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Malignant brain t�mors constit�te one of the most 
devastating forms of h�man cancer. More than 4�% 
of all primary brain t�mors arise from transformed glial 
cells and are th�s classified as gliomas [1]. Despite 
advances in conventional therapy of gliomas over the 
past fo�r decades [�]�� the prognoses of gliomas re-
main poor with median s�rvival time of 1���� months 
in stage III glioma ��-years s�rvival rate of ��%���� and 
that of ��1� months in stage IV glioma ��-years s�rvival 
rate of �.���%�� [��� 4]. The disappointing prognosis 
inspires the ongoing development of novel anti-glioma 
agents�� which incl�de gene therapy�� imm�nomod�la-
tory therapy and oncolytic vir�ses.

The potential of innovative gene transfer for glioma 
has been realized in several strategies. A s�btopic of this 
field is represented by oncolytic vir�s�� which is replica-
tion-competent and ind�ces t�mor cell lysis. Vesic�lar 
stomatitis vir�s �VSV���� one of an important oncolytic vir�s�� 
is an enveloped�� negative-strand RNA vir�s and belongs 
to the family of Rhabdoviridae. It has been shown to 
replicate rapidly in vitro and kills a variety of t�mor cell 
lines. The antit�mor activity has been confirmed in both 

h�man t�mor xenografts in n�de mice and syngeneic 
t�mors in the imm�nocompetent mice [��� 6]. Another 
experiment el�cidated that VSV is f�rthermore effec-
tive on interferon non-responsive t�mors [��]. Specially�� 
VSV was proved to be an effective oncolytic agent in 
treatment of gliomas [��� �]. VSV cell cytopathic effect 
incl�des inhibition of host gene expression�� blockage of 
n�cleocytoplasmic transport�� and disr�ption of the host 
cytoskeleton�� which res�lts in ro�nding of infected cells 
[1�]. According to these st�dies�� VSV is an attractive 
candidate to be an oncolytic vir�s for glioma therapy. 
However�� some evidence shows that VSV may ca�se fatal 
meningoencephalitis in experimental animals [11�� 1�]. Its 
clinical application sho�ld be considered conservatively 
d�e to possible toxic effects of live vir�s.

VSV has a major str�ct�ral protein�� the matrix �M�� 
protein. The M protein plays a major role in the inhi-
bition of host gene expression and ind�ction of cell 
ro�nding that characterize VSV-infected cells. Expres-
sion of M protein in the absence of other viral proteins 
ca�ses many cell�lar effects similar as infection with 
VSV by inhibition transcription of all three host RNA 
polymerases [1�]. Based on these st�dies�� we ampli-
fied the VSV M gene and cloned it into a e�karyotic 
plasmid as a novel agent for gene therapy. The anti-
t�mor effect of this agent was validated in rat C6 cells 
in vitro and intracranial glioma rat models in vivo.

MATERIALS AND METHODS
Plasmid construction. cDNA encoding VSV M 

protein was amplified from total RNA that were extrac-
ted from VSV-infected BHK�1 cells by PCR ��pstream 
primer �’-CGC GGA TCC ATC ATG AGT TCC TTA AAG 
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AAG-�’�� and downstream primer �’- CGG AAT TCT CAT 
TTG AAG TGG CTG ATA GAA TCC-�’��. The PCR prod�ct 
was inserted into e�karyotic expression vector pcD-
NA�.1�+�� �Invitrogen���� and the recombinant plasmid 
was named pcDNA-M. All the pcDNA-M plasmid was 
p�rified by �sing Qiagen Endo-Free plasmid p�rifica-
tion col�mn as described previo�sly [14].

Cationic liposomes preparation. Liposomes con-
taining DOTAP �Sigma D61���� in a 1 : 1 molar ratio with 
DOPE Dioleylphosphatidyl-ethanolamine �Sigma P1����� 
were prepared by sol�bilizing the lipid in chloroform and 
methanol at a vol�me ratio of � : 1. The lipid mixt�re was 
then dried as a thin layer in a ro�nd-bottomed flask �nder 
a stream of N�. Resid�al chloroform and methanol was 
removed �nder high vac��m. The res�lting lipid film was 
hydrated in �% dextrose�� and sonicated �ntil sol�bilized 
completely in a bath sonicator. The Liposomes was se-
q�entially extr�ded thro�gh polycarbonate membranes 
to generate small �nilaminar vesicles. The Liposomes 
reagents were stored at 4 °C before �se.

