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Since	prostate	cancer	(Pca)	is	a	heterogeneous	di
sease,	it	becomes	clear	that	a	defined	set	of	markers	will	
become	important	for	early	diagnosis,	monitoring	and	
prognosis	of	Pca.	Polyamines	(PAs)	(putrescine	(Put),	
spermidine	(Spd)	and	spermine	(Spm))	which	play	a	
significant	role	in	the	regulation	of	growth	and	develop
ment	of	different	cell	types	[1–3]	are	among	potential	
biomarkers.	Elevated	PAs	 levels	are	not	specific	 for	
Pca	only,	but	they	are	good	indicators	for	monitoring	
of	the	disease	and	may	serve	as	biomarkers	for	rapidly	
proliferating	 cells.	 PA	 content	 is	 regulated	 by	 many	
events	such	as	biosynthesis	and	catabolic	processes,	
genetic	control	of	key	enzymes	at	transcriptional	and	
translational	stage,	 regular	diet.	The	 induction	of	PA	
synthesis	by	any	stimulus	results	in	increased	rate	of	
DNA,	RNA	and	protein	synthesis	[1–6].

Ornithine	 decarboxylase	 (ODC)	 is	 a	 key	 enzyme	
that	catalyzes	the	conversion	of	ornithine	to	Put.	Then	
Put	is	converted	to	Spd	and	Spm	by	Spdsynthetase	
and	Spmsynthetase	respectively	[1,	2,	7,	8].	PAs	are	
very	important	cationic	molecules	for	cell	homeostasis.	
If	an	excess	amount	of	PA	is	accumulated	in	the	cells,	
these	 molecules	 undergo	 oxidation	 in	 peroxisomes	
with	involvement	of	monoamine	oxidases,	in	particular	
PA	oxidase	(PAO).	Oxidation	of	Spd	and	Spm	occur	
only	 after	 N1acetylation	 by	 spermidine/spermine	
N1acetyltransferase	(SSAT)	present	in	cytoplasm	[8,	
10,	11].	PAs	may	be	degraded	also	by	diamine	oxidase	
(DAO),	 a	 copper/quinone	 containing	 serum	 amine	
oxidase.	This	enzyme	is	generally	responsible	for	the	
cytotoxicity	of	PAs	in	in vitro	models	in	the	presence	of	
fetal	calf	serum,	but	its	physiological	role	is	not	clearly	
understood	[12,	13].	Arginase	catalyzes	the	oxidation	

of	 PAs	 such	 as	 Spm	 and	 Spd,	 to	 much	 less	 active	
compound	called	Put	(Fig.	1)	[14].

The	content	of	PAs	depends	on	two	main	sources:	
external	 (consumptiondependent	 PAs	 or	 usage	 of	
deposit	PA	from	red	blood	cells)	and	synthesis	that	is	
regulated	by	ODC	under	the	control	of	c-Myc gene	[1,	
9].	The	excess	amounts	of	PAs	are	excreted	via	efflux	
mechanism	 after	 conversion	 to	 N1acetylspermine	
and	N1acetylspermidine.	PAs	may	affect	cell	death	
by	 modulating	 the	 release	 of	 cytochrome	 c	 from	
mitochondria,	which	 triggers	activation	of	caspases	
and	induction	of	apoptosis.	PAs	may	also	affect	signal	
transduction	pathways	mediated	by	the	nuclear	tran
scription	factorB	(NFkB),	mitogen	activated	protein	
kinase	(MAPK)	family	members	and,	possibly,	other	
kinases	which	modulate	the	expression	of	genes	impli
cated	in	the	control	of	cell	growth	and	cell	death.	The	
proposed	hypothesis	postulates	that	NFkB	may	modu
late	both	growth	and	death	mechanisms	using	PPARγ	
and	polyamine	response	element	(PRE).	ODC	plays	
the	central	role	in	this	network,	quickly	transforming	
external	signals	(growth	promoting	stimuli,	hormones,	
drugs,	growth	factors,	mitogens)	in	biological	activity.	
The	data	demonstrated	that	overexpression	of	ODC	
leads	to	transformation	of		cells	[15–19].

ODC	expression	is	controlled	at	the	transcriptional,	
translational	 and	 posttranslational	 level	 [20].	 ODC	
degradation	is	regulated	by	regulatory	enzyme	called	
antizyme	(AZ)	that	is	induced	by	PAmediated	shifting	
of	translational	frame	[21].	AZ	binds	to	ODC	monomers	
and	stimulates	their	proteolytic	degradation	in	proteo
somes.	AZ	also	downregulates	PA’s	uptake	by	cells.	
In	turn,	activity	of	AZ	is	regulated	by	special	inhibitor	
homologous	to	ODC	[22].

Despite	 numerous	 studies,	 the	 specific	 role	 of	
the	ODCPA	system	in	cellular	physiology	is	still	not	
clarified	yet.

