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Dynamics of formation of soliton conductivity
in a 2D-array of linear chains containing
commensurate charge density waves near the contact
with a normal metal
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We make a numerical study of the conversion of conduction electrons into charge density wave
(CDW) topological solitons at the interface between a normal metal and a 2D-array of the CDW-carry-
ing linear chains. The interplay of commensurability potential, interchain interaction, and electric field

on the dynamics of soliton formation is studied. When the interchain interaction exceeds the commen-
surability energy, the dynamic mechanism of creation of fractionally charged solitons near the contact is
suppressed and specific contact nonlinearity in transport current is not observed.
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Introduction

Some quasi-one-dimensional metallic alloys un-
dergo phase transition to the Peierls dielectric (PD)
state at low temperatures (see, e.g., [1=3]). PD
is characterized by a complex order parameter
A exp (i9), where A is the gap in a single-electron
spectrum and phase gradients define the collective
charge transfer: CDW conductivity. Topologically
stable nonlinear phase excitations, in particular,
solitons and antisolitons, serve as the elementary
CDW charge carriers. The soliton description is
more or less successful in explanation of the non-
linear bulk transport (see, e.g., the Reviews 1,2).
However, one principal aspect of CDW-physics,
viz, the problem of interaction of the current-carry-
ing CDW-phase deformations with conduction elec-
trons, in particular, the nature of CDW /metal
electrode interface phenomena, is not yet entirely
understood and controversial explanations still
arises.

To describe the process of charge transformation
at the CDW /normal metal interface, the ideology
of phase slip centers (PCS) which exploits the
analogy between the PSC and dislocations had been
put forward (see, e.g., [4=7]). The physics behind
the PSC is the strongly pronounced polaron ef-
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fect [3]: i.e., conduction electrons imbedded in the
conduction band of a quasi-one-dimensional semi-
conductor are unstable against self-trapping and
subsequent absorption by the valence band where
they are finally converted into CDW phase soli-
tons [9]. Interchain interaction provides aggrega-
tion of solitons into dislocation-like loops: PSCs.
Charge transformation takes place near the contact
with a normal metal. In the cited publications [4-7]
(see also references therein), the PSCs were treated
as the static objects.

Dynamics of conversion was studied in a series of
pioneer papers [8—10]. It was shown that prior to
formation of PSC conduction solitons manifest
highly nontrivial individual behavior, and the
proper hierarchy of time scales which governs the
charge transformation was established. Self-trap-
ping is connected with local gap deformations in
conducting chains. The potential barrier for the
self-trapping is [1A, and during the time [17/A the
quasiparticles spectrum is matched to a local value
A(r, t); the time of the gap deformation is of order
of w! (w is the frequency of the Peierls phonons
which is of the order of the Debye frequency [2,3]),
the interchain interaction being of order T, (T, is
the temperature of the Peierls transition), it defines
the time 7%/T, of the interchain phase coherence
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onset. In a weakly coupled array of highly conduct-
ing chains, when T, << Fiw << A, the self-trapping
of electrons occurs in individual chains inde-
pendently [3,4] and the charge transformations pro-
ceeds in two steps, each characterized by its own
time: transfer of conduction electrons into the va-
lence band in a single chain at T, Ow ™, and forma-
tion of a collective charge carrier in this chain at
Ty >> 1, . The time T, is the intrinsic scale of the
CDW-phase Hamiltonian [2—-4], at t < Ty individ-
ual charge carriers obey the Lagrange equations
supplemented by the boundary conditions. The lat-
ters are formed during the time ¢ <Tt, [7]; the
initial phase perturbation is localized near the inter-
face over the distance of the order of
Vi1, 0 =2V, /B; where & is the amplitude
coherence length in PD. The jump &8¢ of the initial
phase profile ¢(f = 0) is defined by the charge con-
servation law in the process of self-trapping. In-
deed, the collective CDW charge density p in a
single chain is related to phase gradient via the
Frohlich relation:

p—E@. 1)

_T[ax

When ¢ electrons are converted into the CDW-
condensate, the phase acquires a local deformation
with the net phase shift:

0 = ¢p(x = ®) — ¢(x =~ ) = gTT. (2)

It was shown in [9] that during the elementary
act of self-trapping at the metal /PD interface the
charge 2e is transformed into a CDW in a single
chain, i.e. two electrons with opposite spins are self
localized during the time w !. This process resem-
bles the Andreev reflection in superconductors.
Thus, the initial condition to the phase equations of
motion leads to ¢ = -2 in Eq. (2). As the scale &
is much less than any intrinsic length in the phase
Hamiltonian [2—-4], we can formulate the initial
condition as a point-like step function with the
height equal to —-2m[7].

