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A theory is offered for the ballistic 4-terminal Josephson junction. The studied system consists of a
mesoscopic two-dimensional normal rectangular layer which is attached on each side to the bulk

superconducting banks (terminals). A relation is obtained between the currents through the different

terminals, that is valid for arbitrary temperatures and junction sizes. The nonlocal coupling of the

supercurrents leads to a new effect, specific for the mesoscopic weak link between two superconducting
rings; an applied magnetic flux through one of the rings produces a magnetic flux in the other ring even
in the absence of an external flux through the other one. The phase dependent distributions of the local
density of Andreev states, of the supercurrents and of the induced order parameter are obtained. The
«interference pattern» for the anomalous average inside the two-dimensional region can be regulated by
the applied magnetic fluxes or the transport currents. For some values of the phase differences between
the terminals, the current vortex state and the two-dimensional phase slip center appear.

PACS: 73.23.-b

1. Introduction

The Josephson multiterminal junction presents a
microstructure in which the weak coupling takes
place between several massive superconducting
banks (terminals) [1-3]. Compared with the con-
ventional (2-terminal) Josephson junctions [4] such
systems have additional degrees of freedom and a
corresponding set of the control parameters. As a
result, for example, the current- or voltage-biased
and the magnetic flux-driven regimes can be com-
bined in one multiterminal junction. The specific
multichannel interference effects were studied theo-
retically and experimentally in the novel supercon-
ducting device, a 4-terminal SQUID controlled by
the transport current [3-7]. Recently another sys-
tem based on a Josephson 4-terminal junction was
studied [8]. It consists of two superconducting
rings, each interrupted by a Josephson junction,
which are at the same time weakly coupled with
each other. The macroscopic quantum states of such
a composite system can be regulated by the differ-
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ence of the magnetic fluxes applied through the
rings, in analogy with the phase difference between
two weakly coupled bulk superconductors. The non-
linear coupling via the Josephson 4-terminal leads
to the cooperative behaviour of the rings in some
region of the applied magnetic fluxes, which was
called [8] magnetic flux locking.

The 4-terminal junction, which was studied in
Refs. 5-8, is a system of short microbridges going
from a weak point to massive superconducting
banks (Fig. 1,a). The order parameter (both its
amplitude and phase) in the common center is a
function of the currents through all the micro-
bridges. The supercurrent flowing into the ith bank
is determined by the phases of the order parameter

¢, GG=1,... 4) in all the banks [5]:
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Fig. 1. The superconducting 4-terminal Josephson junction.
Four coupled superconducting microbridges, going from a weak
point to the massive superconducting banks (R, is the normal
resistance of the ith filament and &(7) is the coherence length)
(a). The mesoscopic 4-terminal Josephson junction. Four bulk
superconductors are weakly coupled through a rectangular of
two-dimensional electron gas (2DEG)(b).

The relation (1) was obtained in the frame of the
Ginzburg-Landau approach, which is valid for tem-
peratures T close to the critical temperature T, . As
was pointed in Ref. 8, the macroscopic interference
effects due to coupling of supercurrents in different
terminals are not restricted by the special kind of
the 4-terminal junction (Fig. 1,4). In fact, any
mesoscopic 4-terminal weak link will produce a
coupling similar to the relation (1). In the present
paper, the microscopic theory of the mesoscopic
ballistic 4-terminal junction is developed. We con-
sider a Josephson weak coupling through the two-
dimensional normal layer which is connected with
four bulk superconducting terminals as is shown in
Fig. 1,b. Such a S-2DEG-S structure was experi-
mentally realized in Ref. 9 for the case of two
terminals. It was shown in [9] that this new class of
fully phase coherent Josephson junctions demon-
strate the nonlocal phase dependence of mesoscopic
supercurrents. We study the coherent current states
in such a 4-terminal structure within the quasiclas-
sical equations for transport-like Green’s functions.
The relation between the currents in the different
terminals, that is valid for arbitrary temperatures
and junction sizes, is obtained. The structure of
current carrying states inside the mesoscopic 4-ter-
minal junction is itself of interest. As is well known
(see, e.g., [10]), in ballistic Josephson junction
with direct conductivity the supercurrent flows
through the local Andreev levels. In the multitermi-
nal case considered here, the spatial distribution of
current density and of the order parameter, and
hence the phase-dependent Andreev levels, are de-
termined by the phase differences between all termi-
nals. Thus, they can be regulated by the external
control parameters, i.e., the transport currents and
(or) the applied magnetic fluxes. In Section 2, we
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Fig. 2. Dashed line is i —» j trajectory passing through the
point p. All of this type trajectories are confined in the angle
91.]. . L, W are length and width of the rectangular.

