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We consider diffusion processes in momentum space of a relativistic electron beam moving in a spatially period-
ic magnetic field of an undulator. Basing on the dynamics of individual particles motion under the action of the pair
interaction forces the longitudinal diffusion coefficient has been derived. The conditions for the high-gain self-
amplification of spontaneous radiation in ultrashort-wavelength FELs have been discussed.
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INTRODUCTION

As it is known, relativistic electron beams, moving in
a spatially periodic static magnet field (undulator) are the
sources of intense narrowband electromagnetic radiation.
The wavelength of this radiation is proportional to the
period of an external magnetic field and inversely propor-
tional to the square of energy of electron. Such mecha-
nism of interaction between ultra-relativistic electrons and
external periodic magnetic field has been used to obtain
the electromagnetic radiation in nanometer range of
wavelengths by now [1 - 3].

At a spontaneous incoherent radiation of electromag-
netic waves by relativistic electrons, moving in an undula-
tor, there is a change of the average momentum of elec-
trons, as a result of braking by the force of radiation fric-
tion. Moreover, influence of incoherent electromagnetic
field of spontaneous radiation of individual electrons
leads to the increase in root-mean-square spread in mo-
menta in a relativistic electronic beam, moving in an un-
dulator [4, 5]. The study of motion dynamics of electrons
at the stage of spontaneous incoherent radiation is of in-
terest regarding the researches directed on creation of
sources of coherent electromagnetic radiation in X-ray
range of wavelengths by means of relativistic electron
beam passing through an undulator.

The interaction of initially monoenergetic electron
beam with an undulator field has been considered in [5]
and the expression describing the change of a root-mean-
square longitudinal momentum of electrons, in the case
when the spread in energy of electrons at the entrance of
the undulator can be neglected, has been found. The mo-
tion of the beam of electrons, having at the entrance of the
undulator some initial spread in longitudinal momentum,
is considered in the given work. In the limit case of small
value of the undulator parameter the expression for the
diffusion coefficient in momentum space is obtained,
which can describe both the initial stage of prebrownian
motion of electrons in the electromagnetic field of undula-
tor radiation, when approach of a monoenergetic electron
beam is valid, and in the case of kinetic stage of particles
diffusion.

1. PROBLEM STATEMENT

Let's consider a beam of relativistic electrons, moving
in the spatially periodic static magnet field of helical un-
dulator

H, = Ho[ex cos(k,z)+e, sin(kuz)], (1)
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k, =2n/A, , Ho and A, are the amplitude and period of
magnetic field, e,, e, are the unit vectors along axes x

and y the Cartesian system of coordinates.

Moving in an undulator, electrons radiate. The electric
field produced by individual electron (s-th) in undulator
can be found from formulas for the field of a charge,
moving with acceleration [6].

(ns-Bs,)  elnifing e, )vil]
12pr2 !r3+ 2pr 713'(2)
Vs Rg (1_nsﬁ) ¢ Rs(l_nsﬂs)
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where n.=R./R,, Ry=R(t)=r-r/t), Bp=v/c,
v=dv/dt, y= (1—B2)7]/2, ¢ is the speed of light in vacu-

um, e is the electron charge, the prime denotes the values
taken in retarding time t’, defined by the equation:
t'=t-R(t')/c.

Considering the motion of a test particle in an undula-
tor the equation describing its motion is possible to be
written down in the form
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where F,®(x;t;x;) is the longitudinal component of pair
interaction force of two electrons, m is the mass of elec-
tron, Xs(t)={rs(t), ps(t)} set of the Cartesian coordinates
and momentum of s-th electron.

2. DIFFUSION COEFFICIENT

Distribution of the electrons in the beam at the en-
trance of the undulator is random, therefore the total elec-
tromagnetic field of radiation by individual electrons at
the initial stage is incoherent. Assuming that at initial
instant of time the motion of the electrons is uncorrelated,
and there are many electrons in the beam, the diffusion
coefficient in a longitudinal momentum can be taken from
the equations of test electron motion [5, 7]

D, = 2dt<Apz' > IdrIF [ x§°)(t,q05)]x

x FOO - v7) 75 xC ><t-r,q05>]f1<q05>vz<t05)dq05,

where gos=(Pos, Xos, Yos: tos), dGos=dPosdXosdYosdtos, T=t-toi,
f, is the single-particle distribution  function,

x©) = (ri(o),p$°)). As we consider time intervals t small in

(6)
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comparison with the time of the significant change of the
electrons trajectory, in the right-hand side of Eq. (6), in
the pair interaction force, we have replaced coordinates

and the momenta with unperturbed trajectory r©(t) and

momenta p(®(t) of electron in the undulator.

