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The results of microwave transmittance measurements of crystalline high-7, YBaCuO film under the

influence of an external magnetic field are presented. Generally, in high-T' superconductors dissipation

mechanisms different from those in conventional superconductors may take place as well as transport

current, Josephson-junction and anisotropy resistance-connected processes. Measurements of transmit-

tance induced by the magnetic field demonstrate the dominance of flux flow dissipation mechanism and

nonlinear transmittance dependence when approaching T, . This makes possible to detect and charac-

terize all the mechanisms mentioned above.

PACS: 74.72.Bk

Our measurements were carried out in the 2-mm
wave range. Under these conditions the transmit-
tance is sensitive to the presence of «normals elec-
trons, whereas infrared measurements sense the su-
perconducting energy gap. The backward-wave tube
was used as a microwave generator, with the radia-
tion channeled through a measurement cell that
consists of two (in and out) symmetrical quasiopti-
cal waveguides inside the pulse solenoid. The sam-
ple was placed between the waveguides in the
region of the maximum, homogeneous magnetic
field. Finally, the radiation was detected after the
measurement cell which was placed in a cryostat
with special windows to transmit the microwaves.
To obtain the best sensitivity a liquid helium cooled
n—InSb detector was used [1]. Such a technique
produces ultrahigh frequency (130-150 GHz) cur-
rent densities in the sample which are much smaller
in magnitude than the critical current, and thus
avoids test current inside the sample that is a
consequence of direct current investigations.

The sample under study was made using magne-
tron sputtering procedure. The 1000 A YBaCuO
(123) film, which was deposited on the surface of a
0.5 mm-thick SrTiO4 substrate, exhibited a micro-

twinned crystalline structure with its C-axis per-
pendicular to the surface. Preliminary testing deter-
mined a superconducting transition at 87.8 K with
1 K width.

The experimental dependences of the magnetic
field-induced transmittance at different tempera-
tures are shown in Fig. 1. As can be seen, the
transmittance value rises monotonically when the
temperature rises from 4.2 K to T, . At low tem-
peratures a linear behavior of the transmittance
versus the external field with a slope of 1% OI ~!

pL T=88K
% 81'

. q o g
£ Ceeo 0o o —o—0—0—0¢ =
s 78" T=65K|§
@ _ e e e o o-o—e—e— T
s el T=203K
8 5l eeo o oo o —s—s—s—0——

'S T=42K

w - - &

S {1 éee—e—o o —o—o o0 i hd

8

|_ 1 1 1 1 1 1
0 2 4 6 8 10 12

H,T

Fig. 1. Magnetic field effect on transmittance of the HTSC
thin film at different temperatures.
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was exhibited, which is consistent with results
reported in [3,4], where the bolometric and reflec-
tance measurements were performed. This linear
dependence of microwave transmittance on mag-
netic field may be explained in terms of flux flow
dissipation. In contrast, the slope value at tempera-
tures approaching the T rised to 3% [T 1 and the
behavior was strongly nonlinear. Evidently, this
region is dominated by the influence of the mag-
netic field on the superconducting phase transition.

Normal electron transmittance includes dissipa-
tion resulting from the Lorentzain-like force motion
due to the transport current normal to applied
magnetic field H. For the HTSC the microwave
frequency range is higher than the depinning fre-
quency. Consequently, electromagnetic interaction
is much stronger than the pinning force, and the
major source of the dissipation is due to the free-
moving vortices.

In the London electrodynamics approach it is
possible to represent the current density J as

1
J=—m(5-f\/3), (1)

where A is the London penetration depth; E is the
microwave electric field; f is the fraction free vor-
tices [2]. Writing the vortex velocity as v == Jf/n,
the expression for the flow resistivity may be ob-
tained as

p:¢0’?—i@ﬂ, (2)

which is true for H smaller than critical field and
temperatures that are not too high. Taking into ac-
count that a typical HTSC critical field is of order
100 T, the limit representation for surface resistance
R demonstrates a linear dependence on H:
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This approximation is based on the pure flow
regime and neglects the normal electron contribu-
tion, so the model is not valid in the region very
close to T, . A more detailed consideration of high
frequency magneto-absorption was developed based
on the equation of motion for a flux line in a
sinusoidal pinning well under an alternating field
and a random driving force due to thermal fluctua-
tions [3].

The granularity and various inhomogenities of
the sample can produce a weak-like structure or, if
there is an intrinsic Josephson junction inside,
either effect may dominate in the microwave re-
sponse. We assume the observed behavior of micro-
wave properties near 7, may be due to the domina-
tion of dissipation effects from losses related to the
Josephson junctions. To clarify this problem a set of
additional measurements on other HTSC thin films
are expected to be carried out. Attention will be
given to the hysteresis phenomena due to the ther-
mal and magnetic history of samples with different
crystalline properties.
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