Tumor cells and cell culture. C6 �from American 
Type C�lt�re Collection���� a glioma cell line transformed 
from rat brain glial cell�� was grown in Ham’s F1�K me-
di�m �Sigma-Aldrich�� with � mM L-gl�tamine adj�sted 
to contain 1.� g/L sodi�m bicarbonate s�pplemented 
with 1�% �vol/vol�� horse ser�m�� �.�% �vol/vol�� fetal 
bovine ser�m�� and �� pg/ml gentamycin. The cells 
were grown at ��� °C in �% CO�.

Transfection in vitro and MTT colorimetric 
assay. pcDNA-M and the empty plasmid DNA were 
encaps�lated into liposomes before �se. Briefly�� an 
appropriate amo�nt of pcDNA-M or empty plasmid 
DNA was gently mixed with the liposome sol�tion at a 
mass ratio of 1 : �. Then the mixt�re was inc�bated at 
��� °C for 1 h. C6 cells were plated at � × 1�� cells/��� 
µl into �6-well plates. After �4 h�� cells were transfected 
with � µg liposome-encaps�lated plasmid DNA encod-
ing M protein �LEPM�� and then c�ltivated for �4���� h. 
Sim�ltaneo�sly�� C6 cells were transfected with � µg 
liposome-encaps�lated empty plasmid DNA �LEEP�� or 
left �ntreated as controls. Each well was s�pplemented 
with �� µl MTT sol�tion of � mg/ml in complete media 
and inc�bated at ��� °C for 4 h. The medi�m and MTT 
sol�tion were then removed�� and 1�� µl of dimethyl 
s�lfoxide �DMSO�� was added to each well. Absorbance 
was read at 4�� nm �sing a microplate reader. The ave-
rage of data for 6 wells was �sed. The experiment was 
repeated � times. The cells merely treated by media 
was served as the indicator of 1��% cell viability.

Hoechst staining. Apoptosis was determined by 
staining with Hoechst ����� �1 µg/ml; Beyotime��. C6 
cells were seeded on sterile cover glasses placed in the 
6-well plates. After cell was adhered�� 6 µg of LEPM was 
added into each well and co-c�ltivated for 4� h. Then�� 
cells were fixed�� washed twice with PBS and stained with 
Hoechst ����� staining sol�tion according to the man-
�fact�rer’s instr�ctions. Stained n�clei were observed 
�nder a fl�orescence microscope �BX�1; Olymp�s�� 
�apan��. N�clear fragmentation and chromatin cl�mping 
were identified as characteristics of apoptosis. For the 

control�� the same staining proced�res were performed 
on cells with LEEP transfection or on those �ntreated.

Flow cytometry analysis. Flow cytometry analysis 
was performed to identify s�b-G1 cells/apoptotic cells 
and meas�re the percentage of s�b-G1 cells after 
propidi�m iodide �PI�� Sigma�� staining in hypotonic b�f-
fer as described [1��� 16]. Briefly�� after LEPM transfec-
tion as described above�� cells were s�spended in 1 ml 
hypotonic fl�orochrome sol�tion containing �� µg/ml 
PI in �.1% sodi�m citrate pl�s �.1% Triton X-1���� and 
the cells were analyzed by �sing a flow cytometer �ESP 
Elite�� Beckman Co�lter�� F�llerton�� CA��. Apoptotic cells 
appeared in the cell cycle distrib�tion as those cells 
with DNA content less than that of G1 cells.

Tumor cells implantation. Six-week-old male Wistar 
rats ���� g�� were �sed. All animals were maintained in a 
barrier facility. Experiments were approved by the Animal 
Research Committee of Sich�an University �Chengd��� 
Sich�an�� P.R.China��. The confl�ent C6 cells were trypsin-
ized and re-s�spended in DMEM free of ser�m immedi-
ately before implanting to host animals. The animals were 
anesthetized with a ketamine/xylazine mixt�re. The head 
was shaved�� following which the sk�ll was exposed. The 
animal was positioned into a stereotactic frame �David 
Kopf�� with small animal earbars. A b�rr hole was made 
�sing a Dremel drill approximately � mm right lateral and 
�.� mm anterior from the intersection of the coronal and 
sagittal s�t�res �bregma��. Cells �1 × 1�6�� were injected 
�sing a �6-ga�ge�� beveled-tip Hamilton syringe at a 
depth of � mm in a vol�me of 1� µl. The needle was left 
in place for � min after injection to limit leakage.

Tumorigenicity studies. To investigate the ef-
ficacy of M protein�� the experiment of t�morigenicity 
was performed. LEPM was transfected into C6 t�mor 
cells in vitro�� then the transfected C6 cells were im-
planted intracranially into � Wistar rats. In control�� C6 
cells were transfected with LEEP and then implanted 
into another � Wistar rats. 