Role of Polyamines in Cell GRowth 
and diffeRentiation
PAs	are	able	to	bind	to	macromolecules	such	as	

nucleic	acids,	proteins	and	phospholipids	at	physio
logical	pH.	Consequently,	it	has	been	suggested	that	
PAs	are	necessary	for	stabilization	of	these	molecules.	
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of	DNA	and	induce	BZ	and	BA	transitions	in	certain	
DNA	 sequences.	 PADNA	 interaction	 and	 resultant	
structural	changes	in	DNA	may	provide	the	molecular	
basis	by	which	PAs	regulate	cell	proliferation.	It	was	
proposed	 that	 major	 function	 of	 cationic	 PAs	 in	 the	
process	of	cell	division	may	be	the	stabilization	of	rep
lication	complexes	between	DNA	and	nuclear	matrix,	
condensation	 and	 packaging	 of	 newly	 synthesized	
DNA	into	nucleosomes	and	chromatin	[23–25].	PAs	
are	 also	 involved	 in	 stabilization	 of	 RNA	 [26–28],	 in	
protein	 synthesis	 and	 endogenous	 modification	 of	
NMDA	receptor	ion	channel	and	voltagedependent	
Ca+2	and	K+	channels	[29,	30].

PAs	 are	 involved	 in	 cell	 proliferation,	 embryonic	
development,	 cell	 cycle.	 PA	 biosynthesis	 deficient	
mutant	cells	do	not	grow	if	PAs	are	added	to	the	culture	
medium.	Generally,	resting	cells	contain	low	levels	of	
PAs	but	if	these	cells	are	stimulated	to	divide	by	trophic	
factors,	PAs	levels	increase.	PA	reduction	causes	an	
aberrated	cell	cycle	progression	and	accumulation	of	
cells	in	one	of	phases	of	cell	cycle	[31].	Inhibition	of	
PA	biosynthesis	also	affects	cell	cycle	related	features	
such	as	DNA	sensitivity	to	DNAses	[23].	Benign	pros
tate	hyperplasia	(BPH)	is	very	frequent	age	dependent	
illness	in	men.	According	to	Liu	et	al.	[32]	the	increased	

ODC	 activity	 and	 PA	 content	 in	 prostate	 tissue	 may	
correlate	 with	 the	 pathogenesis	 of	 BPH.	 The	 high	
level	of	ODC	activity	is	induced	by	overexpression	of	
ODC	 mRNA.	 The	 contents	 of	 Put,	 Spd,	 and	 Spm	 in	
BPH	tissues	were	2.2,	3.4,	and	6.0	times	higher	than	
those	in	normal	tissues,	respectively;	ODC	activity	of	
BPH	tissue	was	3.2	times	higher	than	in	normal	tissue.	
The	expression	level	of	ODC	mRNA	in	BPH	tissues	was	
higher	than	that	in	normal	tissues.

PAs	also	affect	cell	differentiation.	Janne	et	al.	[33]	
suggested	 that	 decrease	 of	 Spd/Spm	 ratio	 reflects	
transition	from	proliferation	into	differentiation	state.

Role of Polyamines in aPoPtosis
The	number	of	cells	in	adult	human	body	is	steady	

due	 the	 balance	 between	 cell	 proliferation	 and	 cell	
loss.	Controlled	cell	death	is	known	as	apoptosis	or	
programmed	 cell	 death.	 Apoptosis	 include	 oligonu
cleosomal	 DNA	 degradation,	 condensation	 of	 cyto
plasm	and	nuclei	and	formation	of	apoptotic	bodies.	

Changes	 in	 PA	 homeostasis	 (elevated	 PA	 accu
mulation)	may	lead	to	apoptosis.	Moreover,	induction	
of	ODC	is	an	early	event	in	the	induction	of	apoptosis	
[35].	Involvement	of	ODC	in	the	process	of	cell	death	
becomes	apparent	from	researches	on	neuronal	cell	

