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THE DISTRIBUTION OF TP53 GENE POLYMORPHISMS IN CHRONIC 
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Previous analyses in a cohort of Chornobyl cleanup workers revealed significantly increased radiation-related risk for all leukemia 
types, including chronic lymphocytic leukemia (CLL). Numerous investigations emphasized the significance of genetic susceptibility 
to the radiation carcinogenesis. The aim of the work was to study the distribution of TP53 single nucleotide polymorphisms (SNPs) 
in CLL patients exposed to ionizing radiation (IR) due to Chornobyl nuclear power plant accident and estimate their impact on disease 
development. Materials and Methods: The TP53 exonic and intronic SNPs were analyzed in 236 CLL patients by polymerase chain 
reaction and direct sequencing. The main group included 106 IR exposed CLL patients and the control group was composed 
of 130 IR non-exposed CLL patients. Results: Nineteen TP53 SNPs were found in the observed CLL cohort. No significant differ-
ences were found between the main and the control groups, but increased frequencies of T/T rs12947788 + G/G rs12951053 homo-
zygotes and rs146340390 C/T variants were found among IR-exposed CLL patients compared with healthy Europeans (data from 
the 1000 Genomes Project). Rare nucleotide substitution rs146340390 (c.665C>T) was found only in the main group. These features 
were primarily typical for the most affected group of IR-exposed patients, namely, cleanup workers engaged in emergency works in the 
2nd quarter of 1986. Conclusion: These preliminary findings don’t contradict the assumption on possible influence of IR on CLL de-
velopment via the p53-dependent pathway. This article is a part of a Special Issue entitled “The Chornobyl Nuclear Accident: Thirty 
Years After”.
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Previous analyses in the cohort of Chornobyl 
cleanup workers revealed significant radiation-re-
lated increased risk for all leukemia types, including 
chronic lymphocytic leukemia (CLL) [1–3]. Further 
study did not find additional effects of occupational 
and lifestyle factors on CLL risk in this radiation-
exposed cohort  [4]. Numerous investigations 
emphasized the significance of genetic suscep-
tibility to the development of tumors after expo-
sure to carcinogens [5–7]. Considering the role 
of TP53 as a key tumor suppressor, intensive search 
of its cancer susceptibility allelic variants have been 
conducted. The TP53 codon 72 G/C (Arg72Pro) 
polymorphism (rs1042522) is the most studied 
single nucleotide polymorphism (SNP) that might 
be associated with the risk of acute lymphoblastic 
leukemia [8], breast cancer [9], cervical cancer 
and papillary thyroid carcinoma (in combination 
with pri-miR-34b/c rs4938723) [10, 11], digestive 
tract cancers in Asians [12], etc. Another studied 
TP53 SNPs included rs78378222 (associated with 
basal cell carcinoma, prostate cancer, glioma, 
and colorectal adenoma [13]), rs12947788 and 
rs12951053 (associated with asbestos-exposed 
non-small cell lung cancer  [14]), rs1042522, 

rs17878362, and rs1625895 (associated with dif-
fuse large B-cell lymphoma [15]), rs17878362 (as-
sociated with breast and colorectal cancer [16]). 
Only two TP53 SNPs (rs1042522 and rs17878362) 
were analyzed in CLL patients up-to-date [17–19]. 
Thus, the aim of the work was to study the dis-
tribution of TP53 SNPs in CLL patients exposed 
to ionizing radiation (IR) due to Chornobyl nuclear 
power plant accident and clarify their impact on the 
disease development.

MATERIALS AND METHODS
The TP53 exonic and intronic polymorphisms were 

analyzed in 236 CLL patients, 196 males (83.1%) and 
40 females (16.9%), with median age of 58 years 
at the moment of CLL diagnosis, referred to the State 
Institution “National Research Centre for Radiation 
Medicine of the National Academy of Medical Sci-
ences of Ukraine”, Kyiv, Ukraine. All patients were 
Caucasians from the central part of Ukraine. The 
study was approved by the local Ethics Review Com-
mittee, and all patients signed an informed consent 
form prior to participation in the study. CLL was di-
agnosed on the basis of clinical history, lymphocyte 
morphology, and immunophenotypic criteria. The 
stage of the disease was assessed by Binet [20] and 
Rai classification [21].

