ISSN 1027-5495. Functional Materials, 24, No.1 (2017), p. 127-137.
doi:https://doi.org/10.15407/fm24.01.127 © 2017 — STC "Institute for Single Crystals”

About theoretical peculiarities of lowest
excitations in modified nanodiamond color
centers

A.V.Luzanov

SSI "Institute of Single Crystals™, STC "Institute for Single Crystals”,
National Academy of Sciences of Ukraine,
60 Nauky Ave., 61001 Kharkiv, Ukraine

Received September 7, 2016

The moderate-size carbon nanoclusters with paramagnetic color centers are studied by
using a rather good-working simplified scheme of CNDOL type. Various electronic struc-
ture aspects of the clusters are studied. These are the localization of molecular orbitas, the
electronic excitation localization and charge-transfer structure of the lowest triplet-triplet
transitions, spin density distributions and spin correlations in the ground and excited
states. The comparison is made between the respective characteristics of the diamondoid
with nitrogen-vacancy (NV~) and oxygen-vacancy color centers. It is shown that in the
asymmetrical NV~ center, significant variations of excitation localization and charge/spin
transfer take place whereas the energetic properties vary slightly.
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C IOMOILIBIO JOCTATOYHO HaLeXKHOM npubammenHol cxembl Tuna CNDOL usyueHbl yrie-
POJHBIE HAHOKJIACTEDPHI CPEIHEro pasMmepa, ComepiKaliue IIapaMarHUTHBIE IEHTPBI OKPACKH.
Hccaemopanbl pasinuHble ACHEKTHI 9JIEKTPOHHON CTPYKTYPhl TAKHX KJaacTepoB. K HUM OTHO-
cAarcs goxkanusanua MO, noxanusanusa DJIEKTPOHHBIX BO3OYMKIAEHUN W 3apsAmg0BO-IIEPEHOCHAS
CTPYKTYyPa HUMKAUIINX TPUILIET-TPUILIETHLIX II€PEX0I0B, PacipeneieHne CIMHOBOH IIJIOTHOC-
TH YW CIUHOBLIE KOPPEJAINNM B OCHOBHOM X BO30OYKIEHHOM COCTOAHUAX u Ap. Jemaercs
CPaBHEHHE COOTBETCTBYIOIIIUX XapPaKTEPHUCTHUK, BBIUMCIEHHBLIX [JId AUAMOHIOHULA C A30T-Ba-
raHcuoHHBIM (NV7) M ¢ KHCIOPOZ-BAaKAHCHOHHBIM IleHTpamu oKpackKu. [lokasamo, uTo B
acumMmerpuynoM NV~ IleHTpe HMEIOT MECTO SHAUMUTEJbHbIE BaprUaUU JOKAJIU3AIUUA BO3GYHK-
IeHUI ¥ IepeHoca 3apana/ClInHA, TOrLA KaK dHEPreTHYeCKre XapPaKTePHUCTUKU U3MEHSITCSH
caabo.

CTOoCOBHO 0CO0IMBOCTEH TEOPETHYHOr0 ONMCYBAHHSA HANHUMKYHX 30ymKeHb y momudi-
KOBAHHX I[eHTpax 3a0apBieHHd HaHoxiamaHTiB. A.B.JIysanos.

Byrieneri manokiacTepu cepegHbBOro pPo3Mipy, Io MicTATh mapamMardgiTHi meHTpu 3abap-
BJCHHS, BUBUEHO 3a [IOIIOMOI'OI0 A0BOJI Haxilimol Habauxenol cxemu 3a tumom CNDOL.
Hocaim:xeHo pisHOMaHiITHI acleKTH eJeKTPOHHOI OyJoBM TakKux HaHOKJactepiB. Ile — Jo-
Kanisamua MO, Jjokanisaiis eJleKTpoHHuX 30yAsKeHb Ta 3apsgoBO-IEePEHOCHA CTPYKTypa
HAMHMMKYNX TPUILIET-TPUILJIETHNX II€PEeXOiB, POSIIOLiJI CIiHOBOI I'yCTMHHU Ta CIIiHOBI Kope-
a1ii B oCHOBOMY Ta 30yIsKE€HOMY CTaHaX TOIO. 3P0o0JIeHO IOPIBHAHHA BIAHOBIZHMX xXapak-
TePUCTUK TiamMoumoimza 3 HiTporem-saramciiimum (NV™) Ta OKCUIeH-BAKAHCIMHUM IeHTpaMU
sabapBienHs. 3HalgeHo, 110 B acuMmerpuuHomy NV -lleHTpoBi mae wmicue sHauHa amiHA
JoKaJsrizamii s30ymiKeHHs Ta IepeHocy 3apsany abo cHiny, Toal AK eHepreTUYHi BIACTUBOCTL
3MiHIOIOTECH HE3HAUHOKI Mipoio.
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1. Introduction