figure.	The	amount	of	PAs	has	two	sources	inside	the	cell.	One	of	them	is	external	PAs	sources	such	as	absorption	from	diet	or	
usage	of	deposit	PA	from	red	blood	cells	or	synthesis.	PA	synthesis	is	regulated	by	ODC	under	the	control	of	cMyc.	The	excess	
amount	of	PAs	is	excreted	via	efflux	mechanism	after	conversion	with	N1acetylespermine	and	N1acetylspermidine.	Their	involve
ment	in	signal	transduction	network	is	under	control	of	cellular	death	and	growth	balance.	PA	may	affect	cell	death	by	modulating	
the	release	of	cytochrome	c	from	mitochondria,	which	triggers	the	activation	of	caspases	and	the	induction	of	apoptosis.	PAs	may	
also	affect	signal	transduction	pathways	mediated	by	the	nuclear	transcription	factorB	(NFkB),	mitogen	activated	protein	kinase	
(MAPK)	family	members	and,	perhaps,	other	kinases	which	modulate	the	expression	of	genes	implicated	in	the	control	of	cell	growth	
and	cell	death.	The	proposed	hypothesis	is	NFkB	may	modulate	both	growth	and	death	mechanism	using	PPARγ	and	polyamine	
response	element	(PRE)	and	has	dual	effect.	However,	the	manager	molecule	in	this	network	is	determined	as	ODC	because	of	
cMyc	relationship
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death	 induced	 by	 hypoglycemia,	 neurotoxic	 agents	
and	traumatic	brain	injury	[36].	These	studies	revealed	
a	significant	increase	in	ODC	gene	expression,	protein	
synthesis	and	Put	levels.	Numerous	studies	in	different	
cell	systems	have	shown	pronounced	elevation	of	ODC	
activity	after	induction	of	apoptosis	[35].	The	role	of	
ODC	in	apoptosis	was	studied	by	Packham	and	Cleve
land	[37,	38]	who	showed	that	ODC	is	an	 important	
mediator	of	cmycinduced	apoptosis,	and	suppose	
that	 cmyc	 induces	 ODCmediated	 apoptosis	 and	
proliferation	by	different	but	overlapping	pathways.

Both	 upregulation	 and	 downregulation	 of	 PA	
levels	may	be	associated	with	apoptotic	events.	For	
example,	 treatment	 of	 HL60	 cells	 with	 etoposide,	
a	classic	 inducer	of	apoptosis,	resulted	in	early	and	
transient	increase	of	ODC	content,	which	may	initiate	
apoptosis,	 followed	 by	 its	 decrease,	 which	 would	
sustain	this	process	[40].	ODC	induction	and	Spd	ac
cumulation	have	been	related	to	the	progression	of	the	
cell	cycle	until	a	checkpoint	from	which	apoptosis	is	
triggered	in	the	presence	of	cell	deathinducing	signals	
or	negative	growth	factors	[35,	41].

The	involvement	of	PAs	in	apoptosisrelated	path
ways	at	the	level	of	mitochondria	has	been	investigated	
in	different	cell	models.	Some	research	groups	have	
initially	studied	the	effects	of	PAs	on	events	directly	
related	 to	 the	 activation	 of	 the	 caspases.	 PAs,	 par
ticularly	Spm,	can	trigger	the	activation	of	caspases	
in	cellfree	models	of	apoptosis	and	PAs	can	directly	
induce	the	release	of	cytochrome	c	from	mitochondria	
and	activate	the	death	program	[42].

The	 release	 of	 cytochrome	 c	 from	 mitochondria	
may	be	modulated	by	Bcl2	family	proteins	(Bax	and	
Bid),	which	influence	opening	of	mitochondrial	perme
ability	transition	pores	and	the	subsequent	release	of	
cytochrome	c	into	cytosol	[43].	In	intestinal	cell	line,	PA	
depletion	antagonizes	camptothecininduced	apop
tosis	by	preventing	translocation	of	the	proapoptotic	
Bcl2	family	member	Bax	to	mitochondria	and	inhibi
ting	 the	 release	 of	 cytochrome	 c	 [44].	 Moreover,	 in	
ODCoverproducing	murine	myeloma	cells,	accumula
tion	of	Put	provokes	apoptotic	death	that	is	inhibited	by	
DFMO	and	involves	the	release	of	cytochrome	c	from	
mitochondria,	 followed	by	the	activation	of	caspase	
cascades	[45].	On	the	other	hand,	in	various	lymphoid	
cell	 lines,	 the	 complete	 depletion	 of	 PAs	 provoked	
by	the	combined	use	of	ODC	and	SAMDC	inhibitors	
causes	the	disruption	of	the	mitochondrial	membrane	
potential,	resulting	in	caspase	activation	and	apoptotic	
cell	death	[46].	A	recent	study	[47]	has	shown	that	Spm	
inhibits	the	release	of	cytochrome	c	from	mitochondria	
of	the	dexamethasonetreated	thymocytes,	but	it	does	
not	totally	prevent	the	dexamethasoneinduced	DNA	
fragmentation.

Polyamines as biomaRkeRs 
in PRostate CanCeR and taRGets 
foR antiCanCeR theRaPy 
The	 increasing	 awareness	 of	 the	 role	 of	 PAs	 in	

cell	behavior	has	attracted	the	attention	to	the	PA	as	

biomarkers	and	potential	targets	in	the	treatment	of	
cancer	and	other	diseases.	In vitro	and	in vivo	studies	
have	revealed	that	ODC	activity	and	PAs	metabolism	
are	 fundamental	 for	 malignant	 transformation	 of	
cells	[15,	17–19].	In	prostate	adenocarcinoma,	acute	
lymphoblastic	 leukemia	 and	 brain	 tumors	 PAs	 and	
their	metabolic	enzymes	appear	to	be	of	diagnostic	
value.	 Spermidine/spermine	 N1acetyltransferase	
(SSAT)	was	shown	to	serve	as	a	reliable	biochemical	
marker	for	proliferation	of	bladder	epithelium	[48,	49].	
Recently	 PAs	 content	 was	 found	 to	 be	 a	 promising	
biomarker	for	cervical	malignancies	[50].

