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The crystal structure, electrical conductivity and thermo-e.m.f. of layered oxides
LnBaCu(Co)FeOg,; (Ln=La, Nd, Sm, Gd) of perovskite structure have been studied. The
LnBaCu(Co)FeOg,; compounds have cubic structure for Ln = La and tetragonal one for the
Ln = Nd-Gd and are p-type semiconductors (except for LaBaCoFeOg,; having negative S
values). The activation energy of electric transport, thermoelectric coefficients (Seebeck,
Peltier and Thomson) and the power factor of the oxides studied have been determined.
The power factor of LnBaCu(Co)FeOg,; phases has been found to depend on the nature of
rare earth elements and 8d-metals in their structure and to be maximum for
SmBaCuFeO;,;, GdBaCuFeOg,; and NdBaCoFeOg,5. The layered perovskites can be consid-
ered as a base for development of the new thermoelectric oxide materials.

HccunemoBanbl KpucTalinduecKas CTPYKTypa, 9J€KTPOIPOBOAHOCTL M Tepmo-dIlC ciuouc-
terx oxcumoB LnBaCu(Co)FeOg,; (Ln—-La, Nd, Sm, Gd) co crpykrypoit neposckura. Coenume-
uusa LnBaCu(Co)FeOg,; umelor Ky6uueckyo cTPYKTYpy Al Ln = Lla u rerparoHanbEyo —
ang Ln = Nd-Gd u asanaiorcs monmynpoBopHukamu p-tuna (kpome LaBaCoFeOg,s, maa xoro-
poro S < 0). OnpeneseHbl 3HAUEHUS 9HEPrHU AKTHBAIMU IIPOIECCOB dJIEKTPOIIepPEeHoca, Tep-
Mo9JIeKTpuuecKkux Koaddumuentos (3eebera, Ilesprne u Tomcoma) m (akTOpa MOIIHOCTH
U3yUeHHbIX OKcujoB. Haiimeno, uro sHavenus axropa mommuoctu as LnBaCu(Co)FeOg,
3aBHUCAT OT IPUPOJALI BXOAAIIUX B UX COCTAB PEIKO3€MEJbHBIX JIEMEHTOB U 3d-METAJJIOB U
makcumanbEb gaa SmBaCuFeOg, s, GdBaCuFeOg,; 1 NdBaCoFeOg, ;. Ilokasano, uro ciouc-
Thle IIEPOBCKUTLI MOYKHO pPACCMATPUBATL KaK OCHOBY [Jsi paspabOoTKM HOBBIX OKCHIHBIX
TEPMO3JIEKTPUUYECKUX MATEPUAJIOB.
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The direct conversion of heat into elec-
tric power is based on the Seebeck effect
and is realized in the thermo-electrogenera-
tors (TEG). The TEG efficiency depends on
the figure-of-merit (ZT) of thermoelectric
materials (TEM) used in the TEG. The ZT
value of a TEM is determined as (1):

2
7T =55 (1)
K

It is seen from Eq. (1) that to reach high
ZT wvalues, a TEM should exhibit high
thermo-e.m.f. (S) and electrical conductiv-

ity (o) and low thermal conductivity (x).
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Such possess it is just the layered bismuth
and antimony tellurides as well as silicides
of iron and other metals that show such a
complex of properties. These materials are
used in the thermoelectroconverters [1].
As to the high-temperature operation in
air, metal oxides have obvious advantages
due to their high thermal and chemical sta-
bility. It is known that the layered cobal-
tites (NaXC002 [2—-4], Ca3C0206 [2, 5-T7],
CazCo40g9 [2]) and some perovskites
(BaPbO5; [2], LaCoOj [2, 8]) show a high
thermoelectric efficiency, but search for
and development of the new oxide thermo-
electric materials (OTE) is a very important
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problem. In this work, the thermoelectric
properties of the layered perovskite oxides
LnBaCu(Co)FeOg,5 (Ln = La, Nd, Sm, Gd) is
studied and the practical usability of these
phases as OTE is estimated.