This paper reports some further results
from our quantum chemical investigations
of excited states in nanodiamonds with
paramagnetic color centers. In the earlier
papers [1-4] we presented theoretical stud-
ies of the electronic structure of such
nanostructures, using a simplified CNDO
semiempirical technique and the extended
Huckel method. Now we perform a more
wide analysis while staying within the
semiempirical methodology again.

The main distinctions of this work, com-
pared to the above cited papers, are the
following. First, a set of systems used in
quantum chemical simulation is extended by
including structures with high-symmetry
color centers and analyzing the typical ef-
fects of possible symmetry-lowering. Sec-
ond, a more refined non ab initio scheme
[6—8] is employed here. Third, charge-trans-
fer and spin correlations in the lowest elec-
tronic transitions are given in detail. Fur-
thermore, we present a suitable modifica-
tion of the well-known Lanczos technique
[9] (together with its semiempirical imple-
mentation) focused on solving large scale
eigenvalue problems which inevitably arise
in studying the modeled nanoclusters with
hundreds atoms.

2. Computational details

In the following, we briefly outline the
approaches and the subjects of investigation
in our modeling of single color centers in
nanodiamonds. We apply here a more appro-
priate CNDO technique than that used be-
fore in [1-4]. This is the so-called CNDOL
scheme proposed long ago in [5]. Impor-
tantly, recent papers [7, 8] confirmed a
good performance of CNDOL for large carb-
on-containing networks. Moreover, unlike
[1-4], in the present paper we take more
regular initial nanodiamond structures, and

from these the lower-symmetry color cen-
ters can be made in a certain way.

Specifically, the T, symmetry carbon
cage having the initial composition Cj/5
was generated by a restricted set of transla-
tions of diamond-lattice basis vectors (with
dc_c, length of C—C bond being taken to
1.54 A); the terminal atoms in this Ci75
were saturated by hydrogen atoms. The ob-
tained T; symmetry diamondoid Cj;5Hq4g
was then routinely optimized by the
semiempirical AM1 method (using the
Gaussian package [10]). In the resulting
configuration of Cy;5H4¢g (see the first and
second panel in Fig. 1) we made a carbon
vacancy located in the geometric center of the
diamondoid. Then to produce the NV color
center, one carbon atom adjacent to the carb-
on vacancy was replaced by the nitrogen
atom. This leaded to a Cg,-symmetry NV
color center (the typical situation of interest).
The vicinity of the NV center is shown in a
conditional manner in the third panel of Fig.
1, where C,, CB’ and CY signify the dangling
(unsaturated) carbon atoms surrounding va-
cancy (V). No additional geometry optimiza-
tion calculation was performed for the resul-
tant Cq73H 1 gN-structure.

Notice that Cg -symmetry color centers,
and those of a lower symmetry differ con-
siderably in some important points, and this
difference will be a subject of our scrutiny
as well. Next, by replacing in the NV~ cen-
ter the nitrogen atom by the oxygen atom
we obtain the Cg,-symmetry nanocluster
C473H4160 as a reasonable model for the
oxygen vacancy (OV) color centers The lat-
ter have received some attention in the last
years [11-13]. Furthermore, we consider
the lower-symmetry NV -center in which
the vacancy, previously situated in the cen-
ter of the nanocluster, is shifted to a near-
est atom, as in the last panel of Fig. 1. The
obtained C, symmetry structure is named
here the nanodiamond with shifted NV cen-
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Fig. 1. Spatial image of C,,5H,45 (the first panel), its plane projection with suppressed hydrogens
(the second panel); vicinity of Cj, symmetry NV~ center (the third panel), and vicinity of C,

symmetry NV~ [shift] center.
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Fig. 2. C;, symmetry NV~ center: localization diagrams for frontier MOs.

ter, or shortly nanodiamond with NV~
[shift] center.