Since	PAs	play	important	role	in	tumor	cell	growth,	
interference	 in	 PA	 metabolism	 provides	 a	 possible	
mean	 for	 chemotherapy	 of	 cancer.	 Different	 com
pounds	inhibiting	the	activity	of	enzymes	related	to	PA	
metabolism	have	been	described	and	their	anticancer	
properties	 have	 been	 analyzed	 [51–53].	 However,	
these	 compounds	 are	 active	 only	 in vitro,	 but	 not	
in vivo.	The	reasons	of	the	failure	were	determined	as	
follow:	1)	rapid	turnover	of	PA	biosynthetic	enzymes;	
2)	compensatory	 elevation	 of	 other	 PArelated	 en
zymes	 not	 targeted	 by	 inhibitor;	 3)	 compensatory	
increase	of	external	uptake	of	PA;	4)	compensatory	
retroconversion	of	intracellular	PA	pool,	because	single	
inhibitor	cannot	reduce	all	PA	pools.

In	recent	years	it	has	become	obvious	that	struc
tural	 analogues	 of	 PAs	 can	 act	 as	 antineoplastic	
agents.	PA	analogues	downregulate	the	enzymes	of	
biosynthesis,	deplete	the	PA	pools	and	therefore	inhibit	
cell	growth.	So	far,	the	most	effective	for	cell	growth	
inhibition	 are	 PA	 analogues	 bis(ethyl)analogues	 of	
Spm	and	bis(ethyl)analogues	of	Spd	[54,	55].	Growth	
inhibitory	effects	of	these	analogues	have	been	estab
lished	in	a	number	of	transformed	cell	lines	[52],	and	
inhibition	of	ODC	and	SAMDC	activities,	depletion	of	
the	PA	pools	and	increase	of	SSAT	activity	upon	their	
action	have	been	established.	Currently,	some	of	the	
structural	analogues	of	PAs	are	under	Phase	I	or	II	of	
clinical	trials	and	show	promising	results.

Although	 the	 findings	 are	 based	 on	 an	 artificial	
system	(i.e.	conditional	overexpression	of	SSAT),	there	
are	many	pharmacological	examples	of	SSAT	induc
tion	by	the	classes	of	drugs	other	than	PA	analogues	
[56].	Anticancer	drugs	unrelated	to	PAs	can	also	elicit	
the	significant	increase	of	expression	of	SSAT	gene.	
Using	cDNA	gene	profiling,	Maxwell	et	al.	[57]	have	
found	that	in	MCF7	cells	treated	with	5fluorouracil,	
SSAT	gene	expression	is	affected	at	the	highest	degree	
among	>	3000	genes	studied.	Similar	results	were	ob
tained	if	the	DNAalkylating	platinum	compounds,	oxa
liplatin	and	cisplatin	were	applied	[58].	Finally,	SSAT	
transgenic	 mice	 that	 are	 genetically	 predisposed	 to	
develop	prostate	cancer	(i.	e.	TRAMP	mice)	markedly	
suppressed	genitourinary	tumors	[59].	These	findings	
support	the	possibility	that	selective	small	molecule	
inducers	of	SSAT	may	have	therapeutic	and/or	preven
tive	potential	against	prostate	cancer.

In	many	developed	countries,	Pca	 is	 the	second	
leading	cause	of	cancer	 related	death	among	men.	
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Radical	surgery	and	radiotherapy	are	curative	options	
for	Pca.	Early	diagnosis	is	pivotal	to	prolonged	survival	
and	 quality	 of	 life.	 Prostate	 specific	 antigen	 (PSA)	
is	 the	 first	widespread	accepted	biomarker	 for	Pca.	
However	it’s	use	has	many	limitations:	overdiagnosis	
of	clinically	insignificant	Pca	will	cause	overtreatment,	
including	incontinence,	impotence	that	are	side	effects	
of	radical	surgery	and	radiotherapy,	and	will	negatively	
affect	the	patients’	quality	of	life;	from	other	hand,	PSA	
screening	fails	to	detect	a	small	proportion	of	highly	
aggressive	Pca.	Therefore	new	Pca	biomarkers	need	
to	be	discovered	[60].

The	considerable	number	of	patients	is	diagnosed	
at	a	time	when	the	disease	already	is	widespreaded.	
These	 patients	 ultimately	 require	 androgen	 ablation	
therapy	 that	 means	 surgical	 or	 medical	 castration.	
Androgen	ablation	induces	an	apoptosis	in	the	andro
gendependent	 Pca	 cells	 [61],	 but	 it’s	 hardly	 ever	
curative	[62].	The	main	reason	for	the	failure	of	andro
gen	ablation	is	heterogeneity	of	Pca	cells	population.	
Compounds	 active	 against	 androgenindependent	
Pca	cells	are	required.