Therapeutic studies. Wild-type C6 cells were im-
planted into 1� Wistar rats intracranially as described 
previo�sly. When t�mor vol�me reached abo�t 6� mm� 
�after 1� days of cells implantation���� � rats bearing 
intracranial gliomas were intraveno�sly injected with 
1�� µg/��� µl of LEPM to explore the therape�tic ef-
fect of M protein. LEEP with corresponding dose was 
intraveno�sly injected in another � rats of control gro�p. 
Rats were treated for 6 times with an interval of � days. 
Additionally�� the third gro�p of � rats bearing gliomas 
was left �ntreated. These rats were monitored each day 
for ne�rological symptoms and for s�rvival.

MR imaging methods. Experimental rats received 
magnetic resonance imaging �MR imaging�� scan at day 
1��� 1���� and �4 respectively after t�mor cell implantations. 
The animals were anesthetized with a ketamine/xylazine 
mixt�re. �.�-mmol/L sol�tion of gadobenate dimegl�-
mine �Gd-BOPTA�� was injected in the tail vein at a dose of 
�.1 mmol/kg. Serial T1-weighted spin-echo images were 
obtained � min after injection with a �.�-T s�percond�ct-
ing system ��.�T GEMSExct�� GE Co.�� �sing the following 
parameters: �14/�� �TR/TE��; field of view�� 4.� cm; section 
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thickness�� 1.6 mm; matrix�� 64 × 64; averaging�� two times. 
T�mor vol�mes estimated in all experimental animals 
were obtained by man�al segmentation of MR imaging 
data that were corrected for interslice distances.

Histological and immunohistochemistry analy-
sis. A d�plicated therape�tic st�dies�� as described 
previo�sly�� were performed for histological and imm�-
nohistochemistry analysis. Five rats in each gro�p were 
sacrificed after �� days of t�mor cell implantation by 
overdose of ether. Whole brain was taken o�t caref�lly 
and then fixed in 4% �wt/vol�� formaldehyde for �� days. 
Paraffin tiss�e sections�� � µm thick�� were stained with 
hematoxylin and eosin �H & E��. H & E section along 
the largest diameter of the t�mor was scanned in the 
low field �sing comp�ter aided image analysis system 
Q�antimet 6�� and Qwin software �Leica�� Benshaim�� 
Germany��. For the observations of potential side ef-
fects on treated rats�� the tiss�es of heart�� liver�� spleen�� 
l�ng�� kidney�� brain were fixed in 4% formaldehyde�� 
embedded in paraffin�� and stained with H & E.

For imm�nohistochemistry analysis�� paraffin tiss�e 
blocks were sectioned �� µm�� and dewaxed by three 
�-min inc�bations in xylene�� followed by � inc�bations 
in absol�te ethanol. Endogeno�s peroxidases were 
blocked in �.�% hydrogen peroxide for �� min at room 
temperat�re�� followed by antigen retrieval in 1 mM EDTA 
with microwave heating for �� min. Prior to staining�� all 
slides were washed in PBS and non-specific binding sites 
blocked by inc�bation with PBS containing 1% BSA. For 
detection of platelet endothelial cell adhesion molec�le-
1�CD�1���� sections were probed with a monoclonal mo�se 
anti-rat CD�1 antibody �1 : 4��; Santa Cr�z Biotech-
nology�� at 41 °C overnight�� followed by inc�bation with 
biotinylated polyclonal rabbit anti-mo�se antibody �1 : 
���; Vector�� B�rlingame�� CA��. Positive reaction was vis�-
alized �sing ����-diaminobenzidine as chromagen �DAB 
s�bstrate kit; Vector��. Sections were co�nterstained with 
hematoxylin and mo�nted with glass coverslips. To eval�-
ate microvessel q�antitation�� � areas considered to have 
the highest densities in slices were selected and co�nted 
at × 4�� power magnification�� and mean val�es ± SEM 
were recorded. Any brown-staining endothelial cell or 
cl�ster of endothelial cells with or witho�t a l�men�� clearly 
separated from adjacent microvessels�� t�mor cells�� and 
other connective tiss�e elements�� was considered to 
be individ�al vessels. All co�nts were performed by two 
investigators in a blinded manner.

Detecting of apoptosis by TUNEL assay. Fl�ores-
cent in situ terminal deoxyn�cleotidyltransferase-mediated 
nick end labeling �TUNEL�� assay was performed �sing an 
in situ apoptotic cell detection kit �Boehringer Mannheim�� 
Indianapolis�� IN�� following the man�fact�rer’s protocol. 
It was based on the enzymatic addition of digoxigenin 
n�cleotide to the nicked DNA by terminal deoxyn�cleotidyl 
transferase. Images were capt�red by fl�orescence micro-
scope at × 4�� magnification �Olymp�s��. The apoptosis 
were q�antitated by co�nting TUNEL positive cells from 
three areas in each section in a blinded manner.