In our previous publications [8,10] we have
studied the evolution of the initial CDW profile
both analytically and numerically in two models,
when self-trapping occurs:

1) in a central chain which belongs to a cluster
of nearest chains containing an incommensurate
CDW. The electric field was not taken into ac-
count [8];

2) in an isolated chain containing commensurate
CDW in the presence of a dc-electric field [10].

It was shown that the initial condition always
transforms into stable topological Sine-Gordon
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(SG) solitons. In the model of nearest chains cluster
each soliton has charge 2e, and the role of the bulk
term in the SG equation plays the role of interac-
tion between chains of the type sin (¢, - ¢,), where
¢, and ¢, are the phases in the central and nearest
chains. In a commensurate CDW we have observed
the effect of a charge fractionalization (see,
e.g., [1,2]) when the initial profile decays into M
fractionally charged solitons (an integer M > 2 is
an index of commensurability) each carrying
charge:

q,=2e/M . 3

It was shown in Ref. 10 that soliton-antisoliton
pairs with charges * g, (3) are created in a dc-elec-
tric field from an initial CDW profile, thus giving
rise to an additional contact non-linearity in the
CDW-conductivity.

It is certainly interesting to study the evolution
of initial CDW profile and interaction of phases in
different chains in a more general 2D model, which
takes into account the effects of commensurability,
inter-chain interaction and electric field. This prob-
lem is not integrable; it is solved numerically in this

paper.

Model

Consider the 2D-array of the CDW-containing
chains which occupy the semi-axis x = 0. The La-
grangean of the system is (see, e.g., Ref. 2):

2 2
1 2 9.0 7#2V2 9.0
L=— S 0 '0-— 00+
iV, & 59 0ot [0 [
Aiz 2 wz M 2
+ = a2 0 cos Mo, + 2T% cos (9, = ¢,_,) +
e ~
+ 5 v, E@, - 9, (4)
m O

where ¢; denotes the phase in the i-th chain, w, is
the commensurability frequency, and ¢ is the phase
at x —» + 0. Such form of the last term in Eq. (4)
takes into account the renormalization of the phase
in each chain in the presence of an electric field.

The equation of motion for the Lagrangian (4)
has the form:

PN K v+ )+
o> oy’ !

+ B Sin (Xl - X1_1) + B SlIl (Xl - Xl+1) =€ s (5)
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where
2A
y = —x, eziﬁVFQE,
Vi 21 N?
(6)
% @
-0 - 2 = e
A_M’ B—ETC, and x;=¢,-¢.
In a nonzero field E the ground state is:
¢ = arcsin (€) . (7

Equation (7) implies the restriction on the electric
field whereby the stable phase configuration exists:

Le D< 1 8
i ®
Only the fields that obey the condition (8) are
consideredfurther.

Equation (5) is supplemented by the initial and
boundary conditions which describe conversion of
the pair of electrons into a CDW -profile in a central
chain (i = 0) (see the above discussion of the hierar-
chy of times in this problem):

ox; U
Tt =0,
oG, (9a)
Xi(t =0)=-2m6 (go - Y) 6{0 ’ (9b)
X,y = 0) = - 213, , (9¢)

where 61‘;‘ =1, i=7 and 61‘;‘ =0, i £7; EQ is the
coherence length & = 2V, /A in units (6), &y << 1,
and O(y) is the Heavyside step function.

In what follows, we solve Eq. (5) with the
conditions (9) numerically by means of the method
of finite differences. The difference equation corre-
sponding to Eq. (5) has the form

Xiskrt,1 ¥ Xiem1 17 2Xiet Xt ™ Xie it~ i, .

() (By)?

+ A sin M(Xi,k,l +¢,) + B sin (Xi,k,l - Xi+1,k,l) +

*Bsin (X g1 = Xiegp,) € (10)

where At is the time step, Ay is coordinate step, and
X; p1 = X{(&tk, Dyl). Equation (10) is solved for
different values of parameters and at different enve-
lope functions in (9b). The results presented are
obtained for max (k) =1 000 (max (k) is the num-
ber of sites). It is found in particular that neither
changing the shape of the initial perturbation (9b)
(rectangular or triangular step) nor increasing the
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number of sites provides any significant effect on
the solution of Eq. (10).

Conversion in a single chain

Dynamics of conversion of conduction electrons
into a one-dimensional CDW was studied in [10].
The system is described by the reduced equa-
tion (5):

%X _ 0% +Asin M(x + ) =¢ . (11)
o> ay?

