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Presented are the methodology and the results of the multiscale modeling of radiation defects primary production 

and time evolution for 2.5 MeV cryogenic (77 K) irradiation of highly deformed to ~ 10
12

 cm
–2

 dislocations density 

beryllium at the NSC KIPT electron linac ELIAS. It is shown that the application of low-temperature e
–
-irradiation 

of prestrained targets allows efficient suppression of vacancy-interstitial recombination due to escape of freely mi-

grating self-interstitial atoms to dislocation sinks and results in abnormally high (~ 10
–3

 per atom) vacancy yield 

comparable with that of primarily produced Frenkel pairs at a reasonable ( 10
3 
h) e

–
-beam exposure. 

PACS: 61.80.-x, 61.82.Bg, 61.72.Cc, 61.80.Fe, 07.05.Tp, 02.70.Ns, 02.70.Uu 

 

1. INTRODUCTION 

The NSC KIPT sited charged particles accelerators 

are widely used to support R&D of radiation damage 

(RD) physics and radiation material science (RMS). 

Major applications of the ion beam (IB) machines con-

cern the ‘simulation irradiation’ (SI) concept targeted 

on the prediction of reactor (n, γ) irradiation induced ef-

fects in materials. The required IB exposure of SI ex-

periments is planned on the basis of calculation of the 

primary RD (PRD) dose measured in the number of ato-

mic displacements per atom, Ndpa. The established stan-

dard practice [1] considers dpa only as “a unit of radia-

tion exposure”: Ndpa shall be calculated coherently for 

both the targeting reactor and the accelerator irradiation 

environments in a strict accordance with the Norgett-

Robinson-Torrens proposed ‘NRT standard’ model [2] 
     dPKADPKA

NRT

dpa 2EEEEN      (1) 

which is a generalization of the famous Kinchin-Pease 

model primarily developed to estimate the number of 

point defects in an atomic collision cascade (ACC) initi-

ated by the primary knock-on atom (PKA) of a given 

energy EPKA. Here  = 0.8, ED(EPKA) is the “damage en-

ergy”, the total elastic energy loss of a PKA available to 

produce displacements, and Ed ~ 10
1
…10

2
 eV is the ma-

terial-specific displacement threshold energy. 

The validity of the NRT standard is confined in the 

area of comparative dosimetry of reactor/accelerator ba-

sed neutron/ion damage of metals and alloys [3]. The 

number of NRT dpa cannot be directly measured experi-

mentally and thus does not represent an observable phy-

sical quantity. Instead, one must consider the actual RD 

metrics, the atomic concentrations CFP of Frenkel pairs 

(FPs) as well of their constituents, CV of vacancies (V) 

and CI of self-interstitial atoms (SIAs). 

The observable CV,I are orders of magnitude smaller 

than the NRT calculated dpa because of several reasons 

[4, 5]. First, FPs annihilate inside the ‘hot’ ACC core 

during its athermal quenching stage, ~ 10
–(13…11)

 s. This 

is essential [4] for fast neutron and ion impact when 

successive atomic displacements occur at a distance ~ a, 

the lattice constant of a material. But it is not so topical 

for the moderate (~ MeV) energy electron beams (EBs) 

impact when only isolated spatially separated FPs 

appear. Next, the PRD stage produced defects evolve in 

space and time through the complex short-term       

(~ 10
–(11…6)

 s) kinetic stage of their recovery and 

agglomeration into complexes till the thermal diffusion 

stage (> 10
–6

 s) of their recombination and interaction 

with sinks. Finally, this is asymptotically forming the 

saturated damaged state of a material which results in 

the observed irradiation induced changes of 

macroscopic properties. 

The complexity of the self-consistent description of 

the whole RD picture (which covers 13…20 orders of 

magnitude of temporal development at a spatial scale 

10
–8

…10
2
 cm) gave birth to the novel Multiscale 

Modeling & Simulation (MSMS) paradigm of the RMS 

computer modeling studies [6]. It involves the problem-

specific sequence of diverse methods and input/output 

data concordant codes: ab initio quantum mechanics 

(QM), classical Molecular Dynamics (MD), kinetic 

Monte-Carlo (kMC) and reaction rate theory [5, 7] 

calculations, dislocation dynamics [7], and Finite 

Element Method (FEM). Each of them simulates its 

own scale of the spatiotemporal evolution to transfer 

outputs to the subsequent scale. Recently we have 

proposed [8] the MSMS program incorporation into the 

computational support of the NSC KIPT accelerator 

based irradiations and identified the appropriate 

simulation software toolbox [9]. 

The present paper encompasses the results of our 

first attempt to push the rationale and planning of NSC 

KIPT irradiations of materials ‘beyond NRT’. We pre-

sent the results of the trans-NRT MSMS of the accumu-

lation and evolution of point defects in a highly defor-

med high-purity hcp Beryllium, a structurally complex 

anisotropic functional material, for the case of its cryo-

genic irradiation at the NSC KIPT EB linac ELIAS. 

