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The mathematical model of superluminescence of a finite system of nonlinear oscillators is considered. With
each oscillator generating its own field, the oscillators interact through integral field of radiation. The influence of
nonlinearity of oscillators due to relativistic effects is taken into account. Characteristics of the synchronization pro-
cess are discussed. Regimes of field generation under conditions of radiation into an external space are considered.
The influence of the energy loss due to external radiation on the generation efficiency is discussed.
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INTRODUCTION

Works [1, 2] describe the emitting of Langmuir
waves by the extended and wavelength-sized beams of
non-relativistic electrons. The last case corresponds to
the process of superradiance of a beam and is qualita-
tively equal to a dissipative regime of generation. In this
case the process of emitters’ synchronization, which
creates conditions for the coherent radiation, is defined
by their spatial grouping.

But for particles with fixed centers of oscillations,
spatial grouping is impossible and phase synchroniza-
tion is difficult [3, 4]. However, nonlinear oscillators of
such kind can be synchronized by the field, in particular
— in a single-mode regime of generation [4]. But never-
theless, even in this case this process is rather slow.

Note that it is nonlinearity of oscillators that allows
their grouping into bunches in the gyrotron-like devices.
In this case their centers of oscillation slowly move
along the direction of the wave which propagates with
the decreased speed under conditions of operation near
cutoff frequency [5 - 7].

Below we pay particular attention to the connection
between descriptions (in different physical implementa-
tions) of moving emitters and fixed oscillators (both
being in the field of the excited wave). We show general
character of wave generation by the systems of emitters
and oscillators and note the main characteristics of this
process under dissipative conditions (e.g. radiation to
the external space).

1. WAKEFIELD GENERATION BY A
SHORT ELECTRON BEAM IN PLASMA

In a simplest one-dimensional case the movement of
a short beam of electrons in plasma with the length b
and initial velocity V, can be described with the follow-

ing system of equations [1, 2]:

6E/81:—9~E+N’l-iCos{2ﬂ§i+(p}y 1)
dplor=—N" -iSin{Zﬂé +@}, (2)
27-d2¢, 1de? = a
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where 27rc§:kz—a);, t=ty, o, =4re’n,, Im,

e,m, are electron charge and mass, n,,, — densities of
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the plasma and the beam, effective logarithmic decre-
ment of the oscillations in the beam &, can be defined

as the ratio of the energy leaving the beam to the whole

oscillatory energy in its volume, ie. s, =V,/a;
0=5517l5.0=M /a'a)pe)(%e /a)pe)72/3 ) 7’3 =(ny, / noe)'w?:e )
M=n,-b number of particles in the beam,

g = A+(v—v,) /v,)* =(@+Va,, / »)*, Which can be easily
derived from the equation: 2zd&/dz=k(v-v,)/y=V.
Here u=1x>0 and U(x)=0;x<0. Parameter
6 =5, 1y corresponds to the ratio of the oscillation dec-
rement without disturbing element (e.g. beam) ¢, to y—

the maximal decrement of non-dissipative instability.
The upper term in the right-hand side of (3) should be
used when describing extended beam with integral field
E-Cos{27&, +¢} accumulating in its volume. The lower

term of (3) describes the aggregated field of particles of
rather short beam with large 6. Note that this term,
generally, defines spontaneous radiation of a Langmuir
wave with frequency w,, by individual particles of the

beam. Integral field E-exp{27i&; +ig} is formed by

initial perturbation or appears because of high-
frequency energy accumulation in a relatively extended
beam. The particles in the beam do not directly interact
with each other and are connected only through the
field. Such field usually arises in the tasks of generation
or amplification of induced radiation. When 6 is small
(i.e. beam is extended) this field accumulates around the
beam, and the lower term in (3) can be discarded.

When we have large 8 >>1, contrariwise, equations
(1) and (2) altogether with the upper term of (3) can be
excluded. In this case interaction of particles becomes
significant: particles moving ahead of others affect
those behind them, but not vice versa. When the parti-
cles form groups in the beam and the phase synchroni-
zation appears, so called superradiance becomes possi-
ble — which is described by the lower term of (3).