Prostate	 tissue	 is	 characterized	 by	 the	 highest	
concentrations	of	PAs.	 In	rats,	 the	content	of	PAs	 is	
the	highest	in	ventral,	dorsal	and	lateral	prostate,	but	
lower	in	coagulating	glands	and	seminal	vesicles	[63],	
and	Spd	is	the	dominant	PA.	In	human	body,	ODC	was	
found	in	prostate	fluid,	seminal	plasma	and	sperm	[64,	
65],	and	Spm	is	the	dominant	PA	in	prostate	tissue.	
It	was	shown	that	prostate	PAs	content	 is	under	the	
control	of	androgens	[63,	66,	67].	Upon	castration
induced	 apoptosis	 of	 prostate	 epithelial	 cells,	 ODC	
activity	and	PA	levels	decrease	significantly,	but	SSAT	
activity	increases	[35].	Regeneration	of	prostate	tis
sue	by	androgens	support	correlates	with	a	marked	
increase	of	ODC	activity	and	PAs	level.	It	was	reported	
that	ODC	activity	and	ODC	mRNA	level	are	stimulated	
by	androgens	treatment,	and	ODC	activity	is	especially	
high	in	the	epithelial	cells	of	the	prostate	[66].	In vitro	
studies	[68,	69]	have	revealed	that	androgen	regula
tion	of	ODC	is	directly	related	to	androgen	receptor.	
Inhibition	 of	 ODC	 activity	 by	 difluoromethylornithine	
(DFMO)	 reduces	 the	 development	 of	 prostate	 and	
retards	testosteroneinduced	regrowth	of	prostate	in	
castrated	rats	[70].

It	is	clear	now	that	in	prostate	tissue	ODC	and	PAs	
are	involved	in	cell	proliferation	and	secretory	activi
ties	via	an	androgenregulated	Spmbinding	protein	
[71,	72].

Functional	importance	of	seminal	PAs	is	not	clear	
still.	Spm	molecules	are	localized	in	the	middle	and	top	
parts	of	the	acrosome	and	possibly	alter	sperm	fertili
zation	competence	and	the	acrosome	reaction	[73].	In	
sperm	cells	Spm	may	originate	from	endogenous	PA	
biosynthesis,	because	ODC	activity	is	associated	with	
spermatogenesis	[74].	Seminal	PAs	may	also	regulate	
seminal	clotting	or	prevention	of	bacterial	growth	 in	
urinary	tract	[75].

Monitoring	of	PAs	and	ODC	content	in	prostate	tis
sue	may	be	useful	for	the	diagnosis	and	prognosis	of	

prostate	cancer.	Researches	on	rat	prostate	derived	
tumor	cell	 lines	demonstrated	that	ODC	activity	was	
elevated	in	quickly	growing	cells	[76].	Similar	data	were	
obtained	on	human	prostate	cancer	cell	lines	(PC3,	
TSUprl,	DU145	and	JCA1)	[35].	Malignant	PC3	and	
TSUprl	prostate	cell	 lines	possess	the	high	 level	of	
PAs	associated	with	high	ODC	and	low	SSAT	activities	
[35].	Moreover,	significantly	elevated	ODC	expression	
on	mRNA	and	protein	level	in	tumor	tissue	compared	
to	the	benign	tissue	of	prostate	was	revealed	[65,	77].	
Graaf	et	al.	[78]	have	shown	correlation	between	Spm	
level	and	degree	of	differentiation	in	prostate	tumors,	
and	 indicated	 that	 normal	 and	 benign	 hyperplasic	
prostate	 tissues	have	high	content	of	Spm	whereas	
in	tissue	of	prostate	carcinoma	with	metastases	Spm	
levels	are	reduced.