present the description of the system and formulate
basic equations and boundary conditions. In Section
3 the current-phase relations analogous to (1) are
derived for the cases of small (as compared to the
coherence length) and also arbitrary junction sizes.
The spatial distributions of the supercurrent density
and of the induced order parameter are studied in
Section 4.

2, Model and basic equations

The studied system consists of 4 bulk supercon-
ducting banks which are contacted with 4 sides of
rectangular two-dimensional (2D) normal layer
having the length L and width W (see Figs. 1,b and
2). The sizes L and W are assumed to be much
larger than Fermi wavelength A = &/py. . To study
the stationary coherent current states in the 4-ter-
minal ballistic junction we use the Eilenberger
equations for &-integrated Green’s functions [11]

a A A
%5;G+h%+A¢H:Q (2)

where

is the matrix Green’s function, which depends on
the Matsubara frequency w, the electron velocity on
the Fermi surface v, and the coordinate r;

A_@ AB
=\
%5 0g
is the superconducting pair potential. For the self-

consistent off-diagonal potential A(r) and current
density j(r) we have the expressions

241



Malek Zareyan and A. N. Omelyanchouk

A =r2nTy Of, O (3)

w>0

j((r) = —4mi e N(0) Tz v g, U (4)

w>0

They determine the induced order parameter
Y =A/A and the 2D current density in the normal
layer; N(0) =m/2m [1.0 is the averaging over
directions of 2D vector v ; A is the constant of
electron-phonon coupling.

Equations (2) are supplemented by the values of
A and Green’s functions in bulk banks far from the
SN-interfaces

A, =Dy(1, cos o, - T, sin ;),
N Wi, + A,
G; o +A%)1/2 , 1,..4. (5)

We solve Egs. (2) by integrating over the «tran-
sit» trajectories of the ballistic flight of electrons
from one bank to another [12]. These trajecto-
ries [characteristics of the differential Eqs. (2)] are
straight lines along the direction of electron veloc-
ity (see Fig. 2). In the bulk superconducting banks
the order parameter can be taken as the constant
value (5) up to the SN-interface. In contrast to the
case of 2D banks, these «rigid» conditions for
A [1,12] are valid for arbitrary sizes L and W
compared with the coherence length &;-~vp/A,,
and not only for L, W>> g, . At the same time,
the Green’s function along the given transit trajec-
tory varies in a distance of about &, when approach-
ing the SN-interface.

Let us introduce the time of flight along the
trajectory, v,.0,/0r =d/dt, t, <t <o, where t =t

G, ](t)-f

A, 1By T3 -

+1 [Q cosh 2u(t - t,) - id;) + wsinh [2w(t - 1))

where Gl. R

i;] %1
[oo cosh (2u(t —t,) — i¢,) + Q sinh [20(t - t;) -

A,
+— {cosh [2w(t - 1) -

corresponds to the point on ith SN-boundary and
t = to the point inside ith bank far from the
SN-boundary. Then the general solution of Egs. (2)
inside the ith bank satisfying the boundary condi-
tions (5) will be

A wis + A,
+C[DT5 — (wcos §; + i sign (Vpny) Qsind,) T, +

-20(t - t)

(6)

+ (wsin ¢; — i sign (v n,) Q cos §,) ;2] e

Here n, is the outer normal to the ith side of the
rectangular boundary and Q = (& + A(Z))V 2. The ar-
bitrary constants C; must be found by matching of
Green'’s functions at in-coming and out-going points
at SN-boundaries with the solution inside the nor-
mal layer along the trajectory which connects these
points (see Fig. 2). We consider here the simplest
case when only Andreev reflection [13] occurs at
SN-interface. In more realistic case, when usual
reflection (e.g., due to the potential barrier) or
interface roughness are present, more general

matching conditions must be used (see [14]).