Statistical analysis. Experiment data were re-
ported as mean ± SD. S�rvival analysis was cond�cted 

to determine if LEPM injection benefited animals and 
comp�ted by the Kaplan-Meier method and tested by 
Log Rank method. Statistical analysis of t�mor vol�me 
was performed by One-way ANOVA. Statistical signifi-
cance was determined at the level of P ≤ �.��.

RESULTS
Induction of apoptosis by M protein in vitro. The 

biological activity of VSV M protein was tested against 
c�ltivated C6 glioma cells by transient transfection with 
complex of liposome and VSV-M plasmid. Apparently�� 
growth of C6 cells of LEPM gro�p was inhibited�� com-
pared with LEEP or non-transfected control gro�ps. 
�Fig. 1�� a�� b�� c��. Cell viability was also determined by 
MTT assay. As shown in Fig. 1�� d�� the viabilities of cells 
treated with LEPM were ���% at 4� h and 4�% at ��� h 
respectively�� and the viabilities of cells treated by LEEP 
were similar to the �ntreated gro�p.

Fig. 1. Ind�ction of cytopathy on C6 glioma cells in vitro with the 
treatment of LEPM. C6 cells were treated with LEPM �a�� for ��� h. 
As controls�� C6 cells were treated with LEEP �b�� or left �ntreated 
�c��. Phase-contrast micrographs of monolayer were recorded. 
M protein showed apparent cytopathic effect on glioma cells 
compared with controls. Viability of cells was also calc�lated 
by MTT assay �d��. C6 cells were treated with LEPM �blank bar���� 
while LEEP �gray bar�� and left �ntreated �black bar�� as controls. 
Res�lts of MTT were shown as mean ± SD of 6 wells and triplicate 
experiments. In each experiment�� the media-only treatment �left 
�ntreated�� indicated 1��% cell viability

Hoechst staining was performed to identify the type 
of cell death ind�ced by M protein. The apoptosis of C6 
glioma cells after treatment of M protein for 4� h was 
detected. The increase of n�mber of these cells was 
more significant in treatment gro�p than the control. 
Fewer apoptotic changes were detected in C6 cells 
that were treated with LEEP or left �ntreated �Fig. ���.
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Fig. 2. C6 cells were inc�bated with or witho�t LEPM. The n�clei 
of the corresponding cells were demonstrated by bl�e Hoechst 
����� staining. Apoptotic cells with n�clear fragmentation and 
chromatin cl�mping are evident after treatment of LEPM �a�� while 
apoptotic changes were not detected in C6 cells treated by LEEP 
�b�� or left �ntreated �c��. Magnification for images was × 4��

C6 cells transfected with LEPM�� LEEP or �n-trans-
fected were stained with PI and analyzed by flow cy-
tometry for f�rther confirmation �Fig. ���. The s�b-G1 
cells of LEPM gro�p acco�nted for �6.�%�� while LEEP 
gro�p and �ntreated gro�p acco�nted for 6.�% and 
�.4% respectively.

Fig. 3. Flow cytometry analysis of PI stained cells 4� h after trans-
fection. Percentage of s�b-G1/apoptotic C6 cells treated by LEPM 
�6 µg�� for 4� h acco�nted for �6.�% �a��. Correspondingly�� the LEEP 
gro�p and the �ntreated gro�p acco�nted for 6.�% �b�� and �.4% 
�c�� respectively

Effect of LEPM or LEEP on tumorigenicity of 
gliomas. C6 glioma cells were transfected with LEPM or 
LEEP�� and then injected intracerebrally into Wistar rats. 
All � animals of control gro�p that were injected with 
LEEP-transfected C6 cells developed t�mors�� whereas 

none of the animals injected with LEPM developed any 
significant t�mor by MR imaging �Fig. 4�� a�� b��. The re-
s�lts were verified by two independent experiments.