The LnBaCu(Co)FeOs,5 (Ln = La, Nd, Sm,
Gd) compounds were prepared by ceramic
method from the BaCOj; (pure grade) and
other metal oxides (pure or better than pure
grade) in air within 1173-1473 K tempera-
ture range [9, 10]. The samples were identi-
fied using X-ray analysis (Bruker D8 XRD
diffractometer, CuK -radiation, 40 kV,
40 mA; 5-100° 26 range; 0.05° scan step)
and IR absorption spectroscopy (Fourier
spectrometer Nexus ThermoNicolet; 300—
1500 em™! frequency range, in pellets con-
taining finely ground mixture of oxide com-
pound with KBr in a mass ratio of 1/200).
The oxygen content in the samples (5 + d)
was determined iodometrically (A6 = £0.01).
The electrical conductivity (o) of the sin-
tered samples was measured using DC
(I<50 mA) four-probe method (digital volt-
meters V7-58, V7-53; power supply B5-47)
in air within 300-1100 K range in dynamic
mode at heating and cooling rate of 8 to
5 Kmin~! at an error §(c)<t5 % [9, 10].
The o values for the ceramics studied were
recalculated to zero porosity as described in
[10, 11]. The thermo-e.m.f. of the ceramics
was determined with reference to silver
(digital voltmeter V7-65/3) in air within
300-1100 K range at an error 8(S)<t10 %
[9, 10]. The temperature gradient between
the hot and the cold ends of the sample was
maintained at the 20-25 K level during the
measurements. Prior to measurements of
the electrophysical properties, Ag electrodes
were deposited on the sample surface by
fusing silver paste at 1073 K for 15 min.
The chromel-alumel thermocouples were em-
ployed to measure the temperature. Using
reference data of the absolute Seebeck coef-
ficients for silver (SAg) [12, 18], the abso-
lute Seebeck coefficients of layered oxides
LnBaCu(Co)FeQOg,5 were found from the re-
sults of thermo-e.m.f. measurements. From
these values, the values of the absolute
Peltier’s (II) and Thomson’s coefficients (u)
of the LnBaCu(Co)FeOg, 5 oxides at different
temperatures had been calculated using the
equations (2) [13]:

_ _pdsS (2)
II=S8T, p= TdT'

The power factors (P) of the ceramic

samples were calculated as:
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Fig. 1. X-ray powder diffraction patterns
(CuK, radiation) and IR absorption spectra of
the LaBaCoFeOz 4, (1), NdBaCoFeOgs45 (2),
SmBaCoFeO; 5; (3) and SmBaCuFeOg g (4)
phases.

P = SzG. (3)

After the final synthesis stage in air, the
samples of the LnBaCu(Co)FeOg,5; phases
were single-phase ones within the error of
X-ray diffraction analysis, and had
perovskite structure with reflections in-
dexed in the cubic crystal system (space
group Pm3m) for Ln=La and in the
tetragonal crystal system (space group
P4/mmm) for Ln = Nd, Sm, Gd (Fig. 1). The
unit cell parameters of the samples dimin-
ished at decreasing rare-earth element
(REE) ionic radii [14] and as a whole, were
larger for the ferrocuprates than for the
ferrocobaltites due to the higher concentra-
tions of the weakly bound oxygen (3) in the
ferrocobaltites (see Table). The unit cell pa-
rameters of the ferrocuprates LnBaCuFeOg,5
agree well with the literature data [15-18].

IR absorption spectrum of the LaBa-
CoFeOg5 g7 phase has a diffuse character
with the poorly expressed absorption maxi-

mum near 580 em ! (VE). The IR absorption

spectra of the LnBaCoFeQOg,5 (LN = Nd, Sm,
Gd) ferrocobaltites and LaBaCuFeOg 47
phase exhibit two distinet bands with max-

ima at 368-370 (v;) and 584-604 (v3) cm™,
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Fig. 2. Temperature dependences of the electrical conductivity (c) (a, c) and Seebeck coefficient (S)
(b, d) of the LnBaCuFeOg,; (a, b) and LnBaCoFeQg,; (c, d) phases. Ln = La (1), Nd (2), Sm (3), Gd (4).