Patients were distributed into two groups according 
to IR exposure. The main group included 106 IR ex-
posed CLL patients and the control group included 
130 IR non-exposed CLL patients. The group of IR-
exposed CLL patients included 83 cleanup workers 
(in particular, 72 cleanup workers of 1986), 16 inhabit-
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ants of radionuclide contaminated areas, and 7 eva
cuees. Patients of the two groups were of comparable 
age, CLL stage at diagnosis, mutational status of im-
munoglobulin heavy chain (IGHV) genes (Table 1).

Table 1. Baseline clinical characteristics of observed CLL patients

Characteristics IR-exposed pa-
tients, n = 106*

Control group, 
n = 130* p value

Median age, years (range) 57 (39–76) 58 (33–77) 0.714
Sex, n (%) 0.015

Male 95 (89.6) 101 (77.7)
Female 11 (10.4) 29 (22.3)

Rai stage at diagnosis, n (%) 0.532
0 13 (12.3) 18 (13.8)
I 35 (33.0) 47 (36.2)
II 48 (45.3) 49 (37.7)
III 5 (4.7) 12 (9.2)
IV 5 (4.7) 4 (3.1)

Binet stage at diagnosis, n (%) 0.259
A 50 (47.2) 66 (50.8)
B 49 (46.2) 49 (37.7)
C 7 (6.6) 15 (11.5)

IGHV mutational status, n (%) 0.345
Mutated 36 (34.6) 36 (28.8)
Unmutated 68 (65.4) 89 (71.2)

Note: *IGHV mutational status was evaluated in 104 and 125 patients 
of IR-exposed and control groups, respectively.

Genomic DNA was extracted from peripheral whole 
blood samples with the QIAamp Blood Mini Kit (Qiagen, 
Crawley, UK) according to the manufacturer’s protocol. 
TP53 genotyping was performed for 3–10 exons and 
adjacent introns by PCR amplification followed by di-
rect sequencing as described earlier [22]. Obtained 
data were validated using the IARC TP53 Mutation 
Database (http://p53.iarc.fr/) and dbSNP database 
(http://www.ncbi.nlm.nih.gov/SNP). The Hardy  — 
Weinberg equilibrium (HWE) was evaluated using the 
chi-square (χ2) test for all revealed SNPs. The frequen-
cies of SNPs in the main and the control groups were 
compared by χ2 test. The SNP frequencies obtained 
in the analysis were compared by Brandt — Snedecor 
method or χ2 test with the data from the 1000 Ge-
nomes Project (http://www.1000genomes.org/). Link-
age disequilibrium of SNPs was determined based 
on d estimates (differences between expected and 
observed allele frequencies) using CubeX online 
program (http://www.oege.org/software/cubex/). All 
tests were two-sided and considered to be statistically 
significant with a p value of ≤ 0.05. Statistical analysis 
was performed using the SPSS 16.0 software package 
(SPSS, Chicago, IL).

RESULTS AND DISCUSSION
Nineteen TP53 SNPs were found in the observed 

CLL cohort. The distribution of SNPs, minor allele 
frequency (MAF) and concordance with HWE are 
presented in Table 2. No significant differences were 
found between the main and the control groups.

Only two SNPs (rs12947788, and rs12951053) 
showed evidence (p < 0.05) of deviation from HWE 
due to increased number of minor homozygotes 
(T/T and G/G, respectively), especially in the main 
group (Fig. 1). The frequencies of T/T rs12947788, 
and G/G rs12951053 genotypes in the main group were 
higher than these among healthy Caucasians (Table 3). 
Similar results were reported by Andujar et al. [14] for 

asbestos-exposed non-small cell lung cancer and 
malignant pleural mesothelioma (asbestos-related 
cancer). Association between rs12951053 and ovari
an cancer risk was found, and it was suggested that 
rs12951053 is in weak linkage disequilibrium with SNPs 
affecting transcription factor binding sites [23].