Fig. 4. MR imaging. Several Gd-enhanced T1-weighted MR images 
obtained 1� days�� 1�� days�� and �4 days after implantation of C6 
glioma cells respectively. No significant t�mor was demonstrated 
by contrast enhancement at least in �4 days after LEPM-transfected 
t�mor cells implantation �a��. Conversely�� the t�mors of the control 
gro�p implanted with LEEP-transfected t�mor cells demonstrated 
strong contrast enhancement �b��. In therape�tic st�dies�� animals 
were implanted with wild type C6 gliomas �c–e��. T�mor growth was 
inhibited after accepted LEPM treatment �c���� comparing with LEEP 
mock gro�p �d�� and �ntreated control gro�p �e��

Inhibition of established gliomas in vivo. Es-
tablished intracranial gliomas were confirmed by 
MR images at day 1�. The t�mor appeared as ex-
pansive strongly contrast-enhancing lesions on T1-
weighted seq�ences following injection of Gd-BOPTA 
�Fig. 4�� c–e��. All of � rats injected with LEPM showed 
slightly slower rate of t�mor growth when checking on 
day 1�� after implantation. And the growth rate of LEPM 
gro�p decreased obvio�sly on day �4. A review of MR 
images obtained at day �4 after cells implantation 
showed that the mean t�mor vol�me in LEPM gro�p 
was 1��.4 ± 4�.16 mm��� �1�.� ± �6.1� mm� in LEEP 
gro�p�� and ��6.� ± 4�.�� mm� in �ntreated gro�p. 
Q�antization of t�mor vol�mes by MR imaging st�dies 
showed a significant vol�me red�ction �P = �.��4�� in 
LEPM gro�p compared with that in �ntreated gro�p at 
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day �4. Nevertheless�� the difference between LEEP 
gro�p and �ntreated gro�p was not significant �P = 
�.6���� �Fig. ��� a��.

S�rvival analysis showed that rats in LEPM gro�p 
had prolonged s�rvival time�� which extended 11.4 days 
after treatment ����.� ± �.� days vs ��.� ± �.� days��. 
�Fig. ��� b�� These res�lts indicated that M protein acts 
as a potential gliomas growth inhibitor.

Fig. 5. T�mor vol�me and s�rvival plot. a — Graphs showing 
assessments of t�mor vol�mes �Mean ± SD�� of each gro�p. Rats 
bearing intracerebral gliomas were injected with LEPM �1�� µg�� 
intraveno�sly starting at day 1� after C6 cells implantation. The 
LEEP gro�p received treatment of intraveno�s injection of LEEP 
�1�� µg���� and the CTRL gro�p was left �ntreated. The comparison 
of the three c�rves revealed VSV-M treatment inhibited growth of 
intracerebral t�mors. The t�mor vol�mes showed significant dif-
ference between VSV-M and control gro�ps �1���.� ± �6.�� mm� 
vs ���.�� ± ��.� mm� P = �.�����. While the difference between the 
LEEP gro�p and control gro�p was not significant ��1�.� ± �6.1� 
mm� vs ���.�� ± ��.� mm��� P = �.6�����. b — Kaplan-Meier s�rvival 
c�rves of rats bearing C6 gliomas and s�bjected to the VSV-M 
plasmid treatment. Mean s�rvival time of the LEPM gro�p�� LEEP 
gro�p�� and CTRL gro�p were ���.� ± �.� days�� �6.� ± �.� days�� 
��.� ± �.� days respectively �P = �.��1��. Differences between 
s�rvival times of LEPM gro�p and LEEP gro�p �P = �.���4���� or 
CTRL gro�p �P = �.��64�� were significant. There was no statistical 
difference between s�rvival times of LEEP gro�p and CTRL gro�p 
�P = �.������. LEPM�� liposome-encapsulated plasmid encoding 
VSV-M protein treated group; LEEP�� liposome-encapsulated 
empty plasmid treated group; CTRL = untreated control group

Inhibition of tumor-induced angiogenesis and 
increasing apoptosis by LEPM and LEEP. Histo-
pathological st�dies of t�mor section by hematoxylin 
and eosin �H & E�� staining after �� days of implanta-
tion showed vario�s amo�nt of t�mor cells with high 
n�clear/cytoplasmic ratio at the ipsilateral sites. In the 
process of t�mor invasion�� the t�mor had replaced 
and destroyed the grey and white matter�� in several 
instances�� extended from the s�rface of the brain to the 
ventricles. At low magnification�� the t�mor appeared 
to have relatively well defined bo�ndaries.