2. PROBLEM STATEMENT 

Beryllium manifests the non-trivial properties and 

effects (e.g., superplasticity) promoted by its pronoun-

ced anisotropy [10, 11]. This also applies to Be low-

temperature physics regarding its electronic structure 

and transport properties, and particularly the structural 

sensitivity of its superconducting transition temperature 

Tc. 

Without going into details that go beyond the scope 

of this paper, let’s declare that the experimental investi-

gation of this lattice defects density-of-state dependent 

effect requires high concentrations of the cryogenically 



 

 

‘frozen’ vacancies, CV ~ 10
–3

 per Be atom [12], much 

greater than the thermal equilibrium CV. The extra non-

equilibrium vacancies can be injected by e
−
-irradiation. 

However, the elastic displacement cross-section d [13] 

based calculation shows that even the most conservative 

estimate of CV as the concentration of as-irradiated pri-

mary FPs yields CFP ~ 10
–(5…4)

 per atom per day of 

exposure to ~ MeV energy EB. The thermal diffusion 

activated recombination V + I =  does diminish CFP by 

orders of magnitude. So, the problem looks insoluble. 

Nevertheless, it has been put forward [14] an idea to 

solve it by means of the V–I recombination suppression 

with the following experimental setup: (i) to apply the 

nitrogen temperature T = 77 K e
−
-irradiation when only 

SIA are diffusively mobile; (ii) to use the high-purity Be 

target which is beforehand highly deformed up to the 

dislocation densities d ~ 10
11…12

 cm
–2

 granting the 

highest possible concentration of SIA sinks, and (iii) to 

transfer the unheated irradiated sample into the helium 

temperature appliance for subsequent measurements. 

Despite of the extreme conditioning of each step of 

this scenario, it is in fact feasible by means of the NSC 

KIPT developed processes of high-purity Be samples 

preparation and cryogenic e
−
-irradiation at the accelera-

tor ELIAS. It is worth noting the NSC KIPT ELIAS 

team advanced capability to provide immediate post-ir-

radiation examination of samples (without their warm-

ing-up) at the same (or lower) temperature. 

The goal of the present work is the computational 

substantiation of the proposed technique by means of 

the MSMS calculation of the utmost value of CV obtain-

able at the ELIAS e
−
-irradiation. For this purpose, we 

apply the subset of our MSMS software toolkit [9] em-

bracing (i) the in-house developed GEANT4 Toolkit ba-

sed radiation transport (RT) Monte-Carlo (MC) code 

RaT 3.1 [15], (ii) the LAMMPS MD [16], and (iii) the 

SPPARKS kMC [17] packages developed and freely 

distributed by the U.S. Sandia Nat. Lab. team. 

3. PRIMARY RADIATION DAMAGE 

Without loss of generality, we consider a semi-infi-

nite planar target of Be = 1.85 gm/cm
3
 dense polycrys-

talline beryllium irradiated by a broad parallel e
−
-beam 

with the nominal parameters of the ELIAS linac: the EB 

energy Ee = 2.5 MeV, the current density j = 10 μA/cm
2
, 

the e
−
-flux  = j/e= 6.24·10

13
 e

−
·cm

–2
·s

–1
. 

An adequate computer modeling of the shortest-time 

ballistic stage of the as-irradiated PRD was conducted 

by means of the RaT 3.1 MC code using the GEANT4.9.5 

supplied algorithms and data for simulation of energy 

losses and multiple scattering of relativistic electrons in 

matter. Relatively rare events of the strong electron–

atom displacing collisions were sampled according to 

the Mott elastic scattering [13] cross-section d calcula-

ted for the NRT standard recommended value of the dis-

placement threshold energy Ed = 31 eV of beryllium. 

Trajectories of electrons and -quanta of the radiati-

on cascade as well as those of all Be recoils (both PKAs 

and secondary knock-ons, SKAs, of the ACC) were tra-

ced until a ‘thermalization’ i. e. down to the energy Emin, 

~ 100 eV for e
–
, and ~ 1 eV for cascade atoms. Due to 

fairly short ranges, Emin are small enough to not affect 

the calculated spatial distributions vs. the EB penetrati-

on depth z. Note that the ACC was modeled explicitly 

i. e. using the RaT code specific algorithm and data 

[15, 3] validated against those of the SRIM package, a 

practical standard of the IB induced PRD evaluation. 

Primary results of simulation concerning the EB pe-

netration into a target are presented in Fig. 1. The depth 

profile of thermalized electrons spreads up to the EB   

extrapolated projected range Rp  1 cm. Only the brems-

strahlung produced secondary Compton electrons are 

present at z > Rp. At z < Rp, the profile is drawn (roughly 

exponentially) until a broad maximum, at z  ¾Rp, 

which is due to the complex interplay of energy loss, 

straggling, and multiple scattering of electrons. 
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Fig. 1. The Monte-Carlo calculated depth profiles of the 

EB specific power deposition () and thermalized par-

ticles, electrons () and Be recoil atoms () 
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Fig. 2. The atomic displacement (dpa) rate depth profile 

subdivided into contributions of the actually formed 

Frenkel pairs and the Be–Be atoms replacements 

We supplemented Fig. 1 with the standard dose (or 

the mass specific power deposition) rate profile Pdep(z). 