Using such finite-size molecular models,
we provide below a detailed CNDOL theo-
retical study of the defined color centers in
nanodiamonds. Namely, we consider proper-
ties of the frontier molecular orbitals
(MOs), spin behavior of the ground and ex-
cited triplet states (spin density and spin
correlators), localization and charge trans-
fer in the low-lying triplet-triplet (TT) tran-
sitions, and others. We will recall and make
more exact the relevant definitions as we go
along. The algorithmic features and a modifi-
cation that we made for UHF (unrestricted
Hartree-Fock) computations of excitation
spectra within CIS (configuration interaction
singles) approach are given in the Appendix.
In the latter the results of computations for a
larger diamondoid with color center,
Co73H¢7oN~, are shortly discussed as well.

3. Orbital properties

We start with the analysis of MOs be-
cause they directly determine many impor-
tant properties of low-lying electronic states
in normal (not too correlated) many-electron
systems. Localization properties of frontier
MOs, that is HOMOs (highest occupied MOs)
and LUMOs (lowest unoccupied MOs), will
be the main concern in this section. The
nanocluster structures being studied are
sufficiently complex, and orbital pictorial
images for them are not clear enough to be
understood easily. Instead of such fairly in-
tricate spatial images we will display sim-
plified plane projections of the relevant dis-
tributions over atoms. In addition, we sup-
ply each frontier MO with two quantitative
localization measures which are recently
studied in [4]. The first localization meas-
ure is PR2 index from [4] (Eq. (8) in loc.
cit.). It gives an effective number of atomic
centers on which the given MO is mostly

localized. Another index is oypr (Eq. (13) in
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loc. cit.). This quantity takes a small value
of order 1 when MO is delocalized (ex-
tended) over the whole system. On the con-
trary, the opg index is larger by orders of
magnitude when the atomic distribution of
the MO in question is strongly non-homoge-
neous and localized one.

More specifically, for the pristine
diamondoid C4;5H41g We observed a usual
(sufficiently delocalized) behavior of the
frontier orbitals: PR2 = 40.8 and opg = 5.8
for HOMO, and PR2 = 57.7 and oppg = 3.9
for LUMO of the singlet ground state. The
sharply different results are obtained when
analyzing the ground triplet state of color
centers. For NV~ center, HOMOs of o- and
B-shells (related to spin-up and spin-down
electrons, respectively) are given in Fig. 1.
We see that a-HOMO and B-HOMO, as

well as B-LUMO, are preferably localized in
a vicinity of the vacancy, and it is in agree-
ment with the PR2 and o[pgr values given in
the same figure. Evidently for the frontier
MOs, the most important are three dangling
carbon atoms in this defect. However, o.-LUMO
turns out to be strongly delocalized on an
upper part of the structure. The given pe-
culiarities of HOMOs and LUMOs are re-
flected in the locality of electronic transi-
tions considered in the next section.

The data for the corresponding nano-
diamond with the OV center mainly show a
similar pattern, and we do not display them
explicitly. However, in the instant case, un-
like the above case, a-LUMO is significantly
concentrated at the OV color center (almost
as for o-HOMO in Fig. 1). This feature is
consistent with the corresponding values
PR2 = 4.2 and oypr = 56.3 for the a-LUMO.
We also mention that in the nanodiamonds
having NV~ and OV centers with the Cjg,
symmetry, o-HOMO and o-LUMO are doubly
degenerate, with symmetry e. However,

Functional materials, 24, 1, 2017



AV.Luzanov / About theoretical peculiarities of ...

o -HOMO o -LUMO Jij -HOMO b -LUMO
2 [] ]
N 1 ]
L i L= ==}
||
PR2=1.4 PR2=46.3 PR2=3.7 SR2=1.4
a IPR. =119.7 o PR =49 ag IPR. =60.3 fo 3 PR =168.0

Fig. 3. C, symmetry NV~ [shift] center: localization diagrams for frontier MOs.

B-HOMO is nondegenerate of totally sym-
metric type a;, and B-LUMO is degenerate
of symmetry e.

As to nanodiamond with the Cg -symmetry
NV~ [shift] center, the situation also seems
to be quite similar to that of the Cg -sym-
metry NV~ center. But some peculiarities of
this case (see Fig. 8) require remarks. Re-
call that the vacancy center is now posi-
tioned at the fourth line of atomic centers
in Fig. 3, just above the geometric center of
the cluster. With this, the geometric center
(origin site) is now not void, being occupied
by a dangling carbon atom. Other two dan-
gling centers are neighbors of this origin
site (in Fig. 8 they are most marked, to-
gether with the origin). Thus, it is clear
from inspecting the images in Fig. 3 that
three dangling centers are not fully equiva-
lent in the NV~ [shift] color defect, and
among them the dangling carbon atom at
the origin site is the most active for all
frontier MOs. Notice that the o-HOMO is
significantly delocalized, as in the normal
NV~ center. Remark also that in most im-
ages the distal (background) atoms are su-
perimposed over the vacancy center.