3. Current-phase relations

Inside the normal layer (A = 0), the Eilenberger
equations can be solved analytically. If we classify
the electronic trajectories inside the normal layer
according to the sides at which they come in and go
out, then the solution of Eq. (2) can be written as

— i sinh [20(t - t;) — i}, §2} +
i0)] T, +
i1 T, ) 7

- () is the matrix Green’s function along the trajectory originating in the ith side and extending

to the jth side (see Fig. 2). We denote this trajectory by i — j. Matching (7) with solution in the banks

(6), the corresponding A, s obtained:

(8,/Q) sinh ((,ot + 1(])]1/2)

(8)

4 )
i7" wsinh (wt;; +i0;,/2) + Q cosh (wt;; + id;;/2)

where ¢

=t; - t;and ¢;; = ¢, - ¢,. From (7) and (8) we have the expression for the matrix Green’s function

G P VF) as a functlon of the coordmate pOZ (X is the region of 2D rectangular weak link) and the

dlI‘ECthD of vp In fact, we can write
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G P vp) = Giaj’ for v, O Gij(p) , 9)

where we have introduced Gi]. (p) as the angle in
which all i - j trajectories, passing through the

w cosh (wtji + i(])jl./Z) + Q sinh ((,ot].l. + i¢ji/2)

point p, are confined [see Fig. 2, Eq. (A1) in
Appendix]. The diagonal and off-diagonal terms of
Giaj (#) have the forms

O

fiq]‘:

Feipi=

+(Q - (,o)Aiquexp [-2u(t - t) +i0,] =
O

W
. =—+NANA .= , (10)
;7o "Bl TG cosh (@, +i0;,/2) + 0 sinh (@, +id,,/2)
By exp (t;; +i(; + ¢,)/2) o2t - 1)
Q cosh ((,otﬁ + i(bﬁ/Z) + wsinh (wt; + i¢ji/2)
1)

In the limit L, W << & the expressions (10)
and (11) for Green’s functions are simplified and
we have

wQ + Y2 in sin (¢ i)

Jivj = (*)2+A(2)COSZ(¢ji/2) ’ (12)
B, |
fi .= : el 0, +0)/2
=7 Q cos (¢ji /2) +iwsin (¢ji /2)
(13)

We can obtain the retarded and advanced
Green’s functions, GR4(g), by analytical continu-
ation of Matsubara Green’s function G(w) (Egs.
(9)-(13)). The poles of diagonal component of the
retarded Green’s function, gR(s, P, Vj), determine
the energies of local Andreev states in the system.
The local density of states in the normal layer is
given by the formula

Ale, p) = N(0) ORe g(w = —ie, p, v;) O (14)

Using the expressions (9), (12) and the fact that
91.]. p) = eji (p) in the case of small junction, we
obtain

Alle, e, (0:)) = N(O) 3 ORe glw=—ie, p, v;) =

i#j
=N©O)Y 8,(p) Re g, ; (0= —ie) =
[N
=N(©O)Y 8, (0) Relg, ; (@=-ig) +g, , (0= -ig)] =

i<j

=, N(O)S 6, (p) (3in % 05 (el - A, cos¢2”) .
i<j

(15)

We can also use Egs. (9) and (12) to obtain

Ov, g Oat a point of the ith side p,. Then, the
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resulting expression can be replaced in Eq. (4) to
find the current density j(p,). The calculation of the
current density at the arbitrary point of the normal
rectangular will come in the next section and the
Appendix. Here we calculate the total current I,
flowing into the ith bank.

Let us start with the case of a small junction (L,

W << EO). In order to find I, we have to calculate

the integral I, :I i(p;) Ods;, where the integral is
()
taken over the ith side of rectangular.