In itself, the EB deposited power does not affect the RD 

of metal targets [4, 5]. But it is essential for the mainte-

nance of the thermal regimes of cryogenic e
−
-irradia-

tion. Note that Pdep is high as compared with the -hea-

ting relevant ~ 0.1…1 W/gm of in-pile test channels. 

The Pdep(z) maximum is shifted to lower z  ½Rp where 

electrons are energetic enough to heat the target and to 

displace the lattice atoms. Be recoils (both subthreshold 

ones, and PKAs) are distributed almost uniformly right 

up to this depth, as shown in greater details in Fig. 2. 

The maximal atomic displacement rate occurs at the 

depth z = 4 mm  0.4·Rp and exceeds the target surface 

(z = 0) value only by  14%. But only  80% of 

displacements (EPKA > Ed) are actual FPs. The rest 

 20% of them do not form a point defect but result in 
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the replacement of one Be atom with another. They are 

due to the Ed <EPKA < 2·Ed range of the PKA energy 

spectrum. 

The explicit modeling of an ACC and the simplified 

NRT standard approach (1) treat the partitioning of dis-

placements onto FPs and replacements somewhat diffe-

rently [3]. This results in the systematic bias of the ac-

tual NFP = NI  NV and    NRT

dpa

NRT

FP NN   shown in Fig. 3. 

One can see that the NRT standard always underesti-

mates the number of actually produced point defects. 
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Fig. 3. The FP depth profiles of Be PRD by EB of dif-

ferent energies MC calculated in the NRT standard ap-

proximation () and by the explicit ACC modeling () 
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Fig. 4. The Be target PRD depth profile () partitioned 

into contributions of primary (solid curve) and secon-

dary cascade (dashed curve) knock-on atoms 

The ratio   1NRT

FPFP  NN  is only weakly depth 

dependent in the highly damaged area (z < ½Rp) of a tar-

get;  = 1.2…1.25 for both 1.5 MeV and 2.5 MeV e
−
-ir-

radiations of Be. But  is known to grow with energy 

(and mass) of a projectile when the PKA spectra beco-

me harder, the secondary displacement function (SDF) 

increases, and ACCs become more and more developed. 

For the LPE-10 linac 10 MeV e
−
-irradiation of Ni–Cr al-

loy 690,   1.5, and amounts   2 for heavy ions irra-

diation of structural steels [3]. This is significant enough 

to opt for the explicit cascade modeling for estimations 

of the actual concentrations of the V–I Frenkel pairs. 

For not to get it mixed up with the conventional 

NRT dpa, it is expedient to introduce the special unit of 

measurement, FPpa = (NRT dpa). We shall use it 

below for the topical case of the current study. 

In Fig. 4, the dash-dotted arrow indicates the FPpa 

rate calculated analytically using the total displacement 

cross-section [13] d (Ee,Ed) = 7.44 barn for the initial 

EB energy. It is fairly consistent with the zero-depth ex-

trapolation of the MC simulation data for the contribu-

tion of PKAs immediately displaced by electrons. How-

ever, it covers only two thirds ( 66%) of the actually 

modeled total FPpa rate (markers) in a thin target. The 

remaining one third is due to the ACC development. 

The atomic collision cascades are frequently ignored 

in a planning of the EB PRD production. Sporadic 

ACCs are considered irrelevant to the electron impact 

and a simple formula CFP = d (Ee, Ed)··t0 is applied for 

the EB exposure duration t0. The Fig. 4 data show the 

drawbacks and quantitative limitations of this approxi-

mation namely for the case of thin targets. The exact 

MC modeling is favorable to obtain the reliable data. 

For the subsequent MSMS calculations, we adopt, 

from Fig. 4, the conservative zero-depth estimate of the 

PRD FP production rate K0 = 7∙10
–10

 FPpa/s. 

4. THE REACTIONS RATE THEORY 

ANSATZ AND MODEL ESTIMATES 

The CV,I(r,t) spatiotemporal evolution at the next ti-

mescale of the RD development and subject to (V,SIA) 

thermal diffusion and reactions with each other and with 

sinks is generally described by the partial derivative 

master equations of the RD rate theory [7]. For the limi-

ted purpose of the current study, we neglect gradient 

terms and confine ourselves to the mean-field approxi-

mation of the reaction rate theory [5, 7] taking into ac-

count the problem specific simplifications. In this case, 

the time derivatives  tC IV,
  are governed by the follow-

ing system of the ordinary differential equations (ODE) 

       
     








)2.2(

)1.2(

II

2

VI

VIIRV

tCDktCtC

tCtCDtKtC



 
 

where the source term K(t) is the FPpa production rate, 

K(t) = K0 for t  t0 (EB on), K(t) = 0 otherwise (EB off); 

DI, cm
2
·s

–1
, is the SIA diffusion coefficient; R, cm

–2
, is 

the V–I recombination constant and k
2
, cm

–2
, is the total 

sink strength [5] for SIAs. In Eq. 2, it is assumed that 

only SIAs are mobile (DV = 0). 