Let's assume that the electron beam is cylindrical with
radius , and constant average density of electrons n, for
r <r,, and at the initial time (at z=0) distribution function
in momenta takes the form:

i S(DL)exp{—M} -

\/%pth 2 ptzh

The equilibrium velocity and trajectory of electron in
the field (1) are:

rO(t)=ro, + Voo (t —tos ) e, 1, sink,z, (t) + €, 1, cosk,z(t),

f(p)=

V(SO)(t) = Vs —€x V¢ COS kuzs(t)_ey Vs sin kuzs(t)'
K = lelHo
mc 2k,

cK cK
where = vV, =—,
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In the case of small undulator parameter K<<1, con-
sidering only the second term of force (5), from Egs. (2),
(3) and (4) we get the expression for pair interaction force
between electrons:

I:zs [rl(O)(t)l t; QOS]Z _(e K kuBs 'Yg/Yi )ZG(AZsii psi/Ys) ' (7)
_ 1 X Bs e X Joosy |
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where y(x,y)=k,y2(x+BsR.), Ru(xy)= (x2 + yz)]/2 ,

Azg =1, _st(t_tOs)v Psi :|rLi _rOLs|l kOs = BOsygsku :
Let's substitute expression for force (7) in the equation
(6). Assuming that change in momentum occurs at a dis-
tance greater than a period of the undulator, in expression
(7) we retain the terms inversely proportional to the first
degrees R.. We will also consider that the basic contribu-
tion to the integral (6) will give terms containing a differ-

ence of phases at time t and t-t’. Then Eq. (6) can be re-
duced to the form:

D, zj[dr'KZ(t,r') , (8)
0

oSy _
rr+w|’

2
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where ' =((ry; —ryc)/vos)+(zi —25), w=(vi —v )",
V- =\V(t)—\lf(t—f), dVOs =Vos dXOsdyOsdtOS'

The limits of integration in the Eq. (9) are defined by
the time of radiation propagation from electron-radiator
(s-th) to considered test electron and the transverse di-
mensions of the beam:

2
AZis +BOi Re < Z/”/i2 » Mg = (ng + ygs)./ < - (10)
In the right-hand side of Eq. (9) at the integration over

initial coordinates it is expedient to transform to the new
variables r’,0,¢:

Xos — Xoi =YsF'SINOCOSQ, Yos — Voi =YsI'SINOSING,
Az =r'cos0.
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Let's find the diffusion coefficient for electrons mov-
ing near to the beam axis. Thus the range of the integra-
tion on r’ and 0 according to the Eq. (10) is:

r'(cos0+B;)<z'/y?, yr'sin@<r,.  (11)

In Eg. (9) we will consider the forces exerted on the
test electron by the electrons, moving behind it z,<z;
(0<6<n/2). Integrating in Eq.(9) on r"and 6 at z>z«, and
substituting the obtained expression in Eq.(8), we find:

D, :;z(eZszu )Z 7Ny /Vy Je‘azxz cosbxdx, (12)
0

where a = Pnku_ Rl
2 Pzo sz
Using this formula, it is possible to find the diffusion
coefficient in momentum space for the various times at
the certain initial energy spread of electrons.

3. DISCUSSION

From the expression (12), connecting the correlation
function and diffusion coefficient, it follows that the cor-
relation function can be written in the form:

K(t,t')= rc(e2 K %k, )2 Lyon,e 7 cos(bvy, 1), (13)

where Te = ‘/Epzo/( pthkuvzo) :

From (13) we see that correlation function oscillates
on t with decreasing amplitude for large values of t. For
t—oo in formula (13) the correlation function tends to
zero. Such dependence of correlation function on time
describes chaotization of particles motion. Characteristic
time of particles motion chaotization is <, which is equal
to the displacement time in the longitudinal direction, as a
result of thermal motion, at the distance equal to the half

of the wavelength of undulator radiations 7z, =0.54/v,, ,

A= XU/Zyé . For t>>1, the motion of particles becomes

chaotic.