After calculation of j(p,) from (A3) and (A5) and
taking the integral over ds; , we obtain

4
epDd @, —¢.0
== szfsmg%Ex

L) |
j=1

mo €os [((bl - ¢])/2]EL

x tanh O (16)
o aT
where d = VL2 + W2 and Yij = Vi
Yi3=1- k ; Yo, =1- !
5T e T Ty

o _. . 1O01+k O
Yio =Vi4 Va3 V34 = 9 S/lﬁ 1o, (an

O

are geometrical form factors that depend on the
width-to-length ratio 2 = W /L. The positive sign
of I, corresponds to the direction of the current

from the normal layer to the ith bank. Note that
4

S 1, =0.
i=1

The formula (16) for current-phase relations
generalizes the expression (1) to the case of a small
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mesoscopic 4-terminal junction. Tt follows from
(17) that the form factor Y;j cannot be factorized,
, presented in the form y =Yy, , in contrast to
the case of relation (1), where Yij = =(1/R) (1/R)
This essential feature of the current phase relatlons
reflects the nonlocal nature of the supercurrents in
the mesoscopic multi-terminal Josephson junction.
The current-phase relations (16) are valid for
arbitrary temperature 7. In the limiting cases of
T =0 and temperature close to T, the expression
(16) takes the forms

epFAOd 4

epFA%d
{4,

Zyljsm((b (b) for T=T_. (19)

=1

In the case of arbitrary lengths L, W, we restrict
the consideration for the temperature close to T, .
In this case current-phase relations similar to the
expression (19) can be obtained. The difference is in
geometrical form factors. In fact, we have the result

ep2d *
I;= FiAO Z Yij (k, L, W) sin (¢1 - ¢j)’

4T (20)
J=

c

- ¢,0
E}i 18
z Yij sin E for 7=0, (18) where the generalized form factors are given by
k/2
- - - -4 o ” eXp [-L(k/2 +y)(2n + 1)/(Ey cos )]
Yar T¥o1 T¥o3 TV T oo I I cos 8 @n + 1) ’
~k/2 —arctan [ + yD
% 0

L;
arctan  — g,
k/2 2 H

~ ~ 4
y42:y24ET12V_1_+_kZIdy Idecose z

—k/2 k

—arctan g + y%

Yio = Y14 = Y32 = V34

(21)

* exp [-L(2n +1)/(&, cos )]
(2n + 1)? ’

n=0

=y (L - W, W - Lk~ 1/k),

91329312942([4 - W:W—'L:k - 1/k)

Here &y, = vp/2r. In the limit L, W <<§g, VU
reduce to Yij -

4. Spatial distribution of supercurrents and
induced order parameter

In this section we will obtain the supercurrent
density and the induced order parameter at an
arbitrary point of the normal layer in the case of a
small junction. At the given point of the normal

layer p = xi + yj
Ovpg =3 (vpg @ +Dvpg )=
i>j ! !
AZ sin (b
0
U ;
12 vy % (,02 + AZ COSZ ((bﬂ/z)

i>]

(22)

where we have used Dvpgld =0vp0d g; ;
if i

Ovp @ﬁ =-0Ovp @ij and g; ;= g-. It
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The current density is obtained by replacing (22)
in the Eq. (4):

i(P) = 2meN(0)4, X

(b D cos (¢,/2)0
x 3 OV sin )" tanh Go— " h (23)
i>j

o 2T 0

The expression (23) describes the spatial distribu-
tion of the current density inside the normal layer.
In order to find the explicit expression for the

coefficients Ovy, [ in Eq. (23), we have to consider
i

four different regions in the normal rectangular and

obtain j(p) in each region separately (see Appen-
dix). This calculation has been done in the Appen-

dix and the result for j(p) is given by (A3) and
(A5). Here we write Eq. (23) in the more transpar-

ent form. Let us introduce 91-]- (p) as the unit vector

in the direction of the i - j trajectory passing
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through the bisector of 8, i (p); then Cv, [§ can be
ij

wrirren as
i
d0 OF [BijD"
Ov,. Del.]. —J’Z—HVF = sin EzPBGij . (24)
0

Combining Egs. (23) and (24), we obtain

i) = Z sin EFDGZ, (P) *
;=00 Dy sin [(8; - 9)/210
X sin .
DB 2 g™ g 2T . (25)