The ODE system (2) was readily solved numerically 

for the initial conditions CV,I(0) = 0 (we neglect the 

equilibrium CV(0) << 10
–6

 for a cryogenic irradiation) 

and benchmarked against the asymptotic solution [5] 

 
 

 














)2.3(,

)1.3(,

000FP00

00FP00

0V
tttttCttK

tttCtK
tC  

where the characteristic time t
*
 =  /K0 scales with the 

dimensionless ratio  = k
2
/R rating the sink absorption 

of a SIA to its recombination with a vacancy. For short 

t0 < t
*
 of ballistic PRD irradiation exposure, CV  t0. For 

t0 > t
*
, the diffusion limited buildup of vacancies is slo-

wing down very notably; asymptotically, 0V tC  . 

First, we estimated CV(t) by applying some synoptic 

RMS models and reference data for Be. 

Assuming that the only SIA sinks are edge disloca-

tions, we evaluated the dislocation sink strength k
2
 ac-

cording to the Nichols isotropic model [18] 













4

3
ln2

c

d
d

2

r

R
k              (4) 
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where Rd = (d)
–½

 is the dislocation cylindrical unit cell 

radius and rc is the dislocation core radius, ~ a = 2.3 Å 

for Be. This yields k
2
  10

12
 cm

–2
 for d = 10

11
 cm

–2
. 

The recombination constant R  4·reff/Be was es-

timated from the effective SIA capture radius reff of a 

vacancy and the atomic volume Be. Since the MD data 

derived reff  2a [7], R  10
17

 cm
–2

 >> k
2
, and  << 1. 

The SIA self-diffusion coefficient DI is strongly 

temperature T dependent 









Tk

E
DD

B

m
0I exp ,   (5) 

where kB is Boltzmann’s constant and Em is the SIA mi-

gration barrier energy. In Be, the pre-exponential factor 

D0  0.62 cm
2
/s [11] while Em is highly anisotropic. 

Vladimirov and coworkers carried out an extensive 

ab initio QM MD simulation of the SIA diffusion in Be 

[19, 20] by the density-functional (DFT) code VASP. 

They found Em = 0.12 eV for the preferential basal pla-

ne (BP) diffusion and twice as much, Em = 0.27 eV, for 

the diffusion out of BP [20]. For T = 77 K, this yields 

DI(0.12 eV)  8.4·10
–8

 cm
2
/s while DI(0.27 eV)0. For 

a reasonable mean Em = 0.2 eV, DI  4.8·10
–14

 cm
2
/s. 

According to Eq. (2), the saturation of CI(t) occurs at 

a diffusion-to-sink time  = (k
2
·DI)

–1
 which varies from 

~ 10
–4

 s for Em = 0.12 eV up to ~ 10
2
 s for Em = 0.2 eV. 

In our case, K0 ~ 10
–9

 s
–1

, the saturated maximal values 

of CI() = K0· are ~ 10
–13

 and ~ 10
–7

, respectively. The-

refore, CI << CV for t0 >> , the V–I recombination rate 

becomes negligible for t > t0, and the SIA diffusion in-

dependent asymptotic (3.2) is fairly applicable. 

We applied it to estimate the ELIAS EB exposure ti-

me  tKCt 2

0

2

V0  required to inject the requested CV, 

say, 10
–3

. Having t
*
  10

4
 s, we obtained t0 ~ 10

8
 s 

which is more than 3 years long, and is inadmissible. 

This issue impels a revision of the models and data 

used above in this section. There is no vagueness about 

the values of R, Rd, rc, and D0 the more so as the result 

is DI independent. Only the dislocation sink strength k
2
 

remains open to questions. The model (4) neglects the 

dislocation elastic field which can enhance the SIA cap-

ture rate. It also disregards the hcp lattice inherent ani-

sotropy. We suggested the k
2
 evaluation (4) looks un-

derestimated, and proceeded to its refined MSMS calcu-

lation by means of the MD and kMC simulations. 

5. MULTISCALE CALCULATIONS 

OF THE DISLOCATION SINK STRENGTH 

5.1. MD EVALUATION OF THE SIA-EDGE 

DISLOCATION ELASTIC INTERACTION FIELD 

We started from the linear theory of elasticity deri-

ved [21] potential energy Ud(r, 
) of a SIA first-order 

size interaction with an edge dislocation of Burgers vec-

tor b(b,0,0). In a cylindrical (r, 
,z) frame of reference 

with the dislocation line L aligned axis z, 

 
r

bUrU



sin

, 0d  ,     (6) 

where the interaction strength factor U0 has the form 

VU 













1

1

3
0 ,      (7) 

 is the elastic shear modulus;  is Poisson’s ratio; V is 

the dilative volume change of an isotropic elastic me-

dium due to the presence of a SIA. Hereinafter we ne-

glect the presence of screw dislocations since, for them, 

Ud is vanished to a first-order of magnitude [21]. 