In this case (i.e. when & >>1 and/or the beam is suf-
ficiently short), the energy of the field leaves the vol-
ume of the beam within period of time v /b<<y*. In

this case the amplification of the field is defined only by
the second term of (3) and is caused by natural grouping
of the particles and the increase of coherence of their
radiation — which eventually forms the superradiant
field. In [1, 2] it was noted that increment of the super-
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radiance process is similar to the increment of the dissi-
pative beam instability y, ~w, (o, / 5,)" = @, (kb)**,
when energy is lost due to its flow out of the volume of
the beam. Spatial modulation of the particles, similar in
both cases, lead to their phase synchronization and to
the increase of the radiation coherence. The restriction
of the amplitude is caused by the particles trapping in
the potential trough of the wave, which corresponds to
the case when oscillation frequency of trapped particles
is equal to the increment of the process:

Q=+/ekE/m = y,. Maximal field amplitude for

the beams of several Langmuir wavelengths is
E,.. =27eM . It depends only on the number of parti-

cles. For the beams much shorter than that, this ampli-
tude can reach 2E__, in some points (this is the case of
all particles being placed in one point); this happens
because of self-profiling of the beam [8]. This process
of self-profiling is of particular interest for the plasma’s
particles acceleration.

It can be easily seen that in superradiance regime for
the beams of several Langmuir wavelengths, the maxi-
mal amplitude can reach the valug
P =V.EZ /47[=$M2 «M?,

sup

i.e. it is proportional to the second power of the total
number of particles in the beam M =n,;-b. Note that the
intensity of the spontaneous radiation of similar beam
P =v.-E2 [4z=7e’yM M is proportional to the

spon 'spon

total number of particles.

2. SYSTEM OF FIXED OSCILLATORS
IN THE FIELD OF THE WAVE

Let the wave and oscillators frequency be the same
and equal to @. The wave vector is k =(0,0,k), the
field is represented as E =(E,0,0), B=(0,E,0);
E o E|-exp{—iwt+ikz+ ip}. Oscillators lie along
the OZ axis, and there are N oscillators per the wave-
length 277/ k. Mass of an oscillator is m, charge is —€,
frequency of oscillation is equal to the wave’s frequency
. Initial amplitude is ag. Assume that oscillators move
along OX axis. This allows us to neglect the influence
of the magnetic field of the wave on their dynamics [4].

For extended systems, or in a case of small group
velocity of the wave, the energy can accumulate around
oscillators, even when there is energy loss due to radia-
tion. Here we neglect the reflection effects on the
boundary of the oscillator system. In this case the effec-

tive absorption decrement is &, =2c, /b and
0=5,1y'=2c, Ib-y', where y' is the increment of
instability in a system without wave energy loss. Now
we need to consider two waves of the induced radiation
propagating in both directions. As to the spontaneous
radiation from each oscillator, as well as from the whole

system of oscillators, it always goes in both directions.
Now the motion equations of the oscillators are:
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dz,
—-E,Cos{p, +27Z; -y }-E Cos{p —-27Z; -y} (4)
- (HN)AZK[COS{—V/J- +27(Z;-Z)+y JU(Z;-Z,)
+Cos{—y; —27(Z; - Z) +y U (Z, - Z))],

d
Aj[d_rly/j -A]=
-E.Si{p, +27Z; -y ;}-E Si{p —27Z; -y}
—(N) Y A[SIN—y, +27(Z; - Z) +y U (Z; - Z,)

+ iy, ~27(Z, - Z) + v (2.~ )]
and for the integral fields E, propagating in either

(5)

direction:

0 13 _

—E, +0-E, ==Y A -Cos{y; ¥27Z, - 9.} (6)

or, = - NE .