We very shortly discuss the frontier or-
bital energies €. Unlike the correctly con-
structed spin-restricted open-shell MOs, the
canonical UHF orbitals cannot be inter-
preted as Koopmans orbitals [14]. That is
why we give only the HOMO-LUMO orbital
gap which can serve as a crude estimation
of the fundamental gap Ae in solid state
physics (the difference between ionization
energy and electron affinity) [15]. This
quantity is usually symbatic with the lowest
excitation energy.

Within the UHF approximation we make
a distinction between Ae for o-shell (Ae%)
and Ae for P-shell (AeP). For instance, Ae® =
erumo” —€momo”- In the adopted CNDOL
model the following values (in eV) are ob-
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tained for the NV, OV and NV~ [shift]
centers, respectively:

Ae® =1(9.78,9.25, 9.70), (1)
AP =16.70,6.91,6.70.

We return to them in the next Section,
and now only remark that AeP is notably

lower than Ae®*. Thus, we can expect that
the participation of spin-down electrons
must be the most important when forming
the lowest (TT) transitions.

4. Localization and other
properties of TT transitions

The interpretation of configuration in-
teraction wave functions in terms of local
and charge-transfer electronic transitions
has a rather long history, starting with the
work of Longuet-Higgins [16]. Seemingly,
the appropriate quantitative indices were
first introduced in [17-19], and now there
are a variety of related indices for a similar
analysis of sophisticated electronic excita-
tions (for recent advances see [2, 20—24]).
We follow our previously given technique of
excitation indices and charge transfer num-
bers [18, 19]; the technique is also named
the excited state structural analysis (ESSA)
[20]. Preliminary results of applying ESSA
to NV centers are described in [2]. We re-
port here a more extended study of the
analogous model systems.

For convenience we recall the main
points of ESSA for the CIS model. Two sets
of atomic-centered quantities are introduced
into the consideration. These are excitation
localization indices {L*,} and charge trans-
fer (CT) numbers {l4_,p}. For a given atom
A, excitation index L*, determines a meas-
ure of participation of the atom in the exci-
tation considered. Further, for the given
atom pair (A,B), CT number I, ,p deter-
mines a probability of appearing the se-
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Table 1. The calculated properties of
3A1 — 3E transition in NV~ and OV color
centers generated in pristine nanodiamond
Cy75H146- A is transition energy in eV (os-
cillator strength f in parentheses); ||'c[5||2 is
the contribution of spin-down one-electron
transitions to the total CIS excitation, and
(82)" its squared total spin; Kgpg is the
collectivity number, and PR2" is the PR2
localization index for the transition

NV~ center OV center
MF) 1.960 (0.064) | 2.183 (0.077)
”Tﬁ”2 0.981 0.979
(82)* 2.008 2.004
Kers 1.088 1.098
PR2* 3.15 3.12
lected "ion structure” |...A*...B"... ) in the

excited state (implying that the ground

state symbolically corresponds to |...A...B...)).

In [2, 3, 20], working expressions are given
for these indices in terms of the CIS coeffi-
cients (particle-hole amplitudes) and MOs; see
also Eg. (16) in the Appendix.

Turning to our problems, we first con-
sider the Cj, symmetry color centers.
Table 1 presents the computed properties of
the lowest TT transition in NV and OV cen-
ters. Worth noting is the fact that, judging
from Table 1, spin-down electrons give the
predominant contribution to the TT transi-
tion (the squared norm of the excited spin-
up electrons is ||'|:0(||2 =1 - ||TB||2). Further-
more, collectivity number xgg [19, 20]
tells us that the transition is almost one-
configurational one. Therefore, the B-fron-
tier MOs studied in the preceding section,
quite predetermine the nature of the lowest
transition. That this transition is strongly
localized follows from the PR2" values
given in the table. Below this peculiarity
will be considered with more scrutiny.