The ab initio simulations [19, 20] have shown that 

the basal-octahedral (BO) interstitial position is highly 

preferential for Be SIAs at low temperatures. Thus, a 

simple estimate of the SIA dilatation volume difference 

is  3

BO

3

Be3
4 RRV   , where RBe = a/2  1.14 Å is the 

maximal radius of the hexagonally closely packed hard 

spheres representing Be atoms, RBO  0.41·RBe  0.47 Å 

is the corresponding inner radius of the BO spherical 

void. This yields V  5.82 Å
3
 = 0.72·Be for the refer-

ence atomic volume of beryllium Be = 8.08 Å
3
. 

Substituting this value of V into (7) together with 

the up-to-date measured data [22] on the elastic cons-

tants of beryllium,  = 150.1 GPa and  =0.050, we ob-

tained the interaction energy factor U0 = 0.64 eV. Other 

(,) data taken from the compendium [22] result in the 

rather close values of U0 = 0.58…0.66 eV. However, 

notably smaller U0  0.5 eV can be also derived from 

the earlier measured (,) reference data [10, 11]. In 

order to refine the proposed heuristic hard-sphere 

model, we proceeded to the atomic-scale MD 

simulation. 

The general formula V = tr(Pij)/3B [21] expresses 

the SIA dilatation volume change in terms of the trace 

of the point defect dipole-force elastic tensor Pij and the 

bulk modulus B of an anisotropic medium. We applied 

the MD code LAMMPS [16] and the Be–Be interatomic 

potential taken from ref. [23] to calculate Pij according 

to the following method [24] and algorithm. 

To evaluate Pij atomistically, one has to calculate the 

tensor ij of internal stress produced by a solitary point 

defect in an equilibrated fixed volume V crystallite with 

periodic boundary conditions (p.b.c.). Then Pij = –ij·V. 

The rectilinear p.b.c. N1N2N3 size 3D simulation 

box of N = 4N1·N2·N3 hcp-Be atoms is first MD equili-

brated, by energy minimization at zero temperature, to 

find its ground state structure, size, and volume V. After 

that, and with these parameters fixed, the extra Be SIA 

is inserted into the BP BO position, and the system is 

MD re-relaxed to its minimal energy at a fixed V. Fi-

nally, ij is calculated by the LAMMPS code intrinsic 

routine, and the dipole tensor Pij is found as – ij·V. 

To avoid unphysical effects of the crystallite size li-

mitation, this procedure was repeated for the simulation 

box expanded from 223 up to 121219 hcp lattice 

units. It was found that the ij components become the 

box size independent for sufficiently large N > 10
3
. 

For the representative 10944 atoms 121219 box, 

the BO SIA dipole-force tensor Pij has a diagonal form 

with principal components Pxx = 2.33 eV, Pyy = 6.98 eV, 

Pzz = 3.24 eV, and tr(Pij) = 13.25 eV. Using the consis-

tently measured [22] elastic constants B = 116.8 GPa, 

 = 150.1 GPa,  = 0.05 of Be, we readily obtained 

V = tr(Pij)/3B = 5.73 Å
3
 = 0.709·Be and, from Eq. (7), 

U0 = 0.63 eV. This agrees well with the hard-sphere mo-

del estimate, 0.64 eV, and thus is quite reliable. 

 

 



 

 

5.2. THE SINK STRENGTH kMC CALCULATION 

We treated the diffusion-timescale evolution of point 

defects statistically as their random walks (RW), mutual 

annihilations, and absorptions by sinks. The object kMC 

(okMC) method [25, 26] was applied as the following 

problem-specific algorithm for the Sandia SPPARKS 

kMC package [17] to sample all these events. 

Vacancies are randomly placed into the hcp Be latti-

ce sites with probability CFP. According to the ab initio 

results [19, 20], only the most energy profitable BO in-

terstitial sites, the centers of the basal plane octahedral 

voids, are randomly filled by the same number of SIAs. 

Edge dislocations with Burgers vector ]1102[
3

1b  are 

modeled as the rc = 2a core radius cylinders centered in 

the 10, 2
1

d


  , p.b.c. simulation box. 

For the thermally activated diffusion kMC modeling, 

the frequency ij of a defect transition from i
th

 to j
th

 po-

sitions ri,j is assumed to follow the Arrhenius rule 

ij = 0exp[–Ea(rirj)/kBT] ,    (8) 

where 0 is the transition attempt frequency, Ea is the 

transition activation energy 

Ea(rirj) = Em(rirj) + Ud(rj) – Ud(ri),  (9) 

Em is the dislocation elastic field Ud(r) (6) independent 

migration barrier energy ([20], see in sec. 4). 

The reactions events are governed by the following 

rules. The recombination occurs if the V–SIA distance 

r  reff = 2a; both are excluded from simulation. The 

dislocation trap occurs if the freely migrating SIA is fo-

und inside the core, rd  rc; then, it is immobilized. 

The sketches of this algorithm outputs are shown in 

Fig. 5 for the same RW step #50. Three L-directions, 

}0001{ , }1110{  and }1011{ , relevant to Be major slip 

systems were modeled. Cause of the ab initio predicted 

bias in SIA Em, 0.12 eV in BP vs. 0.27 eV out of it, the 

major feature of the diffusion anisotropy is clearly seen. 