N
E+a—¢:iZAJ Sln{l//J —_|-27Z-ZJ _¢+}v (7)
B 61‘1 N j=1 N

where E=eE/omy'a,, z=y't, AFX|/q,

(7/')2 :ﬂezno/m, kz,=Z, < (0,2z). In a non-relativistic
case A =0. With relativism we need to take into ac-
count the nonlinearity of the  oscillators:
A=a-(N-A), a=3wk-a,)*/4. If we substitute
W, > po>—@, L, >—Z;, and o —-a the sys-
tem remains invariant, i.e. the sign of « does not
change the dynamic of the process, it only makes the
phases of the wave and particles to change in opposite
direction. It can also be shown that the waves with op-
posite polarization can be described with exactly the
same equations (assuming that the particles move paral-
lel to the vector E). Particles density over length is
n, =M /b, where M is the total number of particles in
the beam, each super-particle contains M/N real ones,
7ne*M /2mc=y', . Obviously, the first terms in the
right-hand side of (4) and (5) correspond to the sponta-
neous (at least at an initial moment) radiation. Energy
density at the ends of the system can be estimated as:

w=(mafain, /2)-W . (8)
W={lEQIF (o /1) +EL+ED}= o

=2{0-|E(0,7) [ +E* +E*}.
Note that the total field of individual oscillators
| E(0,7)| at the ends of the system equals to the first
term in the right-hand side of (4). The density of the

energy flow from the system can be also derived from
the relation P=C-W.,

3. CONNECTION BETWEEN THE MODEL
OF EXCITATION OF INTEGRAL FIELD
(4) - (7) AND THE MODEL OF CYCLOTRON
INSTABILITIES

Consider the excitation of electromagnetic waves of
different polarization with the frequency o and the
wave vector K =(K,,0,Kk,) in a smooth metallic cylin-

drical waveguide with radius r,, by a beam of electrons
ISSN 1562-6016. BAHT. 2017. Ne6(112)



in resonance: m =K, -V, +N-y, where v, is velocity
and o, is the angular cyclotron frequency of the elec-
trons. Static magnetic field is B = (0,0, B). The electron
beam occupies cylindrical layer in a cross-section of the
waveguide, which we will treat as sufficiently thin. All
the centers of the Larmor rotation of electrons (with the
radius r) are located at the same distance r, from the
waveguide’s axis.

TE wave. The equations that describe TE-field of the
wave (where longitudal component of E is zero) can be
written as follows (see e.g. [9]):

dE N , .

¢ +0,-E,=N"->"a;-J,(a;)-Sin(2n; +¢,), (10)

dT j=1

do,
dt

N
_Ae = (EeN)71 : zaj . ‘]n (aj ) . COS(ZTCCj +(pe) . (11)
j=1
The motion equations of the electrons in this wave in
the presence of external uniform magnetic field are:

271% =n;,+nE,-J, () '{1—n—zz] -Cos(2nG; +o,), (12)
dt a

dn,/dt=-R -E,-a-J.(a)-Sin(2rg, +¢,), (13)
da, /dt=-n-E,-J,(a) Sin@2ng; +¢,), (14)
where T=3,t,
82 =4e” -y Ny -[m, -c-kZ -1, - J2 (X))
@-m?/x2)-D, 132 (K 1),
D, - 2—2 = offo” — (K2 +K2)c?]/ [0 —K2CTH o]y 4.

R, =k’ -og /k: -8, ,E, =e-b-J,. (K -1c)/m,-c-3,,
n=(K, v,—o+n-w;)/d,, a=k,r; =K.V, /o,
o, =eB/m,c, N, is the number of particles of undis-
turbed beam per unit length, b is the amplitude of the
wave. Axial component of the magnetic field of the
wave is B, =b-J_ (k. r)-exp{-iot+ik,z +imS} (in
cylindrical coordinates (r, 9, z)), J, (x) and

J.(x)=dJ_ (x)/dx — Bessel function of the order m and

its derivative. The requirement of the tangential compo-
nent of the field being equal to zero on the boundary of
the waveguide defines the values of the transverse wave

number k, =Kk, =X, /r,, where x . denotes the s-th

root of the equation dJ_(x)/dx=0.