and IR absorption spectra of the
LnBaCuFeOg,5 (Ln = Nd, Sm, Gd) ferrocu-
prates exhibit three distinet bands with
maxima at 368-372 (v;), 544-553 (vy) and
660-664 (v3) ecm~! (Fig. 1), which are asso-
ciated with the bending (v;) and stretching
(vy) vibrations of the metal-oxygen bonds in
the [CuFeO,] layers and the stretching vi-
brations (vg) of the (Cu/Fe)-O—(Cu/Fe) bonds
containing apex oxygen atoms in the struec-
tures of LnBaCuFeO;,5 phases [10, 19].

The absence of band peaked at vy in the
absorption spectra of the ferrocobaltites and

the fact that v, < V*z < vg let us conclude

that 3d-metal-oxygen (3d-metal = Fe, Co,
Cu) interactions in the ferrocobaltites stud-
ied (as well as in the LaBaCuFeOg 47 phase)
are quasi-isotropic, whereas the 3d-metal-
oxygen distances in the [(Cu,Co)FeO,] lay-
ers of the ferrocuprates are larger than in
the ¢ direction (perpendicular to the
[CuFeO,] layers).

All the oxides studied are the p-type
semiconductors (except for LaBaCoFeOg,
with S values being negative at T < 975 K)
(Fig. 2) and their ¢ values, as a whole, de-

Table. Values of the unit cell parameters (a, ¢) and volume (V), activation energy of electrical
transport (Eg, E,,) as well as power factor (P) and Peltier’s (I1) and Thomson’s coefficients (u) at
T = 1000 K for the layered oxides LaBaCu(Co)FeOg,

Sample a, c, 103V, Eg, E_, Pio00» ;0000 11000>

nm nm nm3 eV eV W /(m-K2) mV mV/K

LaBaCuFeQOg 4, | 0.3924 - 60.42 0.020 0.045 19.7 81.4 0.402
NdBaCuFeOg , | 0.3912 | 0.7737 118.4 0.016 0.185 8.48 200 0.640
SmBaCuFeOg 5 | 0.3896 | 0.7706 117.0 - - 54.1 477 0.663
GdBaCuFeOg 4 | 0.3895 | 0.7693 116.7 - - 31.3 535 0.473
LaBaCoFeOg o; | 0.3909 - 59.73 0.006 0.081 0.372 3.67 0.150
NdBaCoFeOg g5 | 0.3909 | 0.7695 117.6 0.007 0.111 32.3 57.4 0.140
SmBaCoFeOg 45, | 0.3908 | 0.7662 117.0 0.114 0.127 16.6 57.0 0.053
GdBaCoFeOg 4, | 0.3908 | 0.7613 116.2 0.092 0.221 2.97 26.5 0.097
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Fig. 3. Temperature dependences of the power factor (P) (a, ¢c) and Peltier coefficient (IT) (b, d) of
the LnBaCuFeOg, (a, b) and LnBaCoFeOg,; (¢, d) phases. Ln = La (1), Nd (2), Sm (3), Gd (4).

creased but S values increased when REE
ionic radii increased. The ferrocobaltites
have higher ¢ values (Gm[mzl.G-lo4 Sm-1
near 650 K for NdBaCoFeOg, 5 (Fig. 2¢)) but
the ferrocuprates have higher S wvalues
(S,,02~500-550 pV-K1 near 1000-1050 K
for GdBaCuFeOg,; (Fig. 2b)).

At high temperatures, the electrical con-
ductivity character of the ferrocobaltites
and LnBaCuFeOg,s (Ln=1Lla, Nd) phases
changes from semiconducting (3oc/0T > 0)
to metallic (0c/0T < 0) (Fig. 2a,c), while
the S values start to rise sharply
(Fig. 2b,d). This is caused by the release of
the weakly bound oxygen (8) from the crys-
tal lattice of these phases [20].