PAs	 or	 their	 acetylated	 forms	 are	 secreted	 by	
cells,	and	these	circulating	molecules	can	be	reused	
by	PArequiring	cells.	Moulinoux	et	al.	[79]	revealed	
that	circulating	Spd	and	Spm	are	transported	by	red	
blood	cells	(RBC),	and	RBC	PA	level	correlates	with	
tumor	development	in	tumorgraft	model.	Analysis	of	
PAs	 levels	 in	Pca	cell	 lines	with	different	degrees	of	
differentiation	has	shown	that	lessdifferentiated	cell	
lines	 contained	 lower	 Spm	 concentrations.	 Similar	
correlation	 between	 Spm	 levels	 and	 the	 degree	 of	
differentiation	of	prostate	tumors	was	established	by	
Shipper	 et	 al.	 [35]	 in	 the	 study	 of	 biopsy	 materials.	
These	authors	also	indicated	that	in	normal	and	be
nign	hyperplastic	prostate	 tissues	a	high	content	of	
Spm	 occurs,	 whereas	 in	 tumor	 tissue,	 especially	 in	
prostate	carcinoma	with	metastases,	Spm	levels	are	
reduced.	Hence,	a	dramatic	decrease	of	the	prostate	
Spm	content	could	indicate	a	conversion	of	prostate	
tissue	from	a	benign	to	a	malignant	phenotype.	In vitro	
studies	[80,	81]	demonstrated	differential	sensitivity	
of	prostate	tumor	cell	lines	to	Spm.	Exposure	of	cells	
to	Spm	induced	cell	cycle	arrest	and	apoptosis	in	the	
weakly	metastatic	AT2.1	cell	line	but	not	in	the	highly	
metastatic	AT3.1	cell	line.	We	also	have	established	
that	total	PA	content	was	higher	in	highly	metastatic	
rat	prostate	cancer	cell	lines	(MATLylu)	than	AT2	cell	
line,	which	is	low	metastatic	one	(unpublished	data).	
A	possible	explanation	these	facts	may	be	in	the	dif
ferent	 induction	 of	 antizyme	 in	 Spmsensitive	 and	
Spminsensitive	 cells.	 In	 the	 Spminsensitive	 cells,	
ODC	antizyme	levels	were	not	upregulated,	thereby	
failing	to	inhibit	and	degrade	ODC	[82].

As	 it	 is	 mentioned	 above,	 PAs	 are	 important	 for	
prostate	 cell	 growth	 and	 function,	 for	 this	 reason	
interference	 with	 PA	 homeostasis	 offer	 a	 promising	
target	for	chemotherapy	of	prostate	cancer.	Inhibitors	
of	 PA	 biosynthesis	 and	 PA	 analogues	 can	 affect	 PA	
homeostasis.	Different	compounds	are	able	to	inhibit	
the	PA	biosynthetic	enzymes	activities	[52].

DFMO	 is	 the	 most	 widely	 studied	 ODC	 inhibitor	
causing	depletion	of	Put	and	Spd	pools	without	signifi
cant	effect	on	Spm	levels	[83–85].	DFMO	treatment	
has	 remarkable	 inhibitory	 effects	 on	 cell	 growth	 of	
cultured	prostate	cancer	cells,	and	this	inhibition	may	
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be	reversed	by	the	addition	of	PAs	or	their	acetylated	
derivatives	in	PC3,	PC82	and	androgenstimulated	
LNCaP	 cells	 [85].	 However,	 DFMO	 was	 ineffective	
in vivo,	perhaps	due	to	the	compensatory	uptake	of	
PAs	from	extracellular	sources	[76,	86].	Another	ODC	
inhibitor,	methylacetylenic	putrescine	(MAP)	inhibited	
the	growth	of	PC3	and	some	other	cell	lines,	and	slow
ly	growing	cells	were	more	sensitive	to	its	action	[87].	
Also,	 in vitro	 inhibitory	effect	on	ODC	activity	of	 the	
naturally	occurring	garlic	derivatives	[88]	and	green	
tea	polyphenols	were	demonstrated	[89].

Experimental	 studies	 showed	 that	 PA	 analogues	
have	 significant	 antitumor	 activity	 in	 solid	 tumors.	
(Table).	The	prostate	tissue	preferentially	takes	up	Put	
and	this	uptake	can	be	enhanced	by	DFMO.	Put	ana
logues	 have	 chemotherapeutic	 potential,	 especially	
in	combination	with	DFMO.	Monoaziridinylputrescine	
(AZP)	inhibited	growth	of	PC3	human	prostate	cells,	
while	cotreatment	with	DFMO	increased	the	growth	
inhibitory	effect	[94].

Symmetrically	 substituted	 bis(ethyl)	 analogues	
of	 Spm	 and	 Spd	 are	 highly	 effective	 in	 cell	 growth	
inhibition	[53].	Some	of	 these	analogues	BE333,	
BENSpm	 or	 DENSpm	 are	 assessed	 in	 clinical	 tests	
[90,	91,	93,	95,	96].	BE333	has	different	effects	on	
cell	growth	and	PA	homeostasis	in	different	prostate	
carcinoma	 cells:	 androgen	 independent	 cells	 were	
the	 most	 sensitive,	 whereas	 androgendependent	
cells	were	insensitive.	Generally,	degree	of	cell	growth	
inhibition	correlated	with	SSAT	stimulation.	BE4444	
was	more	effective	compared	to	BE333	in	inhibiting	
the	growth	of	DU145,	TsuPr1	and	DuPro1	cells	[90].	
In	all	tumors	treated	with	the	BE4444,	the	levels	of	
Spd	and	Spm	were	shown	to	decrease	whereas	Put	
level	was	not	affected.	The	reason	of	the	lack	of	PA	
depletion	 in vivo	 is	 probably	 uptake	 of	 PAs	 via	 food	
consumption.	