TM wave. Equations describing the field of the TM
wave (which has no magnetic field in the direction of
propagation) can be written as follows (see e.g. [6]):

dE N
"+0,-E,=N"->"J (a,)-Cos(2ns +9,) , (15)

T j=1

d_(ih—Ah =(EhNYl-iJn(a,-)-Sin(chj ). (16)

The equations of motion of the electrons in this
wave are:

ZE% =M; +£'Eh "]rlm(ai)'Sin(anJi +e,), (A7)
dt CH

dn, /dt=-R,-E,-a-J,(a) Cos(2ng; +¢,) , (18)
da /dt=—(n/a;)-E,-J,(a) Cos(2n; +¢,),(19)
where t=3§,t,
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Sﬁ = 462 g 'Nbo '[me : rvf : ‘J;nz(xms)' Dm]fl .
(krfls /0‘)Bk12) ! ‘]ri—n (kms . rC)!

R, :kzz g /knzws Oy, n=(k, v, —o+n-wg)/ 3,
E,=e-h-J . (K1) Kk%/ok)/m 5, , h is the
amplitude of the wave, with the longitudal component
of the electric field
E, =h-J, (k.r)-exp{-iot+ik,z+imS} (in the
cylindrical coordinates (r, 3, z)). Other symbols are the
same as were used in the description of the TE wave.

Conserved quantities. Note that for these two waves
the following conservation equations hold:

R-a’ —2n-n = Const, (20)
N
|EF? —(2/R)-N> n, =Const, (21)
=1
N
2 - - 2
|EF -n*-N™) al =Const, (22)

j=1
with the last integral (22) being correct only when
0=0; if 620, its right-hand side should read as

Const+6-j;dt'|E(t') [>. It should be noted that the
consequence of these integrals in the absence of energy
dissipation (6=0) is the following [6]: the change of
the energy of transverse movement of the particles

-m,-N N
AWL=%N4;(E"J?_31ZO) and the change of
ms 1=

corresponding energy of the longitudal
Vo m N, & _
AW, 220" " TTho IZ(ﬂj—mo) relate as AW, /AW, =

movement

7 j=L
=nwg /k,v,, . Also the change of the energy of the field

and the energy of the transverse movement of the parti-
cles relate as o/ nw, . The case when n<0 and the par-

ticles move in the same direction as the wave, corre-
sponds to the normal Doppler effect; it does not appear
for particles which do not move in that direction. Note
that the system of equations for TM wave can be trans-
formed to a well-known system of equations for gyro-
tron even in the presence of a low-density plasma [5, 6].
Introduction of relativism (negative mass effect, see
e.g. [7]) leads to the non-linearity in the motion equa-
tions (12) and (17): mn, should be substituted by
n, —a(a; —aj;), where
aly=al |, v, =(-V5 /¢?) 7|, 0= noj -y 1 2K7C75, .
It turns out, that for linear oscillators which do not
move in the direction of the wave, systems of equations
for TE and TM waves (10) - (14) and (15) - (19) in
some particular cases are equal to the equations (4) - (7)
(with appropriate selection of o and the sign of the
field). This holds when n=1, =0, A=0, ¢—>-0,

y > 2ni+n/2, R—>0 at small & (J,(a), ,,—a/2,

8,0
‘JO(ai)a,-ﬁO -1, '1(31)3140 _>1/2)

4. CONNECTION BETWEEN DISSIPATIVE
MODE OF INSTABILITY
AND SUPERRADIANCE

From the motion equations (3) - (5) follows that with
the same values of >0 the regimes of dissipative
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instability (see upper terms in the right-hand sides of
corresponding equations) and of superradiance (the
lower term) appear similar. Dissipative mode of beam
instability in plasma has been studied quite well [1];
also the details of the dissipative mode of the system of
fixed oscillators were presented in the work [10]. The
characteristic time of these processes in any physical
realization is of the same order. Maximal values of the
wave’s amplitude are of the same order too.

In a case of superradiance, the amplitude of the
wave is proportional to the number of oscillators
M =n-b and inversely proportional to the group veloci-
ty of the excited waves. If dielectric g and magnetic 4
constants in the region around oscillators are not equal
to 1, the group velocity of the waves can be dramatical-

ly lowered: Cyq =V, =KC’/ wpié,. In the gyrotron-

like devices it is achieved by the selection of the fre-
quency of the wave near its cutoff value. Obviously, the
intensity of the superradiance will be maximal in the
direction of the largest dimension of the system — which
is observed in the experiments.