Table 2. Distribution of exonic and intronic TP53 SNPs among observed 
CLL patients

rs number, lo-
calization

Geno-
types

All CLL patients The main 
group,  
n (%)

The con
trol gro
up, n (%)

pn (%) MAF p HWE

rs1042522, 
17:7676154, 
p.P72R

Arg/Arg 115 (48.7) 0.31 0.575 49 (46.2) 66 (50.8) 0.368
Arg//Pro 97 (41.1) 48 (45.3) 49 (37.7)
Pro/Pro 24 (10.2) 9 (8.5) 15 (11.5)

rs1642785, 
17:7676483, 
2–3 intron

G/G 119 (50.4) 0.31 0.117 56 (52.8) 63 (48.5) 0.567
G/C 89 (37.7) 38 (35.9) 51 (39.2)
C/C 28 (11.9) 12 (11.3) 16 (12.3)

rs17878362, 
3–4 intron

A1/A1 167 (70.8) 0.17 0.402 77 (72.7) 90 (69.2) 0.683
A1/A2 61 (25.8) 26 (24.5) 72 (26.9)
A2/A2 8 (3.4) 3 (2.8) 5 (3.9)

rs2909430, 
17:7675327, 
4–5 intron

A/A 178 (75.4) 0.15 0.069 80 (75.5) 98 (75.4) 0.427
A/G 50 (21.2) 23 (21.7) 27 (20.8)
G/G 8 (3.4) 3 (2.8) 5 (4.8)

rs12947788, 
17:7674109, 
7–8 intron

C/C 195 
(82.6)

0.11 0.001 86  
(81.2)

109 
(83.8)

0.267

C/T 33 (14.0) 15 (14.1) 18 (13.9)
T/T 8 (3.4) 5 (4.7) 3 (2.3)

rs12951053, 
17:7674089, 
7–8 intron

T/T 195 
(82.6)

0.11 0.001 86  
(81.2)

109 
(83.8)

0.267

T/G 33 (14.0) 15 (14.1) 18 (13.9)
G/G 8 (3.4) 5 (4.7) 3 (2.3)

rs17883323, 
17:7676301, 
3–4 intron

C/C 215
(91.1)

0.05 0.479 100 
(94.3)

115 
(88.5)

0.121

C/A 20 (8.5) 6 (5.7) 14 (10.8)
A/A 1 (0.4) 0 1 (0.7)

rs17880847, 
17:7670579, 
10–11 intron

T/T 230 (97.5) 0.014 0.751 103 (97.2) 127 (97.7) 0.867
T/A 6 (2.5) 3 (2.8) 3 (2.3)

rs1800372, 
17:7674892, 
c.639A>G 
(p.R213R)

A/A 231 (97.9) 0.011 0.751 103 
(97.2)

128 
(98.5)

0.386

A/G 5 (2.1) 3 (2.8) 2 (1.5)

rs17880604, 
17:7674326, 
5–6 intron

C/C 231 
(97.9)

0.011 0.751 103 
(97.2)

128 
(98.5)

0.286

C/G 5 (2.1) 3 (2.8) 2 (1.5)
rs1800370, 
17:7676261 
c.108G>A 
(p.P36P)

G/G 234 
(99.2)

0.004 0.999 106 
(100.0)

128 
(98.5)

0.205

G/A 2 (0.8) 0 2 (1.5)

rs150293825, 
17:7670695, 
c.1014C>T 
(p.F338F)

C/C 234 
(99.2)

0.004 0.999 106 
(100.0)

128 
(98.5)

0.205

C/T 2 (0.8) 0 2 (1.5)

rs146340390, 
17:7674866, 
c.665C>T 
(p.P222L),

C/C 234 
(99.2)

0.004 0.999 104 
(98.1)

130 
(100.0)

0.127

C/T 2 (0.8) 2 (1.9) 0

rs113530090, 
17:7675322, 
4–5 intron

T/T 245 
(99.2)

0.004 0.751 105 
(99.0)

129 
(99.2)