The corresponding images presenting dis-
tributions of excitation indices {L*,} and
{Ag”"4} (charge density differences) for the
lowest 3E excitation are given in Fig. 4. We
observe that this excitation is indeed sig-
nificantly (more than 70 %) localized in the
vicinity of four atoms forming the NV~ cen-
ter. If extending the region of interest by a
subcluster of radius 3 A (it contains N-atom,
three dangling atoms and, in addition, 29
carbon atoms), then we find that only 85 %
of the excitation will be captured even in this
case. In other words, even distal atoms fairly
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Fig. 4. Images for excitation indices (green)
and charge variations for the lowest 3E ex-
cited state in Cy, symmetry NV~ center. The
positive charge variations are in dark ma-
genta, and negative ones in cyan.

markedly contribute to the resulting excita-
tion. The same features are characteristic of
the OV center. Notice also that replacement
of the nitrogen by the oxygen (a more elec-
tronegative atom) causes a hypsochromic
shift about 0.2 eV (see Table 1) which is in
an accordance with changing AeP in Eq. (1).
The above mentioned CT numbers addition-
ally clarify the nature of the 3E state. There
are two "global” CT characteristics [20]. The
first is a total measure of the CT character:

A

The second is the excitation radius

Rexc = ZZA—>B|RA - RB|’ (3)
A,B

where R, stands for the Cartesian coordi-
nate vector of atom A. In the case of the 3E
state considered, CT,;,, = 82 %, that is, the
excitation is predominantly of CT character.
With this, the local (near the vacancy vicin-
ity) interatomic CT processes are signifi-
cant, so that R, . = 2.652 A (compare it
with V®8de ¢ = 2.515 A, the distance be-

tween dangling carbon atoms C, and CB in
the perfect lattice). For completeness we
present the matrix of CT numbers for all
vacancy vicinity atoms N, C,, CB’ and CY:

0.0.0170.0170.017 (4)
0. 0.052 0.050 0.050
0. 0.050 0.052 0.050
0. 0.050 0.050 0.052

||lA_>B|| =

Generally, CT matrix is nonsymmetric,
but in the case we have [, ,p =15 ,, for
three equivalent sites C,, Cg and C,. As a
result, A¢® (electronic charge variation due

Functional materials, 24, 1, 2017
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Fig. 5. Excitation indices (I, 3) and charge variation diagrams for the C, symmetry NV~ [shift]
center for the two lowest transitions TT(1) and TT(2). The positive charge variations are in dark

magenta, and negative ones in cyan.

to excitation) is rather small: Aq*N=O.065,

Somewhat dlffegent plcture is observed
for the NV~ [shift] center. The correspond-
ing visual diagrams for excitation indexes
and charge variations are exhibited in
Fig. 5. In this case, the degenerate term 3E
is spit due to symmetry-lowering from Cg,
to C,, and now we have two quasidegenerate
triplet excitations, T(l) and T(z), with tran-
sition energies Ay =1.894 eV and Ay =
2.088 eV (the average oscillator strength f
is about the previously given value in Table
1, namely f= 0.061). In the diagrams we
see that dangling atom C (which is situated
in the geometric origin of the structure) is
the most active in excitation T'(;) whereas
two other dangling atoms C, and C are
most active in T (9y. This behav1or is 1n ac-
cordance with the localization of frontier
spin-down MOs which are displayed in Fig.
3. The following CT matrices of type (4),

.035
.110 0.030 0.030]|,
.093 0.028 0.026||’
.093 0.026 0.028
.0000.028 0.028
.000 0.082 0.082
.0000.0770.074
.0000.0740.077

0.010 0.010

||lA_>B||[T(1)] =

OOOO

0.
ey gl = || O
0.

show a definite difference in the CT struec-
ture of T(l) and T(Z) in the vacancy vicinity.
As a result, the electronic charge on CB is
= -0.277), and in-

creased in T(2) (Ag” Cp = 0 208). These values

decreased in T (Ag” C,

can be compared with the above given
Ag* C, = = —0.061 for 3E. Therefore, the de-
generacy removal in 3E comes to a signifi-
cant charge redistribution in the wvacancy
vicinity of the initial (Cg,-symmetry) NV~
center. The above results for the NV~
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[shift] center are in a qualitative agreement
with those reported in [2] for a smaller
asymmeric cluster examined by a somewhat
different approach.

5. Spin densities and spin
correlators

Spin properties of the single defects
being studied are also important because of
the triplet nature of the ground state and
lowest allowed excitations in many color
centers. Here we will discuss the calculated
spin characteristics for our main systems.
In the case of Cy73H;4gN~, distributions of
atomic spin densities, {@,}, i.e. differences
between local populations of spin-up and
spin-down electrons, are portrayed in Fig. 6
where corresponding PR2 indexes are given
too. In this figure, we display spin distribu-
tion for the ground triplet state and the
spin density variation, {AQ,}, due to transi-
tion 34, — 3E. Explicitly, AQ,=Q,°*° — Q,,
where @,°*¢ is a spin density on atom A in
the excited state considered.