Recently,	 the	 effect	 of	 a	 Spm	 analogue	 BIS	 has	
been	 studied	 on	 DU145	 and	 PC3	 cells	 [92].	 BIS	
showed	dosedependent	cytotoxic	effect	on	prostate	
cancer	 cells	 in vitro	 and	 this	 effect	 was	 realized	 via	
apoptotic	 pathway.	 Besides,	 combination	 of	 treat
ment	 of	 BIS	 with	 irradiation	 strikingly	 increased	 the	
number	of	apoptotic	cells.	Therefore,	application	of	
BIS	 results	 in	 increased	 radiosensitivity	 of	 human	
prostate	cancer

The	 key	 enzymes	 involved	 in	 the	 cell	 cycle	 ma
chinery	belong	 to	 the	group	of	homologous	serine/
threonine	protein	kinases	known	as	cyclindependent	
kinases	 (CDKs),	 which	 typically	 contain	 cyclin	 as	 a	
regulatory	subunit.	Up	to	date,	nine	CDKs	have	been	
identified	in	human	and	animals	[97].	These	enzymes	
preferentially	phosphorylate	lamins,	vimentin,	caldes
mon,	and	histon	H1,	which	play	a	key	role	in	cell	divi
sion	during	the	G2/M	phase	of	the	cell	cycle,	as	well	
as	proteins	RBs,	E2Fs,	DP1,	RNApolymerase	II,	EF2	
implicated	in	activation	of	the	Sphasespecific	genes	
involved	in	G1/S	boundary	[98].

It	is	well	known	that	there	both	ODC	and	PA	con
centrations	 during	 the	 cell	 cycle	 are	 changed	 [99].	

There	is	an	early	peak	in	ODC	content	at	G1phase,	
followed	 by	 an	 increase	 in	 PA	 content,	 and	 the	 se
cond	increase	during	G2phase	and	prior	to	mitosis	
[100].	Thus,	both	PAs	and	cyclin/CDKs	show	phased	
changes	 throughout	 the	 cell	 cycle,	 but	 the	 interac
tion	between	these	two	sets	of	regulatory	molecules	
remains	 to	 be	 defined.	 One	 suggestion	 is	 that	 PAs	
regulate	 cyclin	 degradation	 [101].	 Intracellular	 PA	
concentrations	have	been	reported	to	determine	both	
up	and	downregulation	of	important	cellular	check	
points	within	the	cell	cycle,	and	this	may	in	part,	explain	
why	their	concentrations	are	controlled	throughout	the	
cycle	[102,	103].

The	enzymatic	activity	of	CDKs	in	normal	somatic	
cells	 is	 precisely	 regulated	 by	 several	 mechanisms.	
The	natural	CDK	inhibitors	(CDKIs)	play	an	important	
role	 in	 this	 process	 [104].	 Recently,	 natural	 peptide	
CDK	inhibitors	have	been	shown	to	play	an	important	
regulatory	 role	 in	 cell	 differentiation,	 proliferation,	
senescence,	 and	 programmed	 cell	 death	 [105].	 It	
has	also	been	demonstrated	that	the	effects	of	these	
endogenous	 inhibitors	 may	 be	 partly	 mimicked	 by	
several	different	types	of	synthetic	inhibitors	including	
butyrolactone	I,	flavopiridol,	2,6,9trisubstituted	pu
rines	such	as	olomoucine	(OC),	roscovitine,	and	pur
valanol,	paullones,	indirubins,	and	others	[106–108].	
These	proteins	bind	to	the	cyclinCDK	complex	and	
inhibit	its	activity.	Consequently,	the	entry	of	the	cell	
into	the	cell	cycle	is	blocked.	Due	to	the	fact	that	the	
families	of	natural	CDKIs	or	genes	that	control	CDKIs	
transcription	(e.	g.,	p53)	belong	to	the	most	frequently	
mutated	proteins	in	cancer	cells,	the	molecules	that	
could	 mimic	 their	 biological	 activities	 are	 attractive	
candidates	for	anticancer	treatment	[109,	110].