SIAs are readily trapped onto the }0001{  and }1110{  

oriented dislocations while no absorption occurs for the 

BP parallel }1011{  sink. The reason is the BP confined 

SIA diffusion which effectively happens in 2D. 

 

Fig. 5. SPPARKS kMC simulation of Be SIA () diffusi-

on, recombination with vacancies (), and trapping by 

differently directed edge dislocation sinks, T = 77 K 

This okMC algorithm is easily extendable to sinks of 

other kind and dimensionality (voids, grain boundaries, 

etc.). In general, it can model the solutions of the rate 

theory ODE system (2) explicitly by the incorporation 

of the FP source K(t) [25, 26] and at the expense of sig-

nificant computational efforts. But for the specific semi-

analytical framework of our study we shall use it only 

for calculations of the sink strength k
2
. 

In Eq. (2.2), k
2
DI = 1/ is the characteristic 

frequency of SIA absorption by a dislocation sink. Thus, 

by definition, k
2
 = (DI)

–1
 is a scalar (not a tensor) 

quantity. 

The okMC tally of k
2
 within the scope of the d-di-

mensional RW in 
d
 has been proposed in ref. [25]: 

k
2
 = 2d

 
/
 
(l

2
n) where l is the rirj jump length, n is the 

mean number of jumps each SIA performs before being 

trapped by a sink (such that  = n/0). For the isotropic 

RW (e.g., in bcc-Fe [26]), l = l(a) is a unique lattice unit 

dependent constant. Case of hcp-Be, l||  l (the sub-

scripts || and  denote intra- and inter-BP jumps, respec-

tively) and the RW is generally characterized by the 

(unknown) anisotropic diffusion coefficient tensor D. 

This implies the 2

k  tensor which is out of the scope of 

the rate theory ansatz (2). To score the properly avera-

ged k
2
 as a scalar okMC tally, one has to apply, to it, a 

certain appropriate probabilistic measure p(l). 

The hcp-Be SIA BP-BO lattice has N|| = 6 intra-BP 

closest-neighbor and N = 14 next-neighbor inter-BP 

BO sites. Following the refined okMC approach [26], 

we assume the attempt frequency 0 to be isotropic, and 

measure the intra/inter-BP jumps with the probabilities 

p||, = N||,||,/(N|||| + N), ||, = 0exp(–E||,/kBT), 

where E||, are the anisotropic jumps activation energies 

(E >> E|| for Be [20]). The averaging operator of this 

measure is x = p||x|| + px. Let’s define the Eq. (2) 

consistent sink strength as k
2
 = (Deffeff)

–1
 with the 

effective diffusion coefficient Deff = l
 2


 
/
 
(2d· t) of 

the isotropic RW jumps of mean square (m.s.) length 

l
 2
 and duration  t. The effective mean diffusion-to-

sink time eff = n||· t|| + n· t is composed from the 

numbers n||, and durations  t||, of intra/inter-BP jumps, 

n|| + n = n. Since n||, = p||,n, eff = n·(p||· t|| + p· t) = n· t 

and, consequently, k
2
 = (Deffeff)

–1
 = 2d

 
/
 
(l

 2
n). 

Therefore, the ‘isotropic’ k
2
 tally [25] is still applicable 

to score the anisotropic case sink strength, but at a 

redefined temperature dependent m.s. jump length l
2
. 

Having a = 2.286 Å, c = 3.584 Å, c/a = 1.568, we 

obtain l|| = a = 2.286 Å, l = [(
c
/2)

2
 + 

6
/7a

2
]

½
 = 2.773 Å. 

In a very high temperature limit kBT >> E||,, ||,  0, 

the r.m.s. l = l
 2

½
  lmax = (

9
/10·a

2
 + 

7
/40·c

2
)
½
 = 2.636 Å. 

This is an our study irrelevant limiting case of a 3D iso-

tropic SIA diffusion. At low temperatures, p << p|| and 

l  lmin = a = 2.286 Å also independently on 0 and T. 

This corresponds to an entirely 2D BP SIA diffusion. 

Calculations show the 3D diffusion RW component sha-

rply appearing just at room temperature, T  293 K, and 

gradually increasing at elevated temperatures. 

We applied the developed okMC algorithm to calcu-

late k
2
 by means of the SPPARKS kMC code and omit-

ted vacancies as irrelevant to the SIA k
2
 evaluation to 

speed-up the k
2
 tally convergence. The per-dislocation 

normalized dimensionless sink efficiency  = k
2
/d kMC 

calculation results are presented in Figs. 6 and 7. 

To uncover the sink strength qualitative regularities, 

the kMC simulations of Figs. 6, 7 were performed for 

the ]1102[
3

1b , L = {0001} dislocation of Be in wide 

ranges of temperature T (incl. the topical T = 77 K), 

dislocation density d = 10
10

…10
12

 cm
–2

 and the 

dislocation elastic field strength parameter 

U0 = 0.0….0 eV (incl. the quite realistic value 



 

 

U0 = 0.5 eV). We compared the results with the 

simplistic T and U0 independent estimates (4) labeled, in 

Figs. 6, 7, as the ‘isotropic theory’. 