We observe that distribution {Q,} very
much resembles o-HOMO in Fig. 2. This is
not so surprising if we take into account
that even within UHF for triplet states, the
spin density matrix is largely formed by
two unpaired electrons which occupy a-HOMO
and o-(HOMO-1). In our case these orbitals
just correspond to the previously studied
doubly degenerate HOMO (see the first
panel in Fig. 2). The same is true for the
other color centers treated here; the de-
tailed data (variations are few percents
only) are omitted to conserve space. In both
ground and lowest excited states of all the
systems, the spin resides basically on the
three dangling carbon atoms for (nearly 3/4
of the total spin of norm 2). For example,
in the NV~ center Q[C, ]— 0.548 (in the
ground state 34,) and Q'[C,] = 0.485 (in
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Fig. 6. Spin density distribution {Q,} in the
ground state (the left panel) and difference
spin density distribution {AQ,} for the lowest
3E excited state. The positive spin density
differences are in dark magenta, and nega-
tive ones in cyan.

the excited state 3E). This small variation
of spin densities under excitation (see also
the right panel in Fig. 7) is in conformity
with the local properties of frontier MOs.
For the ground state, a strong spin localiza-
tion in the vicinity of NV centers is well
established [1, 25—-27]. Notice that the ex-
perimental situation for the lowest excited
state is not so clear.

Further information is provided by cal-
culations of the atomic spin correlators
which were introduced in quantum chemis-
try very long ago [28]. By definition, spin
correlator K,p for atomic centers A and B
is a quantum mechanical average of the sca-
lar product of local spin operators S, and
Sp for atoms A and B, respectively, viz.,
K, p = (84Sp). For their properties, appli-
cations, and computational schemes see,
e.g., [29-31]. We present here our semiem-
pirical results for the correlation matrix

K =K sgl,

containing spin correlators of atoms in the
vicinity of NV~ center. For the ground 34, and
excited 3E electronic states the results are

1.133 -0.001 -0.001 -0.001 |,

K[34,] = ;

[*4.] ’ ~0.001 1.532 0.053 0.053
ar_ |11.180 0.008 0.003 0.003|| (5

K[°E] = H 0.008 1.481 0.041 0.041|]> ©

where the first row contains the autocorre-
lation of the N atom and the correlations of
this atom with the nearest dangling atoms
Co» CB’ and Cy; the second row is related to
C,, that is one of the equivalent dangling
atoms. In these K matrices, we omitted
equivalent rows corresponding to other dan-
gling carbon atoms. As seen from Eq. (5),

133
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Fig. 7. Spin density distribution {@,} in the
ground state (the left panel) and difference
spin density distribution {AQ,} for the two
lowest TT transitions in the C, symmetry
NV~ [shift] center. The positive spin density
differences are in dark magenta, and nega-
tive ones in cyan.

similar to the spin density distributions, lit-
tle changes are observed in K due to the
electronic transition. We note also that for
usual molecular species, spin correlators can
serve as a good indicator of valence
bondings (correlators are significantly nega-
tive for strong chemical interactions). Turn-
ing to the above results we find too small
spin correlations between the dangling
atoms (near 0.05). Interestingly, in the case
of NV~ [shift] center, even these small cor-
relations almost disappear (near 0.0001). Of
course, the spin correlations of valence type
are always nonnull; e.g., in NV~ center we
find K ,p[345] = —0.867 and K,p[3E]= -
0.369 for atomic pair (A,B) = (Ca, C’) con-
sisted of dangling atom C, and its chemi-
cally bonded nearest neighbor atom C’.

6. Conclusions

In this paper we considered semiempiri-
cally the modeled nanodiamonds containing
the paramagnetic color centers. Sensible re-
sults were obtained by using the CNDOL
approach [5] to the study of these modeled
systems even with a simplified molecular
geometry. In particular, at the adopted
level of theory we have got quite satisfac-
tory results for the lowest allowed TT tran-
sitions. This allowed us to consider the re-
sulting wave functions as fairly reasonable.
On this reason we could safely apply to
these wavefunctions the previously given
technique [17-19, 20] of the CIS and CIS-
like structural analysis.