In a way similar to what we have done for j(p), the
distribution of the induced order parameter can be
obtained. In this case we need to calculate the
average of off-diagonal element of the matrix
Green'’s function, f, (vg, p), in the direction of vy :

OfE=y OFg =5 8; @iy (26)
i#] i#f
Replacing (26) in (3) and after the calculation, we
obtain for Y(x, y) = Mz, y)/A:
A" ,
e g) =y B e @D
i=1

Here 6,(x, ) is the angle by which ith side is seen
from the point p = (x, y). The angles 6,(x, y)’s are
given by the relations

8, =m-a(x, y) - a(-x, y),

92 = G(—x, _.7/) + G(—x, y)y

(28)
8, = - a(x, —y) - a(-x, -y),

94 = G(JC, .?/) + G(x, _y)y
where the angle

Ck/2 + yO

a(x, y) = arctan %E (29)

is a function of the coordinate (normalized by L)
and is shown in Fig. 3. Equation (27) expresses the
fact that, inside the ballistic normal layer region,
the linear superposition of four macroscopic wave
functions (pair potentials) of the banks occurs,
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Fig. 3. The angles 91,], for a point in the region II. We have just
shown 913 ,923 , 924 = 94 and also the angle a.

where the weight of wave function of the ith bank
is determinened by the geometrical factor 0,(x, ) .

3. Conclusions

The present study considers a 4-terminal micro-
structure based on a new class of mesoscopic
Josephson junctions [9] which are fully phase co-
herent and have comparable width and length. The
microscopic theory of the stationary coherent cur-
rent states in ballistic multiterminals is developed.

We have calculated the current-phase relations
(CPR), i.e., the total currents in each terminal as
functions of the phases of the superconducting order
parameter in all the banks. These relations describe
the behavior of the system influenced by the exter-
nal transport currents or the applied magnetic
fluxes. The essential difference between the CPR
for mesoscopic (expression (19)) and conventional
(relation (1)) 4-terminals consists in the structure
of the coefficients of coupling y;; . In the mesoscopic
case considered here these coefficients cannot be
factorized (presented in the form Yij = YY; for all
indexes i, j and arbitrary value of the Wldth to-
length ratio & = W/L. Here we only outline the
new effect, specific for the mesoscopic 4-terminal
junction, which follows from such nonlocal cou-
pling of the currents. Let us consider the configura-
tion shown in Fig. 4. By using the CPR (19) with
Y;; given by (17), it can be shown that an applied
magnetic flux through one of the rings produces
magnetic flux in the other ring even in the absence
of an external flux through the other one. The
detailed theory of this effect will be reported in a
separate publication.
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Fig. 4. A configuration of the mesoscopic 4-terminal Josephson
junction. The terminals 7 with 2 and 3 with 4 are short-cir-
cuited by the superconducting rings (dashed lines). The phase
differences are 6=¢,-¢,, ¢=0,-¢,, X=(¢, +9¢,)/2-
- (¢3 + ¢4)/2

The physical properties of the interior of the
mesoscopic 4-terminal junction are of interest by
themselves. The above calculated local density of
Andreev states, the current density and the order
parameter distributions depend on the phase differ-
ences between the four terminals and can be regu-
lated by the applied magnetic fluxes. In particular,
for some values of the phases ¢, 6 and x (see Fig. 4)
the «vortex states inside the mesoscopic 2D weak
link exists. Figures 5 and 6 present the plots for
distributions of the absolute value of the induced
order parameter and the supercurrent density in the
case 0 =1/2, ¢ =312, X =0. The studying of the
structure of induced order parameter and local density
of states, as well as the dynamical behavior of the
system will be the object of further investigation.
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Appendix

In this Appendix we present expressions for the
angles 6, i and the vectors Ov; [ . Using the expres-
i

sions given here, one can calculate the density of
states A/ and the current density j [see Egs. (15)
and (23)].