0.965

T/C 2 (0.8) 1 (1.0) 1 (0.8)
rs145153611, 
17:7675337, 
4–5 intron

T/T 245 
(99.2)

0.004 0.751 105 
(99.0)

129 
(99.2)

0.965

T/C 2 (0.8) 1 (1.0) 1 (0.8)
rs539224556, 
17:7670632, 
c.1077A>G 
(p.P359P)

A/A 235 
(96.6)

0.002 0.751 106 
(100.0)

129 
(99.2)

0.236

A/G 1 (0.4) 0 1 (0.8)

rs570110128, 
17:7674354, 
6–7 intron

C/C 235 
(96.6)

0.002 0.751 106 
(100.0)

129 
(99.2)

0.236

C/T 1 (0.4) 0 1 (0.8)
rs373232559, 
17:7670453, 
10–11 intron

G/G 235 
(96.6)

0.002 0.751 106 
(100.0)

129 
(99.2)

0.236

G/A 1 (0.4) 0 1 (0.8)
rs45599946, 
17:7670455, 
10–11 intron

C/C 235 
(96.6)

0.002 0.751 106 
(100.0)

129 
(99.2)

0.236

C/G 1 (0.4) 0 1 (0.8)
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Fig. 1. Sanger sequencing raw data for rs12947788 (C/T) and 
rs12951053 (T/G) TP53 polymorphisms: a) T/T, G/G; b) C/T, 
T/G; c) C/C, T/T genotypes. The positions of polymorphisms 
are indicated by arrows

Table 3. Distribution of rs12947788, rs12951053, and rs146340390  
TP53 SNPs among observed CLL patients comparing with healthy Cauca-
sians (data from the 1000 Genomes Project)

SNP Geno-
types

The 
main 

group,  
n (%)

The 
control 
group,  
n (%)

Healthy 
Cauca-
sians,  
n (%)

IR-exposed 
CLL patients 
vs healthy 

Caucasians

IR non- 
exposed 

CLL patients 
vs healthy 

Caucasians
rs12947788 C/C 86 

(81.2)
109 

(83.8)
412 

(81.9)
0.01 0.05

C/T 15  
(14.1)

18  
(13.9)

83 
(16.5)

T/T 5 (4.7) 3 (2.3) 8 (1.6)
Minor homo-
zygotes

0.042 0.583

rs12951053 T/T 86 
(81.2)

109 
(83.8)

412 
(81.9)

0.01 0.05

T/G 15  
(14.1)

18  
(13.9)

83 
(16.5)

G/G 5 (4.7) 3 (2.3) 8 (1.6)
Minor homo-
zygotes

0.042 0.583

rs146340390 C/C 104 
(98.1)

130 
(100.0)

4298 
(99.95)

0.0001 0.996

C/T 2 (1.9) 0 2 (0.05)

Another nucleotide substitution, c.665C>T 
(rs146340390), was found only in the main group (Fig. 2). 
This substitution was identified as an extremely rare mu-
tation in different solid tumors — 8 of 29,893 cases, 
0.026% (IARC TP53 database), and also as a very 
rare SNP  — 2 of 4300 cases among Americans 

of European descent, 0.047% (GO-ESP project; 
https://esp.gs.washington.edu/drupal). We con-
sidered c.665C>T substitution as SNP in our cases 
since in one patient it was found in DNA from the buc-
cal mucosa as well as in tumor DNA (germline DNA 
sample was not available for the second patient). The 
frequency of rs146340390 was higher in compari-
son with healthy persons (data of GO-ESP project). 
c.665C>T results in substitution of proline to leucine 
in position 222 (p.Pro222Leu) and significantly im-
paired p53 activity (23.96% compared to wild type 
TP53).

b

a

Fig. 2. Sanger sequencing raw data for rs146340390 (substi-
tution c.665C>T) of TP53: a) C/T genotype; b) C/C genotype