If the dimensions of the system are large enough or
the group velocity of the excited waves is sufficiently
small (i.e. 8<<1), the wave energy begins to accumu-
late in the system, and a mode with a fixed phase is
formed due to reflection from the system’s boundaries.
This mode is described by the equations (1), (2) and (6),
(7). In the right-hand sides of the equations (3), (4), and
(5) the upper terms should be used. Under such condi-
tions the superradiance regime is replaced by the gener-
ation regime. Particularly, for a short beam (see section
2) the wave’s amplitude is determined by the condition
VekE /m = y and becomes significantly larger.

Interestingly, that even in dissipative instability
(6 >1), where the decrement arises because of energy
flow out of the system, the wave’s amplitude is also pro-
portional to the number of emitters and inversely propor-
tional to the group speed of the oscillations. This allows
to talk about similarity of the dissipative instability with
effective increment )5 and the superradiant regime.
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PEXHUMBbI CBEPXU3JIYUYEHUSI CUCTEMbI HEITOABUXKHBIX OCHUJIJISITOPOB
B.M. Kyknun, /I.H. /lumeunos, A.E. Cnopos

OO0cyxmaercs MaTeMaTHYECKask MOJICNb CYTEPIIOMUHHUCLICHIINYA OTPAHUYCHHON B MPOCTPAHCTBE CHCTEMBI HEIIH-
HEHHBIX OCHUILIATOPOB. KasKablil OCHUILIATOP TeHEPUPYET CBOE MoJIe. B3auMoaeicTBHE OCIMIUIATOPOB IPOUCX OJUT
Yyepe3 HHTErPATBLHOE MMoJie 3mydeHus. [IpoBeieH yueT BIMSHIS HETHHESHHOCTH OCIIJUIATOPOB 32 CYET PEISTHBHUCT-
ckux 3¢ ¢hekToB. OOCYX)ITAIOTCSI 0COOCHHOCTH TMPOIecCa CUHXPOHU3AINH OCIIIISITOPOB. PaCCMOTPEHBI PEKUMBI
TCHEPALUU B YCIOBUAX M3JIYUYCHHUS BO BHEIIHIOK CpPEAy. YUUTHIBACTCS BIMSHUC MOTEPh SHEPTUH CHUCTEMBI 32 CYET
BHEIIIHETO M3JTydeHHsI Ha 3()()EKTUBHOCT IeHEepaIlHH.

PEXXUMU HAJIBUITPOMIHIOBAHHSI CUCTEMUA CTAINIOHAPHUX OCIUJISITOPIB
B.M. Kyknin, /.M. J/lumeunos, O.€. Cnopos

OOroBOpIOETHCSI MaTEMaTHYHA MOJETh CYIEpIIOMIiHICIIeHIIIi, 0OMeXeHoi B MPOCTOpi CHCTEMHU HENiHIHUX Oc-
musATopiB. KoskeH ocluiisTop reHepye BiacHe molie. Bzaemonis ocumusiTopi BiiOyBa€eThCsl 3a JONIOMOTOIO 1HTET-
PAJIBHOTO TTOJIS1 BUIIPOMIHIOBaHHS. BpaxoBaHO BIUTMB HENiHIHHOCT] OCIIIIATOPIB 32 PaXyHOK PEIATUBICTCHKHX ede-
KTiB. OOGroBOpIOIOTHECS OCOOIMBOCTI IPOLIECY CHHXPOHI3ALil OCHMIATOPIB. PO3MIISTHYTO pexXHMU reHepariii B yMoBax
BHIIPOMIHIOBaHHS B 30BHILIHIH mpocTip. BpaxoBaHo BIIIMB BTpaTH €HEprii CHCTEMH 3a paXyHOK 30BHIITHHOTO BHU-
MIPOMIHIOBaHHS Ha e()eKTHBHICTH TeHeparlii.
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