According to the classification of the trajectories
in term of origin and destination sides, there are 12
different types of trajectories which are 1 - 2,
1 53,15 4,25 3,2 5 4,3 - 4 and the corre-
sponding reverse of these trajectories. For a given
point, depending on the position, some of these
trajectories do not take place. In this respect we can
consider four different regions in the normal rectan-
gular: I, where y <0, |y > k|x[, (2 - 3,3 - 4 and
their reversed are absent);

IT, where x 20, lyf<kx (1 - 4,3 -~ 4 and their
reversed are absent),

I1I, where y 20, y > k|al (1 - 2,1 - 4 and their
reversed are absent)

and

IV, where x <0, |yl < kx (1 - 2,2 — 3 and their
reversed are absent).

At the given point p, for the absent trajectories
we have 0, =0, and consequently the correspond-
ing term in the expressions of A and j [Eqgs. (15)
and (23)] will vanish. We shall calculate j at the
given point of the region II and then introduce the
exchange rules of arguments to obtain it in other
regions. Consider a point in region II; the possible
(non-vanishing) 0. are drawn in Fig. 6 and can be

1

expressed in terms 8,’s (given by (28) and (29)) as

y

0-4‘/ //.rﬂ'”-r—'\——‘fh—-.\\,\
[

[ 4= =~ N
0.2} [!//h\,\m\/\
e o
Thbv
R R A
RN
_0_4_\\\H—=~——“f/f/
— /7

-04 -0.2 0 02 04 X
Fig. 6. Vector field plot of the supercurrent density, j(x, »), in-

side the normal layer. The values of phase differences are the
same as in Fig. 5.
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1
=5 (8, +6,-8;-86)),
1 Al
01355 (8~ 8, +08;+8)), A

1
0)3=5(0,+6,+8,-6), 6,,=6,.

Also we can use the relation Ov @ I devF (icos® + jsin B) to obtain
21
op ®,)
D%(’C’ Y) = { sin [a(-x, -y)] —sin [a(x, y)]] i + [ cos [a(x, )] = cos [a(=x, =11 ] },

0
WF@B(x, y) = zTi { sin [a(=x, y)] - sin [a(=x, —y)]] i + [ cos [a(-x, )] + cos [a(-x, —»)]] j },
(A2)

g (x y) = *{sm [a(x, —)] - sin [a(=x, )11 i + [ cos [a(x, —y)] — cos [a(-x, )11},

[}
WF%M(X’ y) = 271; {-sin[a(x, )] + sin [a(x, —y)]]i + [ cos [a(x, y)] - cos [alx, -»)]] j },

where a(x, y) is given by Eq. (29). The corresponding relations, valid for other regions, can be obtained
from (A1) and (A2), using the appropriate rules of index and coordinate exchange (see below).
Replacing Eqs. (A1) and (A2) in (23), we obtain for current density in a point of region TI

i y) =1k (@, 9) +1(x, )] Pig+ [k (=x, ) -k (x, )] Pyy -
— [k (x, ) +1 (=%, —9)] Py, + 1 (=x, =y) = | (x, )] Pyq, (A3)
where
k(x, y) = sin a(x, )i - cos ax, y)j ,
I(x, y) = sin a(-x, y)i + cos a(-x, y)j , (A4)

and P = (eppb,/2m) sin (¢,;,/2) tanh [A cos ((I)ﬂ /2) /2T]. The current density in other regions is obtained
from _] ;7 by applying the foflowmg rules of phase and coordinate exchange:

=g @ - -y/ky - x/k R Uk 1S S -
by - bp by > 04y 05— 0, Oy - by,
g =ip - y/ky - —x/k k5 1k 0o - i
by - 9y 0y - 03,03 - ¢4 0, - ),
v =i @ -y - -y, k= k(i - -1, j - —j);

¢ - ¢3> ¢2 - ¢/: ¢3 - ¢1 ¢/ - ¢2) (AS)

The same relations as (A5) can be used for 9 and Ovp De (the phase exchanges have to be replaced by
corresponding index exchanges).
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