In the S = f(T) dependences for SmBaFe-
Co0g,5 and GdBaFeCo0Os,5 phases, a maxi-
mum is observed near 350 K and 450 K,
respectively (Fig. 2d). The S increasing for
LnBaCoFeQOg,5 (LN = Sm, Gd) within 800-
350 (450) K range seems to be caused by a
change in the spin state of the cobalt cat-
ions Co3*, Co** in their crystal structure
from intermediate-spin (IS) to high-spin
state (HS)

Cof(t3,e)) — Cops(t4,e2),

Cofe(tdgel) — Colis(th e,

20

similarly to the spin state transition of Co3*
cations in the perovskite cobaltites of REE
LnCoO5 [21].

The temperature dependences of electri-
cal conductivity and Seebeck coefficient for
materials with polaronic charge transport
(the perovskite layered oxides belong to
these materials [9, 10, 20]) can be described
by relations (4):

c=A/T - exp((Eg + E,))/kT), 4)
S = tk/e(-Eg/kT + B),

where Eg is the excitation energy of the
charge carrier (polaron) and E,, is its trans-
port energy (E,~0 for non-activated
charge transport with large polarons (LP);
it E,, > 0, the charge transport is thermally
activated and is due to the small-polaron
(SP) hopping [22]).

The Eg and E,, values determined from
linear fractions of the In(c-7) = f(1/T) and
S = f(1/T) plots for the oxides studied are
presented in the Table. As is seen, the
charge carriers in the LnBaCu(Co)FeOg,s
phases are the small polarons (£, > 0). The
electrical transport activation energy values
(Eg and E,)) in these phases increase when
the REE ionic radius decreases and, as a

Functional materials, 16, 1, 2009
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whole, are larger for the ferrocuprates than
for the ferrocobaltites (see Table).

The power factors (P) calculated using
the experimental o and S values for the
LnBaCu(Co)FeOg,5 oxides are shown in
Fig. 3a,c and in the Table. It is seen that,
as a whole, the P values for the oxides stud-
ied increase at temperature increasing and
depend heavily on the nature of the REE
and 3d-metals in the crystal structure. The
maximum P values (among the oxides stud-
ied) are observed for SmBaCuFeOg,s,
GdBaCuFeOg,5, and NdBaCoFeOg.5 (54.1;
31.3; and 32.8 pW-m 1. K2, respectively, at
T =1000 K, see Table). These values are
considerably lower than power factors for
the sodium-cobalt oxide bronzes (for
NaCo4 gCug 20y, for example, P =
3.08 mW-m 1.K2 at 1073 K [4]), but are
close to the P values for ceramics based on
Ca3C0206 (fOI’ (Ca,Bi)3(CO,CU)206 solid solu-
tions, P~ 830-50 yW-m L.K 2 near 1173 K
[5, 6], while for Caz_85Ero_15C0206 phases,
P =10.66 yWWm 1K 2 at T=1073 K [7])
and LaCOO3 (fOI' LaC0080T|0200286 and
LaCogq ggNig 2005 g5, the power factor values
are 28.2 and 9.5 yW-m 1.K~2, respectively,
at 1243 K [8]).

Thus, although LnBaCu(Co)FeQg, 5 oxides
cannot compete with effective OTE based on
NaCo,0,4, comparison of our results with
the data from [56—8] let us conclude that
layered perovskite oxides may be used as a
basis for development of new thermoelectric
materials.

The absolute Peltier (IT) and Thomson ()
coefficients for the LnBaCu(Co)FeQg,5 ox-
ides calculated using Eqgs. (2) are presented
in Fig. 3b,d, 4, and in the Table. As is seen,
the II values for LnBaCuFeOg,5 phases in-
crease when REE ionic radii decrease and
temperature rises (for Ln = Sm, Gd, the I1 =
f(T) dependences are nearly linear) (Fig.
3b). Values of Il for LnBaCoFeOg,5 phases
were considerably lower than  for
LnBaCuFeOg,5 ones (by more than 10 times
for Ln = La, Gd near 1000 K) and their tem-
perature dependences were less pronounced
than for the ferrocuprates (Fig. 3d).