One can see that the SIA diffusion anisotropy itself 

(U0 = 0) has only a small ( 50%) temperature indepen-

dent effect on the SIA trapping efficiency . In contrast 

to this, the SIA-dislocation interaction affects its absor-

ption very considerably, and results in a drastically (by 

1...2 orders of magnitude) increasing . This enhance-

ment is mainly a low-temperature effect, see Fig. 6. It is 

the most pronounced at kBT << U0 while tends to disap-

pear at high kBT ~ U0 when the SIA-to-sink drift is com-

peting with its thermally enhanced chaotic diffusion. 
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Fig. 6. Temperature dependencies of the normalized ef-

ficiency k
2
/d of the {0001} edge dislocation sink at dif-

ferent SIA-dislocation interaction parameters U0 
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Fig. 7. Dislocation density dependence of the SIA-

{0001} sink efficiency for different values of U0 

Fig. 7 clearly shows that the per-dislocation sink ef-

ficiency increases with d. Abt. twofold gain of (d), at 

d  10
1012

 cm
–2

, is predicted already by a field-free 

isotropic theory (4). For U0 = 0.5 eV and T = 77 K, it 

optimally amounts to  5. One can see that the kMC cal-

culations confirm both of the proposed features which 

enhance the SIA sink efficiency, the cryogenic tempera-

ture and the highest possible d of an irradiated sample. 

The very significant (d) anisotropy is found in the 

Fig. 8 data calculated for three dislocation line 

directions at the sec. 5.1 MD modeling evaluated 

U0 = 0.63 eV. 

The {0001} dislocations capture SIAs most effici-

ently. The }1110{  system is  (25…50)% less 

efficient, esp. at higher d. The difference is mainly due 

to the  
-dependence of Ud (6) and, thus, is of the hcp 

lattice geometry nature. The BP parallel }1011{  

dislocations do not capture SIAs at all ((d)  0 at a 

SIA low-T 2D diffusion, see in Fig. 5). With respect to 

our main goal, the mobile SIA removal maximization, 

this system is lost. Properly textured targets with 

lowered content of the BP parallel dislocation are 

favorable. But for the subsequent final calculations, we 

adopted the cautious hypothesis of an equipartitioning 

of these slip systems in a Be target. 
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Fig. 8. Anisotropy of the SIA-dislocation sink efficiency 

6. RESULTS AND DISCUSSION 

The consolidated results of the MSMS calculations 

of the residual concentrations CV of surviving vacancies 

are shown in figures below. They were calculated, ac-

cording to the rate theory Eqs. (2)–(3), using the Be 

target parameters (R, k
2
, etc.) evaluated in sections 4 

and 5. 
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Fig. 9. The residual vacancy concentrations plotted vs. 

the initial FPpa produced at a EB exposure t0 (top axis) 

in Be targets of various dislocation densities d 

In Fig. 9, it is seen that the increase of d allows to 

prolongate effectively, in exposure time t0, the ballistic 

PRD stage (3.1) (when CV  FPpa) and to delay the oc-

currence of the kinetic V–I recombination dominance 

stage (3.2), CV  (FPpa)
½
, to much greater t0. Note that 

this prediction relies entirely on the results of the ade-

quate MD and kMC calculation of k
2
 (sec. 5) since the 

isotropic field-free theory (4) results in the much more 

pessimistic data plotted with dashed curves of Fig. 9. 
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Fig. 10. Depth profiles of the residual CV in Be targets 

of different dislocation densities d (,,) in com-

parison with the initial FPpa depth profile () 

Fig. 9 can be used as a diagram for the evaluation of 

the ELIAS linac EB exposure duration t0(CV) needed to 

obtain the required CV. The top-right corner arrows indi-

cate this paper topical t0(10
–3

)  10
3
 h for the highest 

considered d = 10
12

 cm
–2

. The depth profiles CV(z, t0) 

were calculated by combining the Fig. 9 data with the 

primary FPpa rate depth profile K0(z) of Fig. 4 (sec. 3). 

In Fig. 10, they are shown for the 1000 h long exposure. 

One can see that the most essential is the strong dis-

location density d impact on the residual CV. In a hypo-

thetical SIA-sink-free beryllium (k
2
 = 0), the maximal 

CV = (K0 /RDI)
½
 (see Eq. (2.1)) of the irradiation 

induced vacancies drops to zero within a FP 

recombination time (RDI)
–1

 < 10
–4

 s just after switching 

off the EB. In a well annealed beryllium, d~10
8
 cm

–2
, 

the residual CV is of ~ (10
–6

…10
–5

) even at t0 = 10
3
 h. 

However, Be targets prestrained to d ~ 10
11

…10
12

 cm
–2

 

can retain 10
–4

…10
–3

 vacancies per atom that is 

sufficient for subsequent cryogenic measurements of 

their impact on the electronic properties of beryllium. 