Let us summarize the main results.
First, only the spin-down frontier MOs are
all strongly localized at the color center vi-
cinity (that is on the heteroatom and dan-
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gling carbon atoms). Second, about 70 % of
the lowest TT transition is concentrated in
the color center vicinity, so the contribution
of the environment into the excitation is
not negligible. The lowest excitations have a
significant charge transfer character (80 %
or so), and the corresponding charge trans-
fer structure is mostly formed by atoms of
the color center vicinity together with
atoms of the environment (in a minor ex-
tent). Third, atomic spin densities of the
ground and excited triplet states are dis-
tributed in the same manner as the frontier
MOs are localized on atoms. At last, the
spin-correlator analysis reveals no signifi-
cant correlations of electron spins of the
dangling atoms.

Now we shortly discuss possible exten-
sions and improvements of the applied tech-
niques. With powerful computers, our ap-
proach can be advanced further, making it
more available for the treatment of nano-
clusters with many hundreds and more carb-
on atoms. At the same time, the technique
applied here is based on solving approxi-
mately a many-electron problem for the suf-
ficiently large cluster (see an example in
the Appendix). However, this approach pre-
cludes us from studying more complex prob-
lems. It is worthwhile mentioning that de-
fects are frequently treated theoretically in
the framework of the so-called embedded
cluster model [32, 33]. Even bulks and huge
clusters can be described by various models
of this type [34, 35]. The usual strategy in
these studies is to construct a classical envi-
ronment in the form of very large external
cluster (e.g., a vast set of static charges)
into which a fairly small "quantum me-
chanical” cluster is immersed. A related ap-
proach is the standard combined quantum
mechanics and molecular mechanics
(QM/MM) approach [36]. Such techniques
can be easily reformulated at the semiem-
pirical level, and this opens up an attractive
vista of research for the investigators inter-
ested in studying excited states of very
large-scale nanodiamonds with defects.
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Appendix: A modification of the
large-scale eigenvalue algorithm
for excitation energies at the
CIS/UHF level

Here we consider how to compute in the
economical way a lower part of excitation
energy spectrum within the full CIS/UHF
approximation. Let us first provide the
needed formal background. We follow in es-
sence the matrix, more exactly, matrix-co-
variant procedure described in [37] (its pre-
cursors were previously given in works [38,
39]). In the matrix formulation of CIS/UHF
theory the key quantities are spinless com-
ponents 1, and 8 of the full spin-orbital
transition density matrix 1t related to the
excited state under study. Matrix elements
of 7, in a MO basis determine particle-hole
amplitudes, or simply, excitation ampli-
tudes of spin-up electrons; the 13 matrix
elements do that for spin-down electrons.
Under this construction, the optimal transi-
tion density matrix t is but an eigenvector
of the corresponding excitation Hamiltonian
matrix I, so

I(1) = A™t, (6)

with eigenvalue A* being the respective
transition energy. The more detailed is the
following coupled set of equations (Egs. (56)
and (57) in [37]):

I(t,,p) = ATy, (tg,7) = }\.*’EB, (7

where we define an action of Il on two arbi-
trary transition matrices X, XB as follows:

(X, Xp) = 8)
= (L= Pl oKy~ Xofy + I (X + Xp) — KXy

and H(XB’ X,) is computed likewise, but
with a simultaneous exchange in Eq. (8) all
o-matrices by p-matrices and vice versa.
Here the conventional notation is used: f,
and fB are the Fock matrices for spin-up and
spin-down electrons; p, and pp are projec-
tors onto corresponding occupied orbitals;
and symbols J and K denote, respectively,
the Coulomb and exchange operators acting
on matrix argument by the standard rules
defined by Roothaan. The usual normaliza-
tion condition to 1 is used for the CIS/UHF
transition matrices:

Trl(t,)*(ty) + (tp)*(tp)] = 1. (9)
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The advantage of the covariant matrix
formulation (7, 8) is that in calculations we
can use any appropriate orbital basis. In
particular, for semiempirical schemes the
most economical is working with matrices in
AO representation. This requires no further
four-index matrix operations which appear in
the MO formulation of the related so-called
direct-CI method. Given the AO basis set of
size dim, the generic computation of Il(t) can
be easily implemented, needing only =dim3
floating point operations.