The Thomson coefficient (u) values for
LnBaCu(Co)FeOg,5 phases vary non-monoto-
nously when temperature increases and have
a minimum (for SmBaCuFeOg,s phase, a
maximum) in the temperature region 500—
700 K (Fig. 4). The p values for ferrocu-
prates LnBaCuFeOs,5 (Ln=Sm, Gd) are
positive within the whole temperature range

Functional materials, 16, 1, 2009

1, mvK? b)
02
L o
01 “‘ut‘
00 .0“.“ [
2 Teecee =L AA/_/!—'»/_A“
N
L s
-01 I Az_l-‘”""éé
"
D N
300 600 900 T,K
1w, mvK? a)
08r P
0.6 : 3 .
04t * . 2 &0 g
r mﬂ,v
02 i "A’A,_/A’ V7 A)Lﬁf-:—‘A"“ L
I e a (tut*““
0.0 M T G o
1 " 1 " L 1 " 1
300 600 900 T, K

Fig. 4. Temperature dependences of the Thom-
son’s coefficient (u) of the LnBaCuFeOg,; (a)
and LnBaCoFeOg,s (b) layered oxides: Ln = La
(1), Nd (2), Sm (3), Gd (4).

studied. For other oxides studied, the p val-
ues are positive near room temperature and
at high temperatures (near 1000 K) but
negative at intermediate temperatures (Fig. 4).
The Thomson coefficients for the ferrocu-
prates are considerably higher than for the
ferrocobaltites (by more than 10 times for
Lh = Gd near 1000 K) (Fig. 4, Table).

The main results of the experimental
study of thermoelectric properties of lay-
ered oxides LnBaCu(Co)FeOg,5 can be sum-
marized as follows. The LnBaCu(Co)FeOg,
compounds are semiconductors of n—(LaBa-
CoFeOs,5) and p-type (the other oxides)
with electrophysical properties depending
strongly on the nature of the REE and 3d-
metals in their structure. The charge trans-
port in LnBaCu(Co)FeQg,5 phases occurs due
to hopping of small polarons, the activation
energy of small-polaron hopping increasing
when REE ionic radii decrease. The power
factor values of LnBaCu(Co)FeOg,; oxides
let us consider those as a potential base for
development of new oxide thermoelectric
materials.
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TepMoeJeKTPUYHI BJACTHBOCTI MIAPyBATHX OKCH/IIB
LnBaCu(Co)FeOg,s (Ln = La, Nd, Sm, Gd)

A.I.Knunomwrx, E.A.9uixicosea

HocuimKeHO KPUCTATiUYHY CTPYKTYPY, €JeKTpolpoBiguicts Ta Tepmo-EPC miapysatux
oxcunis LnBaCu(Co)FeOg,; (Ln=La, Nd, Sm, Gd) si cTpyxryporo meposckiry. Coomyku
LnBaCu(Co)FeOg,; matorTs KybiuHy cTpyKTYpy Aas Ln = La Ta TerparonHanbry — aaa Ln =
Nd-Gd ra e mamisuposigaukamu p-tumy (oxpim LaBaCoFeOg, s, ansa axoro S < 0). Busnaue-
HO 3HAUEHHS 9HepTril akTuBallii mpolieciB eleKTpollepeHeceHHI, O0UNCIeHO BeJIUUYNHU TEePMO-
eneKTpuuHuXx Koedinieunri (3eebeka, IleapThe Ta Tomcoma) i daxTopa mory:KHOCTI HO-
crimKeHnx oxkcuiiB. Bussieno, mo sHauenHsa (axropa mory:xuocti das LnBaCu(Co)FeOg,
3aJIe;KaTh BiJ mpUpoAUM piAKicHO3eMeJbLHUX eJeMeHTIB Ta 3d-MeTaliB, AKi BXOAATH OO0 iX
craany, i € makcumanpauMu aas SmBaCuFeOg,;, GdBaCuFeOg,; Ta NdBaCoFeOg, . Iloka-
3aHO, [0 IIAPyBaTi IIEPOBCKITH MOMKHA POIIVISALATA SK OCHOBY IJisi PO3POOKU HOBUX OKCHI-

HHUX TEPMOEJEeKTPUUYHUX MaTepiaiis.
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