In weak decelerating and accelerating fields
(le/A|l < 0.1) the dynamics of phase develops along
conventional lines. In an accelerating field the in-
itial profile propagates along the chain keeping safe
its «step-like» form (9b) (Fig. 1,4). In a weakly
decelerating field (Fig. 1,b), the initial profile loses
its stability after some time and splits into commen-
surability solitons (3), which reverse their direction
of motion, and eventually collect near x = 0. The
radiation propagating with the maximum velocity is
clearly observed.

The picture changes drastically when [¢/A| ex-
ceeds a threshold field €, . In this case the charge
creation during the evolution of the initial profile is
observed both in accelerating (Fig. 1,c) and decel-
erating fields (Fig. 1,d). The reversal of the sign of
created charges with the change of the field direc-
tion unambiguously indicates that the mechanism of
the charge formation is the polarization of a CDW
vacuum: at € > 0, the soliton (s) and antisoliton
(5) move pro- and contra the electric field corre-
spondingly; at € < 0 soliton and antisoliton change
their positions. Such a mechanism of the charge
creation is responsible for the specific nonlinearity
of the contact conductivity [10]:

EVE=Ey

: (12)
B +VE=E;

ju

Note that the threshold field £, which defines the
onset of the nonlinear contact conductivity (12), is
different from the one normally observed in bulk
transport [1,2]. The latter is of electrostatic origin
and of course cannot appear in numerical simulation
of Eq. (11). The microscopic origin of the threshold
(11) is the concurrence between the energy of
soliton-antisoliton confinement in a moving phase
profile and the electric field, which tends to dis-
solve the ss-bound state [10].
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Fig. 1. Dynamics of conversion of the electrons to the commensurate one-dimensional CDW. A = 1: @ — accelerating field: € = 0.05;
b — decelerating field: € = - 0.05; ¢ — accelerating field: € = 0.2. The mechanism of the pair creation is observed; d — decelerating

field: € = = 0.2. The mechanism of the pair creation is observed.

Conversion in a 2D-cluster of nearest chains

In this model we consider the conversion in a
central chain which is surrounded by N symmetri-
cally arranged nearest chains. The symmetry of the
problem allows us to describe the dynamics of
conversion by the following two equations:

X,

X,

a2 oy’
+ A sin M(x, + §) + NB sin (x, - X,) =¢, (13a)

+
o2 9y?
+ A sin M(x, + §) + Bsin (x, - X,) =€ , (13b)

where X, is the phase in the central chain and X, in
neighboring ones. Equations (13) are supplemented
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by the conditions (9). Equations (13) differ from
Eq. (11) by the interchain interaction term
B sin (X, = X;)-

The oversimplified problem (without the electric
field and commensurability potential) was solved
analytically in Ref. 8. Tt was shown in Ref. 8 that
pair of self-trapped conduction electrons transforms
into a charged 21ekink localized in a central chain
and surrounded by dipoles in neighboring chains.
The result of a numerical study of same problem is
plotted in Fig. 2,a. There are two distinctions be-
tween the results obtained analytically and nume-
rically. First is the existence of the radiation
(Fig. 2,a) which has been dropped in [8]. Second,
decrease of the velocity of the 2rekink (Fig. 2,a),
which is the typical feature of the soliton-type
solutions in the discrete Sine-Gordon equa-
tion [11,12]. The inclusion of the commensurabil-
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Fig. 2. Dynamics of conversion of the electrons to the the cluster of the nearest chains. N =2, B=1: ¢« — incommensurate chains:
€ =0, A =0. The initial condition transforms to a 2Tekink surrounded by dipoles; b — commensurate chains, accelerating field:
€ =0.4, A =1. The mechanism of the pair creation is observed; ¢ — commensurate chains, decelerating field: € = - 0.2, A = 1. The
mechanism of the pair creation is observed; d — commensurate chains, decelerating field: € = - 0.3, A = 1. The mechanism of the

pair creation is observed.

ity [A # 0 in Eq. (13)] results in suppression of the
charged dipoles.

Taking into account the electric field in the r.h.s.
of Egs. (13) leads to various pictures, which de-
pend on the equation parameters. As in the model of
a single chain, the threshold field is observed,
which is higher that in the one-dimensional model
and which depends on the number of neighboring
chains N, the parameters A and B, and sign of the
field. Increasing the number of chains leads to
increasing the threshold field. In weak accelerating
fields (¢/A < 0.3) charged 2mkink moves in the
central chain and only the radiation is observed in
the neighboring chains. In higher accelerating fields
(e/A > 0.3) fractional charge creation is observed
(Fig. 2,b); it occurs in the central and in neighbor-
ing chains simultaneously, which explains the en-
hancement of the threshold field.

