabTaTu CcBifuaTb, 1[0, XOUa BHYTPINMIHHOATOMHI MATPUUYHI €JleMeHTH MAIOTh
He3HAUHY BeJIMUUHY, BHECOK iHTepdepeHIi] MK MMM TepMaMU T4 MiKAaTOMHUMU MaTpUY-
HUMU eJIeMeHTAMU y 3arajbHe MOTJUHAHHA cKaaxae npubausuo 25 % . Takxum yuHOM, BUSAB-
JAEThCA, IO KiTbKiCHUIT pPOSTNIAL HAHOCTPYKTYD, 3arajoM KaiKydd, € HeMOKJUBUM 0e3
YyPaxyBaHHA BHYTPIIIHHLOATOMHUX MaTPUUHUX €JeMeHTiB.
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