Fig. 6. Histological st�dy and TUNEL staining. Representative 
histology section of a t�mor-bearing animal treated with VSV-M 
plasmid �× 4����. Extensive necrosis can be observed in the LEPM 
gro�p (a) apparently more than LEEP gro�p (b) and �ntreated 
control gro�p (c). Paraffin tiss�e section was treated with rat 
anti-CD�1 antibody �× 4����. Significantly decreased microvessels 
were observed in gliomas of the LEPM-treated gro�p (d). Massive 
microvessels were stained in gliomas of the LEEP-treated gro�p 
(e) and the �ntreated control gro�p (f). Fl�orescent in sit� terminal 
deoxyn�cleotidyl transferase-mediated nick end labeling �TUNEL�� 
assay was performed �sing an in sit� apoptotic cell detection kit 
�Boehringer Mannheim�� Indianapolis�� IN�� following the man�fact�r-
er’s protocol at day �� after implantation. Apoptotic n�clei �green�� 
were observed �nder a fl�orescence microscope �× 4����. The treat-
ment with LEPM (g) showed apparent apoptotic cells compared to 
treatment with LEEP treated gro�p (h) and �ntreated control gro�ps 
(i). Vessel density (j) and apoptosis q�antitation (k) of each gro�p 
was determined by co�nting the n�mber of microvessels or TUNEL 
positive cells per high-power field in each section
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B�t at higher magnification�� it was clear that fingers 
of t�mor extended beyond the main mass into adjacent 
brain tiss�e�� which often had a perivasc�lar orientation 
�Fig. 6�� a–c��. More necrosis was detected in the t�mor of 
LEPM gro�p �Fig. 6�� a��. Viable glioma cells confo�nded 
with the necrotic areas. In contrast�� extensive necrosis was 
seldom observed in the t�mor of LEEP treated mock ani-
mals �Fig. 6�� b�� and �ntreated control animals �Fig. 6�� c��.

Imm�nohistochemistry st�dies of CD�1 demon-
strated a decreased microvessel density�� co�nted 
from five different high-power fields�� in ��-day t�mor 
tiss�es obtained from the LEPM gro�p ��.�� ± 1.����� 
Fig. 6�� d�� j�� compared with control t�mor tiss�es of LEEP 
gro�p ���.��1 ± ��.�4�� Fig. 6�� e�� j�� and �ntreated CTRL 
gro�p �4��.�� ± �.�6�� Fig. 6�� f�� j��. The microvessel density 
was q�antified by �sing five rats in each gro�p.

Apoptosis-related molec�lar markers on t�mor sec-
tions were examined to explore the role of apoptosis on 
t�mor inhibition effect. TUNEL staining revealed appa-
rently more apoptotic cells in t�mors obtained from the 
LEPM gro�p ���.1� ± �.6�%�� Fig. 6�� g, k���� compared with 
control tiss�es of LEEP gro�p ��.��� ± �.��%�� Fig. 6�� h�� k�� 
and �ntreated CTRL gro�p �4.�� ± �.6�%�� Fig. 6�� i�� k��.

DISCUSSION
Some conditionally replicating vir�ses can replicate 

in t�mor cells and show great promise as antit�mor 
agents for cancer therapy. These vir�ses can be 
genetically engineered for oncolytic p�rposes and 
denominated as oncolytic vir�ses [1���� 1�]. The vir�ses 
that have been modified for oncolysis are adenovi-
r�ses�� HSV-1�� and some RNA vir�ses s�ch as Reovir�s 
and Rhabdovir�s [1��� ��]. Vesic�lar stomatitis vir�s 
�VSV���� the prototype of Rhabdoviridae family�� Vesic�-
lovir�s gen�s�� is a recent addition to the list of oncolytic 
vir�ses [�1]. Vesic�lar stomatitis vir�s ca�ses rapid 
ind�ction of apoptosis and cell death [����4]. Several 
researchers have demonstrated potential advantages 
of �sing VSV as an anticancer vector�� highlighting not 
only its ability to kill cells that are interferon nonre-
sponsive [��]�� b�t also its ability to kill cells that lack 
important t�mor s�ppressors s�ch as p�� or that are 
transformed by oncogenes s�ch as Ras and Myc [�6�� 
���]. Other st�dies have demonstrated that Infection 
of cells with VSV res�lts in a rapid inhibition of cell�lar 
macromolec�lar synthesis shortly after infection and 
the development of a cytopathic effect �CPE�� which 
is manifested starting abo�t 4 h after infection by the 
ro�nding of cells [���� ��]. St�dies with syngeneic 
cancer models have extended these findings�� demon-
strating effective t�mor lysis in a system with an intact 
imm�ne system [��]. 