For our problem (6) we first outline the
Lanczos method which is one of the most
efficient technique for solving large-scale
incomplete eigenvalue problems (see, e. g.,
[40, 41]). In the case of Eq. (6) we start
with an initial (usually random) transition
matrix Tl of norm unity. Then we make
the corresponding recurrence (1<j<k) by
which the Lanczos vectors {X[j]}lsjsk (the
Lanczos transition matrices in our case) are
built up:

X111 = [1], (10)

xi+1] = (xtiD — allxll - pU-1ix1li-11 (11)

where oll = TrXxXUh*fr(xl), and pU1l=
[Tr(XU-Ih*(xli-1)11/2;  moreover, XI01=10
and P01 = 0. From numbers al/l and Bl the
tridiagonal Jacobi matrix T4l is shaped. Its
jth row is of the form:

TC[]] = ||0,."O,B[j_l],a[j],B[j],O,"'0”, (12)
S0
Uy = ||7T[j]||1gjgk- (13)

As a rule, the lowest eigenvector of this
matrix ("excitation matrix”) provides a
fairly good estimation of the first excited
state even for rather small sub-dimension k.
However, frequently we need several good-
quality excited states, whereas there is not
enough computer memory to store many
matrices {XUl};,, when k is not small.
Various modifications of the so-called re-
start Lanczos method could help to obviate
this difficulty [42]. And yet, in our case (in
fact, we use a laptop for calculations) there
is not much memory in volatility, and we
are forced to make a simplification of the
restart technique.

Our modification is as follows. At the
first stage, we perform the Lanczos loop,
Egs. (9)—(12), taking in practice £ = 10 + 20
(more often than not, we put £ = 15). Addi-
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tionally, we include reorthogonalization op-
erations to correct numerical results of the
above Lanczos loop, as described in [40],
sect. 13.7. Next, we fully solve the small
eigenvalue problem for IIkl(E <<|dim?).
However, to obtain more accurate results
we must, at this stage, repeat same process
(9)—(12), each time with a new X! (not
more than ten times, as usual). At each
such Lanczos’s reiteration the new XI11 is
taken as the lowest eigenvector produced by
the current excitation matrix TEl. With
relatively small &, the procedure guarantees
quite satisfactory results only for the low-
est excitation. Therefore, to compute more
excitations we proceed to a more compli-
cated process. Namely, in the second stage
we take from the first stage the two lowest-
energy solutions, T(1) and T(2)- This matrix
T(1) is almost good enough for a genuine
lowest excitation, whereas matrix 7y is
taken as the new start X1l in the sub-
sequent Lanczos loop (9)—(12). In doing so,
we must maintain the orthogonality of all
current Lanczos vectors {X[j]}lsjsk to matrix
Ta1)- As a final result of the second stage,
we obtain updated matrix ty, which is now
appropriate to the second excitation. The
corresponding T() Matrix is used as a start
for the next (third) stage and so on. A num-
ber r of the stages (outer loops) is deter-
mined by a number of the excited states we
want to calculate. After completing all r
outer loops, we have at our disposal a set of
good-quality solutions {Ti}lstr- Additionally,
we control and partly improve the results
by computing the overlap matrix

||TI'(T(i))+Tg)||1gi, j<r (14)

(checking orthogonality) and doing the asso-
ciated generalized eigenvalue problem for
the reduced excitation Hamiltonian matrix

||TI'(T(i))+H(T(j))||15i,jgr- (15)

In our modified Lanczos-type algorithm,
the final eigensolutions {1;};<, thus ob-
tained correspond as much as possible to the
r lowest excited states. The accuracy is nor-
mally estimated evaluating the energy vari-
ance 62 (the residual squared norm) for each
excited state. For our purposes o2 = 10710
atomic units is adopted as an indicator of
the good numerical accuracy. For the given
ith excitation we have explicitly spin-up
and spin-down components 7,;)* and t(i)B of
T(i)- Given these components, we compute
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the key CT numbers (within CIS//UHF) as
follows:

L= 2ok + [nkd k)P, (16)
ueAveB

Owing to Eq. (9) they are normalized to
unity, as it must be for the probability
quantities.

We employed the presented algorithm for
all examples given in the paper. Further-
more, we used it to understand how increas-
ing size of the cluster will affect the prop-
erties of clusters with single color center.
For this we took the enlarged regular
diamondoid C,75H¢72 and built up the Cg,
symmetry NV~ center of composition
Cy73H47oN™- We founded that the change in
most electronic properties of this color cen-
ter is less than percent, as compared to
Cq73H41gN~. For instance, spin-down orbital
gap Aef is found to be slightly shifted to-
wards a lower energy: AeP = 6.671 (see Eq.
(1) for comparison). This shift is consistent
with the calculated (bathochromic) shift of
34, — 3E transition energy: A =1.946 eV
(compare it with the A value from Table 1).
Notice that in this example we in fact
solved implicitly the incomplete eigenvalue
problem for 806448x896448 matrix of the
configuration interaction method.
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