Upon	 the	 study	 of	 plant	 hormones,	 cytokinins,	
specific	 inhibitors	 of	 the	 CDKs	 were	 identified,	 in	
particular	 6benzylamino2(2hydroxyethylamino)
9methylpurine	 (OC).	 At	 micromolar	 concentrations	
OC	 selectively	 blocks	 CDK1,	 CDK2	 and	 CDK5	 ki
nases	 [111].	 OC	 does	 not	 exert	 an	 inhibitory	 effect	
on	 the	 major	 cellular	 kinases	 such	 as	 cAMP	 and	
cGMPdependent	kinases,	protein	kinase	C	and	Src	
kinases,	however,	it	is	able	to	block	cells	at	the	G1/S	
and	G2/M	boundaries	[111].	OC	has	low	cytotoxicity	
in vitro	 [111].	 Another	 purine	 derivative,	 roscovitine,	
induces	apoptosis	under	normal	growth	conditions.	
Roscovitine	is	a	novel	substance	with	potent	inhibitory	
activity	towards	CDK1,	high	selectivity	and	antimitotic	
activity	[112].	It	was	revealed	that	OC	and	roscovitine	
act	as	competitive	inhibitors	of	in	ATPbinding	sites	of	
kinases.	The	study	of	specificity	of	these	inhibitors	has	
shown	that	only	the	cell	cycle	regulating	cdc2/cyclin	B,	
CDK2/cyclin	A	and	CDK2/cyclin	E	kinases,	the	brain	
CDK5/p25	kinase	and	ERK1	are	inhibited	by	OC	and	
roscovitine.	 Structureactivity	 studies	 and	 analysis	
of	OC/CDK2	and	roscovitine/CDK2	cocrystal	struc
tures	confirmed	that	OC	and	roscovitine	bind	 in	 the	
ATPbinding	 pocket	 of	 CDK2,	 but	 showed	 that	 the	
purine	rings	of	OC/roscovitine	and	ATP	are	located	in	
a	totally	different	orientation.	The	antimitotic	effects	of	
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OC	and	roscovitine	were	investigated	in	a	large	variety	
of	cellular	models.	The	compounds	inhibit	both	G1/S	
and	G2/M	transitions	[113,	114].

Recently	new	groups	of	CDKIs	with	high	specifici
ty	 and	 efficacy	 have	 been	 synthesized	 [115].	 They	
are	strongly	cytotoxic	toward	tumor	cell	lines	in vitro. 
One	of	them,	bohemine	(BOH)	and	OC	II	were	found	
to	be	effective	in vivo	[116].	On	the	other	hand,	OC	II	
is	the	most	active	CDK1	inhibitor	in vitro	against	tumor	
cells	[117].

During	the	experimental	studies,	Mad’arova	et	al.	
[118]	discovered	that	both	BOH	and	OC	were	potent	
inhibitors	 of	 cell	 growth	 and	 viability,	 especially	 for	
androgen	responsive	cells;	BOH	was	2–3	times	more	
effective	than	OC	toward	human	prostate	cancer	cell	
lines.	 In	 our	 research,	 we	 estimated	 that	 treatment	
with	BOH	or	OC	II	inhibited in vitro	cell	growth	of	highly	
metastatic	(MATLylu)	and	 low	metastatic	(AT2)	rat	
prostate	cancer	cell	lines	and	caused	drastic	reduction	
of	Put,	Spd	and	Spm	levels	(unpublished	data).

In	 conclusion,	 PAs	 are	 promising	 biomarkers	 for	
prostate	cancer,	and	the	compounds	targeting	their	
metabolism	 should	 be	 studied	 for	 possible	 chemo
therapeutical	application.
Table. In vitro effects of polyamine analogues on human 
prostatic cancer cell lines [35]

Analogue DU-145 PC-3 LNCaP Refe-
rence

Apoptosis BE-3-3-3
BE-4-4-4-4
CPE-3-3-3
CHE-3-3-3
BIS 

not observed
not observed
induced
induced
induced

not observed
data not 
available
induced
induced
induced

induced
data not avail-
able
induced
induced
data not avail-
able

[91]
[92]
[91]
[91]
[93]

Polyamine 
Pools

BE-3-3-3
BE-4-4-4-4
CPE-3-3-3
CHE-3-3-3

increased
decreased
decreased
not signifi-
cantly
affected

decreased
decreased
decreased 
decreased

decreased
decreased
decreased
not signifi-
cantly
affected

[91]
[94]
[91]
[91]

ODC/
SAMDC 
Activity

BE-3-3-3
CPE-3-3-3

CHE-3-3-3

decreased
not signifi-
cantly
affected
not signifi-
cantly
affected

decreased
not signifi-
cantly
affected
not signifi-
cantly
affected

data not avail-
able
not signifi-
cantly
affected
not signifi-
cantly
affected

[35]
[91]

[91]

SSAT 
Activity

BE-3-3-3
CPE-3-3-3

increased
increased

increased
increased

increased 
increased

[91]
[91]
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полиамины и рак предстательной железы
Во многих развитых странах рак предстательной железы занимает первое место как причина смертности вследствие 
онкологических заболеваний. Ткань предстательной железы характеризуется наиболее высоким уровнем содержания 
полиаминов в сравнении с другими органами человека, причем в ткани карциномы простаты их содержание еще выше. Эти 
биомолекулы синтезируются эпителиальными клетками предстательной железы и принимают участие во многих биохимических 
процессах, включая пролиферацию клеток, регуляцию клеточного цикла и синтез белков. В обзоре обсуждаются функции 
полиаминов в клетке, их участие в процессах апоптоза и потенциальная роль в качестве биомаркеров при раке предстательной 
железы. Кроме того, приведены новые данные о разработке  препаратов, в частности ингибитора циклинзависимой киназы, 
предназначенных для лечения рака предстательной железы.
Ключевые слова: рак предстательной железы, полиамины, ингибитор CDK, оломуцин, богемин, росковитин.
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