It is noteworthy that from 5 T/T rs12947788 and 
G/G rs12951053 homozygotes 3 cases were found 
in cleanup workers engaged in emergency works in 2nd 
quarter (April–May) of 1986, one case in cleanup worker 
of 1987, and one — in evacuee. Both patients with 
rs146340390 (substitution c.665C>T) were cleanup 
workers engaged in emergency works in 2nd quarter 
of 1986. Doses of irradiation were not known in these 
patients, but the data on irradiation doses were avail-
able for other 18 cleanup workers engaged in emer-
gency works in 2nd quarter of 1986 (35.68 ± 8.53 cSv), 
10 cleanup workers engaged in emergency works 
in other periods of 1986 (9.57 ± 3.43 cSv), 7 cleanup 
workers of 1987–1989 (5.73 ± 1.09 cSv), 4 evacuees 
(4.76 ± 0.35 cSv), and 7 inhabitants of radionuclide con-
taminated areas (1.01 ± 0.26 cSv). These data are in ac-
cordance with the data of International Program on the 
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Health Effects of the Chernobyl Accident (IPHECA) [24]. 
According to them, the majority of cleanup workers 
of 1986 received the doses higher than 10 cSv (80.0%), 
and absorbed dose for cleanup workers of 1986 aver-
aged 31 cSv (41 cSv for cleanup workers engaged 
in emergency works in 26–30.04.1986, and 9.7 cSv 
for those working in May–December, 1986). Thus, 
we may conclude that the frequencies of rs12947788, 
rs12951053, and rs146340390 SNPs were the highest 
in the group of CLL patients who received the largest 
irradiation doses during Chornobyl nuclear power plant 
accident.

The frequency of the others SNPs in the main and 
the control groups did not differ from that in healthy 
European population (data not shown).

Exonic rs1042522 was in linkage disequilibrium with 
intronic rs1642785 (d = 0.908; r2 = 0.8236; p < 0.001), 
rs17878362 (d  = 0.733; r2 = 0.2444; p  <  0.001), 
rs2909430 (d  = 0.972; r2 = 0.3698; p  <  0.001), 
rs12951053 (d  = 0.85; r2 = 0.1967; p < 0.001), and 
rs12947788 (d = 0.85; r2 = 0.1967; p < 0.001). Strong 
association was found between rs12951053 and 
rs12947788 (d = 0.793; r2 = 0.40; p < 0.001), and only 
3 combinations of rs12951053 and rs12947788 geno-
types were found (82.0% CC/TT; 14.6% CT/CG, and 
3.4% TT/GG). These data were in accordance with 
previously reported results [15, 25–27].

A total of 17 different combinations of associated 
SNPs were found among observed CLL patients. The 
most CLL cases were homozygous for the major alleles 
of rs1042522, rs1642785, rs17878362, rs17883323, 
rs2909430, rs12951053, and rs12947788 (100 cases; 
46.6%). Previously it has been shown that combined 
G/G rs1642785 and A1/A1 rs17878362 alleles are as-
sociated with the highest basal and radiation-induced 
levels of fully spliced TP53 transcript and incompletely 
spliced transcript retaining intron 2 (p53I2) [25]. The 
second most common combination (42 cases; 17.7%) 
was Arg/Pro-G/C-A1/A2-C/C-A/G-C/C-T/T (indicated 
genotypes of listed above SNPs), and the third common 
combination was Arg/Pro-G/C-A1/A1-C/C-A/A-C/T-
T/G (38 cases; 16.1%). The other haplotype frequencies 
ranged from 0.4 to 3.0%. No differences were found 
between the main and the control groups (p = 0.811).

I n  s u m m a r y,  i n c r e a s e d  f r e q u e n c i e s 
of  T/T rs12947788+G/G rs12951053 homozygotes 
and rs146340390 were found among IR-exposed CLL 
patients compared with healthy Europeans. These 
features were primarily typical for the most affected 
group of IR-exposed patients, namely, cleanup work-
ers engaged in action in the 2nd quarter of 1986. These 
preliminary findings don’t contradict the assumption 
on possible influence of IR on CLL development, and 
are in accordance with the data evidencing that cel-
lular responses on IR are realized mainly through the 
p53-dependent pathway [28].
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