Figures 2,c and 2,d show the solutions of
Eqgs. (13) in decelerating fields. The dynamics in
weak decelerating fields (Je/A| < 0.15) is analogous
to the corresponding result for a single chain. The
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initial profile, which moves opposite the field, loses
its velocity after some time and localizes near x = 0.
In higher fields (le/A|] > 0.15) the charge creation is
observed (Figs. 2,c, 2,d). The charge creation oc-
curs in the neighboring chains only (Fig. 2,¢) or in
the central and in the neighboring chains simultane-
ously (Fig. 2,d), but always solitons and antisoli-
tons in the neighboring chains form bound states
with solitons and antisolitons in the central chain.
It must be emphasized that the value of the thresh-
old field depends on the sign of the applied field. In
our opinion, this is artifact of the model; actually,
in real experiment one has a symmetric system with
two metal /CDW interfaces, and E . is independent
on the sign of €.

Beyond the cluster approximation

Consider the finite number of chains arranged
symmetrically relative to the central chain. We
start from the model without electric field and
commensurability term (Fig. 3,a). The picture ob-
tained is in its common features similar to Fig. 2,a.
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Fig. 3. Dynamics of conversion of the electrons to the 2D-array of chains. B =1: ¢ — incommensurate chains: € =0, A = 0. The

initial condition transforms to a 21ekink surrounded by dipoles; b — commensurate chains: € = 0, A = 1. Commensurability leads to
the suppression of the dipoles; ¢ — commensurate chains, decelerating field: € = - 0.5, A = 1. The initial condition transforms to a
2mekink decelerating by the field; d — commensurate chains, accelerating field: € = 0.5, A = 1. The initial condition transforms to a

21ekink accelerating by the field.

The charged 2mrkink moves in the central chain and
is surrounded by dipoles and radiation in the array
of chains. With increase in the size of array, the
dipoles will be spread in the direction perpendicular
to x. The amplitude of radiation is approximately
the same in all the chains.

Figure 3,b shows the solutions of Eq. (5) at
€ = 0. The commensurability suppresses the charged
dipoles. The 2m-kink moves in the central chain,
losing its velocity.

In the presence of an electric field (Figs. 3,c,
3,d), effects of the soliton-antisoliton pairs creation
and fractional charge solitons (3) are not observed.
In the decelerating field (Fig. 3,c) the 2mkink
looses velocity and localizes near x =0. In the
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accelerating field (Fig. 3,d), the 2mkink accompa-
nied by radiation moves into the bulk.

In Fig. 4 the soliton-soliton interaction for the
solitons located in the neighboring chains is stud-
ied. This problem is interesting in the context of the
problem of the solitons aggregation into the macro-
scopic phase-slip centers. The 2mtkink localized in
the center of the first chain is prepared in the
following way: the initial condition for this chain is
chosen in the form:

¢1(t:0):—2n9%—yg, (14)
0

where [ is the length of the chain. Then, after some
time, the condition (14) decays into the stable
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Phase

Fig. 4. Interaction between the solitons in the neighboring
chains. € =0, A =B =1. The soliton-soliton interaction leads
only to small phase shift of the solitons.

21ekink accompanied by the radiation, which
spreads in both directions in all the chains. The
velocity of this kink is zero due to the symmetrical
initial condition (14) contrary to the initial condi-
tion (9b) which produces the kink with a nonzero
velocity. Before the collision we put the radiation
equal to zero. Hence, we have the static 21tkink in
the first chain and the moving 2Tekink in the zero
chain. From Fig. 1,b we see that the velocity of the
kinks does not change after collision. The collision
results only in the small space shift of the kinks,
which means that the aggregation of such solitons
into macroscopic phase-slip centers does not occur
in this model.

Conclusions

In this paper we have studied several models
describing the dynamics of conversion of conduction
electrons into topological solitons of the commensu-
rate charge density wave.

In an incommensurate CDW, in the absence of
electric field, the initial condition transforms into
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the 2mekink localized in the central chain and sur-
rounded by charged dipoles in the other chains. The
commensurability leads to suppression of such di-
poles. In the presence of electric field when
B/A << 1 and the field being sufficiently large, the
mechanism of topological charge creation is ob-
served. If B/A <1 (which is more realistic) the
fractional charge conductivity and creation of the
soliton-antisoliton pairs are suppressed. The 21ekink
is localized in the central chain and is surrounded
by the radiation in the other chains. The soliton
velocity depends on the field.

In the framework of this model the soliton-soli-
ton interaction does not lead to the aggregation of
the solitons into macroscopic phase-slip centers.
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