Sinks of all other kinds will promote the SIA outflow 

enhancing the V–I imbalance in favor of vacancies. 

Therefore, this work model gives only a lower estimate 

of the residual CV, and thus is a conservative evaluation. 

The estimated EB exposure, 1000 h  42 days, is rather 

challenging but is not so impossible bearing in mind the 

already gained experience of long-time (500…700 h)   

e
–
-irradiation of materials at the NSC KIPT operating 

electron accelerators. 

CONCLUSIONS 

In the present work, the developed multiscale com-

puter modeling technique was successfully applied to 

the characterization and planning of cryogenic irradiati-

ons at the NSC KIPT sited electron accelerator ELIAS 

in order to study experimentally the impact of point de-

fects on the superconductivity of beryllium. 

The primary radiation damage rate in a target was 

calculated using the e
–
-beam transport Monte-Carlo mo-

deling code. The quantitative distinction of the results of 

its explicit atomistic simulation from the NRT standard 

model predictions and the considerable contribution of 

atomic collision cascades into the spatial distributions of 

primarily produced Frenkel pairs have been revealed. 

The later stages of the primary damage time evolu-

tion were modeled by different simulation methods bas-

ing on the ab initio calculated and other reference data 

on the structure and migration of point defects in Be. 

Molecular dynamics modeling has been applied to 

evaluate the parameters of the elastic interaction of Be 

self-interstitial atoms with dislocations sinks. Reliable 

estimates of the dipole-force tensor Pij and the interacti-

on energy factor U0 = 0.63 eV have been obtained. 

Kinetic Monte-Carlo modeling has been used for 

calculation of the dislocation sink strength k
2
 basing on 

ab initio and MD data with due account of the hcp-Be 

anisotropy and the elastic strain of dislocations. The sig-

nificant growth of k
2
 with a decrease in temperature and 

an increase in the dislocations density has been found. 

The k
2
 anisotropy has been revealed and explained by 

the preferentially two-dimensional basal plane confined 

diffusion of self-interstitial atoms at low temperatures. 

The concluding data on the multiscale calculated ef-

ficiency of the introduction of vacancies into the e
–
-irra-

diated Be target were obtained within the scope of the 

mean-field reaction rate theory. It has been shown that 

the application of cryogenic (77 K) e
–
-irradiation of Be 

targets prestrained up to ~ 10
12

 cm
–2

 dislocation density 

results in the abnormally high (~ 10
–3

 per atom) yield of 

residual vacancies which is comparable, to within a half, 

with that of primarily produced Frenkel pairs at a rea-

sonable ( 10
3 
h) ELIAS linac e

–
-beam exposure. 

In conclusion, it should be noted that the presented 

MSMS technique and software are flexible enough to be 

applied, in future, for the computational support of the 

other NSC KIPT sited accelerators driven irradiations, 

including the RMS ‘simulation irradiations’ with ion 

beam machines and neutron sources. 
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МНОГОУРОВНЕВОЕ МОДЕЛИРОВАНИЕ ЭЛЕКТРОННОГО ОБЛУЧЕНИЯ БЕРИЛЛИЯ 

ПРИ НИЗКИХ ТЕМПЕРАТУРАХ 

М.И. Братченко, С.В. Дюльдя 

Представлены методология и результаты многомасштабного моделирования первичной генерации и 

временной эволюции радиационных дефектов при криогенном (77 К) облучении сильнодеформированного 

до плотности дислокаций ~ 10
12

 см
–2

 бериллия на электронном линаке ELIAS ННЦ ХФТИ. Показано, что 

применение низкотемпературного облучения предварительно напряженных мишеней позволяет эффективно 

подавлять рекомбинацию пар Френкеля за счет ухода свободно мигрирующих собственных межузельных 

атомов на дислокационные стоки и приводит к аномально высоким (~ 10
–3

 на атом) выходам вакансий, сопо-

ставимых с концентрациями первичных пар Френкеля при разумной ( 10
3
 ч) длительности e

–
-облучения. 
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БАГАТОРІВНЕВЕ МОДЕЛЮВАННЯ ЕЛЕКТРОННОГО ОПРОМІНЕННЯ БЕРИЛІЮ  

ЗА НИЗЬКИХ ТЕМПЕРАТУР 

М.І. Братченко, С.В. Дюльдя 

Представлено методологію та результати багатомасштабного моделювання первинної продукції та ево-

люції у часі радіаційних дефектів за криогенного (77 К) опромінення сильнодеформованого до густини дис-

локацій ~10
12

 см
–2

 берилію на електронному лінаці ELIAS ННЦ ХФТІ. Показано, що застосування низько-

температурного електронного опромінення попередньо напружених мішеней дозволяє ефективно пригнічу-

вати рекомбінацію пар Френкеля через витік вільно мігруючих власних міжвузельних атомів до дислокацій-

них стоків і призводить до аномально високих (~10
–3

 на атом) концентрацій вакансій, які добре порівнянні з 

концентраціями первинних пар Френкеля за прийнятної ( 10
3
 год) тривалості електронного опромінення. 

 