Altho�gh oncolytic vir�ses have clinical potential 
as antit�mor agents�� evidence indicates that c�rrent 
versions of these vir�ses may have some limited thera-
pe�tic benefit. To begin with�� wild-type oncolytic vir�s 
sho�ld be genetically engineered for viral replication 
only in t�mor cells�� rather than normal cells. Therefore�� 
gene deletions that confer viral replication selectivity 
also freq�ently red�ce the potency of vir�s in t�mor 

[�1]. Secondly�� �nlike other therape�tic strategies�� 
the antit�mor activity of oncolytic vir�ses does not 
ind�ce a significant bystander effect�� a process that 
can res�lt in the killing of non-transd�ced cells after 
death of the transd�ced neighbo�ring cells. The by-
stander effect is considered to be cr�cial for effective 
antit�mor therapy�� beca�se it compensates for the 
limited efficiency of vector delivery and spread [���� 
��]. F�rthermore�� intravasc�lar administration may 
deliver oncolytic vir�ses to t�mors�� b�t its efficiency is 
impeded by an antiviral activity of rodents and h�mans 
and req�ires s�ppression of innate and elicited antiviral 
responses [�4]. Finally�� the biological safety of repli-
cate-capable vir�ses sho�ld be considered caref�lly. 
Specially�� several independent researches have indi-
cated that VSV may ca�se a fatal meningoencephalitis 
in experimentally infected mice [11�� 1�]. For all these 
reasons mentioned above�� the oncolytic vir�ses have 
many limitations that may prevent them from entering 
the mainstream of clinical oncology [��].

To avoid these weaknesses�� the matrix �M�� pro-
tein of VSV was chosen to provide an alternative in 
anti-glioma therapy. VSV contains a single-stranded 
negative sense RNA genome which encodes five 
mRNAs that are translated into five proteins referred to 
as n�cleocapsid �N���� polymerase protein �P�� and �L���� 
s�rface glycoprotein �G���� and a peripheral matrix pro-
tein �M�� [�6-��]. The M protein is primarily responsible 
for cytopathic effects associated with VSV infection. 
The M protein is initially a sol�ble cytoplasm protein�� 
which binds to cell�lar membranes d�ring the b�d-
ding process. In addition�� some findings s�ggest that 
activation of caspase-� by VSV infection is req�ired for 
efficient apoptosis ind�ction [��]. It has been reported 
that the M protein is remarkable for a n�mber of differ-
ent roles in vir�s-infected cells�� incl�ding its ability to 
inhibit host gene expression�� to ind�ce cell ro�nding 
and to ind�ce apoptosis [��]. To investigate the effect 
of VSV matrix protein on t�mor growth�� we constr�cted 
a plasmid DNA encoding VSV M protein and observed 
its effect on gliomas in vitro and in vivo.

The st�dy of t�morigenesis and eval�ation of 
therape�tic effects req�ire acc�rate and reprod�cible 
brain t�mor animal models. Implantation models of 
glioma we chose co�ld exhibit feat�res of h�man 
disease states incl�ding glial differentiation of t�mor 
cells�� diff�se infiltration�� microvasc�lar proliferation�� 
and resemble of progression kinetics and antit�mor 
imm�ne responses [4�].

Additionally�� we established a method for moni-
toring the growth of intracranial gliomas by �sing 
Gd-BOPTA-enhanced MR images. Enhanced MR 
imaging can provide real-time images of intracranial 
gliomas in physiological conditions [41�� 4�]. Addition-
ally�� we can calc�late relatively precise t�mor vol�mes 
by enhanced MR images for the p�rpose of comparing 
treatment effects among gro�ps [4�]. The t�mor vo-
l�me growth c�rves showed that when intracranial glio-
mas reached vol�me of abo�t ��� mm��� rats bearing 
t�mors began to die. Meanwhile�� the c�rves showed 
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that when �ntreated gro�p and n�ll-plasmid treated 
gro�p reached death vol�mes after abo�t � weeks of 
post-implantations�� the VSV-M plasmid treated gro�p 
was 1���.� ± �6.�� mm�. Inhibition of t�mor growth 
prolonged s�rvival time for abo�t 11 days.

To o�r knowledge�� this is the first time when it was 
demonstrated that the VSV-M protein wo�ld ind�ce 
glioma cytopathy in vitro�� and inhibit the growth of es-
tablished intracranial rat glioma in situ. The antit�mor 
efficacy in vitro and in situ may res�lt from increased 
ind�ction of the apoptosis in treatment gro�p. This 
s�ggestion is s�pported by the present findings. The 
glioma cells transfected with LEPM in vitro displayed 
obvio�s cytopathic effect observed by phase-con-
trast microscopy-apparent increase in the n�mber 
of s�b-G1 cells of PI-stained n�clei analyzed by flow 
cytometry. Morphologic changes of n�clei observed 
by Hoechst staining confirmed that the cell death was 
res�lted from apoptosis. In addition�� apoptotic cells 
in t�mors treated with LEPM were more apparent in 
fl�orescent in situ TUNEL assay compared with those in 
LEEP or �ntreated gro�ps. The ind�ction of apoptosis 
by wtVSV-M protein is dependent on activation of the 
intrinsic pathway�� req�iring activation of the initiator 
caspase�� caspase-� [44]. A primary f�nction of wt 
M protein is to inhibit host gene expression which re-
s�lts in cell�lar stress that activates the mitochondrial 
apoptotic pathway.

Another possible mechanism of the anti-angio-
genesis effect may acco�nt for t�mor inhibition. It 
has been proved that the progression of solid t�mors 
depends on angiogenesis [4�]. Selective inhibition 
or destr�ction of the t�mor vasc�lat�re co�ld trigger 
t�mor growth inhibition [46]. We observed microvessel 
decrease in LEPM gro�p by CD�1 staining and tho�ght 
it may play some role in t�mor inhibition�� even tho�gh 
we did not know the exact mechanism and the relation-
ship with t�mor cells apoptosis.

CONCLUSION
We reported that Matrix �M�� protein of vesic�lar 

stomatitis vir�s �VSV�� can inhibit rat glioma growth 
either in vitro or in situ. We observed apparent t�mor 
cells death after transfected with VSV-M plasmid along 
with decreased growth of intracranial gliomas and 
prolonged s�rvival time after VSV-M plasmid injec-
tions. No matter in vitro or in situ�� t�mor cell apoptosis 
was apparently observed and tho�ght to be the most 
important mechanism of t�mor inhibition. Additionally�� 
anti-angiogenesis phenomenon was s�rveyed at im-
m�nohistochemistry st�dies and tho�ght to be another 
possible mechanism. The findings in the present st�dy 
may provide a new biotherape�tic strategy for the 
treatment of gliomas. M protein is considered safer 
than live VSV�� and easier for gene recombination. As a 
potent inhibitor of gliomas�� M protein co�ld play more 
important roles in glioma therapy s�ch as binding some 
glioma-specific ligand to achieve targeting character 
[4���� 4�]�� and�� when placed in the resection cavity at 
s�rgery�� killing resid�al glioma cells [4�].
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ПЛАЗМИДЫ, КОДИРУЮЩИЕ МАТРИКСНЫЙ ПРОТЕИН 
ВИРУСА ВЕЗИКУЛЯРНОГО СТОМАТИТА В КАчЕСТВЕ 

ПРОТИВООПУХОЛЕВОГО АГЕНТА, ИНГИБИРУЮЩЕГО РОСТ 
ГЛИОМЫ КРЫС IN SITU SITUSITU

Цель: изучить способность матриксного протеина (М протеина) вируса везикулярного стоматита (ВВС) угнетать рост глиомы 
in situ. ���е���л�� � �е�����: situ. ���е���л�� � �е�����:situ. ���е���л�� � �е�����:. ���е���л�� � �е�����: сконструирована рекомбинантная плазмида, кодирующая М протеин ВВС, которая затем была 
трансфецирована в культивированные клетки глиомы С6 in vitro vitrovitro. Клетки глиомы С6, трансфецированные инкапсулированным 
в липосомы М протеином (ЛИМП), имплантировали интракраниально для изучения туморогенности. В эксперименте крысам 
с трансплантированной интракраниально глиомой С6 (исходный штамм) внутривенно вводили ЛИМП. Апоптотическое дей-
ствие М протеина на опухолевые клетки изучали с применением флуоресценцентной микроскопии (окрашивание по Хехсту), 
проточной цитометрии (окрашивание пропидиумом йодидом), TUNEL�� васкуляризацию опухоли оценивали гистологически иTUNEL�� васкуляризацию опухоли оценивали гистологически и�� васкуляризацию опухоли оценивали гистологически и 
иммуногистохимически с применением анти-CD31 моноклональных антител.CD31 моноклональных антител.31 моноклональных антител. Резуль�����: М протеин может индуцировать 
лизис клеток глиомы in vitro vitrovitro. Ни у одного животного с трансплантированными клетками глиомы, обработанными ЛИМП, 
не возникали опухоли значительного размера, тогда как у всех крыс из контрольной группы опухоли развивались. В группе 
животных, которым вводили ЛИМП, опухоли были меньшего объема и отмечали увеличение продолжительности жизни 
животных. Показано, что М протеин проявляет антиангиогенные свойства и обладает способностью индуцировать апоптоз. 
В��в����: М протеин ВВС ингибирует рост глиомы in vitro vitrovitro и in situ situsitu. На этой основе может быть разработана потенциально новая 
биотерапевтическая стратегия для лечения пациентов с глиомами. 
Ключев��е сл�в�: генная терапия, глиома, липосомы, матриксный протеин, плазмиды, туморогенность, вирус везикуляр-
ного стоматита.