The expression (12) describes the change of root-
mean-square value of the momentum of electrons also at
times t<<t.. The expression for diffusion coefficient in
this case becomes:

Dz(pzi) = TE(GZKZKU)Z m Z.
Vi
In this limiting case the change in time of root-mean-
square value of the longitudinal momentum is described
by the formula

(AR

which coincides with the corresponding formula of [5],
where (F, ) =(2/3)g H3v5B30 . N =nphs /8y3o -
For t<<t, the motion of particles occurs under the influ-
ence of pair interaction forces of particles, the change in
time of which is negligible. Therefore, the r.m.s. value of
momentum is proportional to the time.

For t>> 1. the motion of electrons is random. The ex-
pression for diffusion coefficient becomes:

EXp|:— (pzi — Py )2 :I (15)

2p,

(14)

32
Lyo,N, @
D, =e*K*k, b/ olb P20

Vi \/Epth
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The r.m.s. value of the momentum increases propor-
tionally to the square root of time. Such dependence of
momenta spread in time describes the completely chaotic
motion of particles.

The distance in the undulator at which the particles
motion chaotization occurs can be written as z, = v, 7.

Then, for the electron beam with some initial energy

spread, we find:
Z, = \/Epzo/(pthku)'

Thus, for the momentum spread at the entrance of the
undulator pg,so that pyk,z/p,o <1the r.m.s. deviation

of the longitudinal momentum from equilibrium value
increases proportionally to the distance traversed by elec-
trons in the undulator (14). In this case the monoenergetic
beam approximation [5] is applicable. In the opposite
limit of large energies spread py,k,z/p,o >>1 the kinetic

stage of the radiative relaxation of an electron beam in the
undulator occurs. At this stage the r.m.s. spread increases
proportionally to the square root of time (15).

As we see from (14), at the initial energy spread for
which the mode of self amplification of spontaneous un-
dulator radiations occurs [8, 9], the energy spread in the
beam can increase as a result of the radiative relaxation
[5]. At small momentum spread py,k,z/p,o <1 the anal-

ysis of radiation formation in the mode of self amplifica-
tion of spontaneous emission needs to be carried out
while taking into account the effect of the radiative relax-
ation of the beam.
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IOPEKTHI JUNPPY3UU B PEJIATUBUCTCKOM 3JIEKTPOHHOM IIYYKE B OHAYJIATOPE

B.B. Oznueenko

PaccmoTtpens! nporeccsl auy3uu B MPOCTPAHCTBE UMITYJIBCOB PEISTHBUCTCKOIO 3JICKTPOHHOTO IMy4Ka, [BH-
JKYLLErocs B NPOCTPAHCTBEHHO NMEPUOJUUYECKOM MarHUTHOM o€ OHAYJsTopa. OCHOBBIBAsICh HA JUHAMMKE JBIKE-
HUS OTHCIHHBIX YACTHII ITOJT IEHCTBUEM CHII MMAPHOTO B3aWMOJICHCTBHUS, TOMYUYCH MPOJOIBHBIN K03(DOUIIMCHT T -
¢dy3un. OOCYyXIaroTcs YCIOBHS peaiu3alliii HHTCHCHUBHOTO CaMOIIPOM3BOIIFHOTO YCHIICHUS CIIOHTAaHHOTO HM3Iyde-

HUS B YIBTPaKOPOTKOBOIHOBBIX JICD.

E®EKTHU JU®Y3Ii B PEJISITUBICTCBKOMY EJEKTPOHHOMY MYUYKY B OHJYJISITOPI
B.B. Oznigenxo

PosrisayTo mporiecu audy3ii B IpOCTOPI IMIYJIBCIB PEISTHBICTCHKOTO SIEKTPOHHOTO IyYKa, IO PYyXa€eThCs B
IPOCTOPOBO MEPIOANIHOMY MArHITHOMY ITOJI OHIAYJIATOpa. [pYHTYIOUMCH HA UHAMIIH PyXy OKPEMUX YaCTHHOK TIijl
JIEI0 CHJI TApHOi B3a€MOIii, OTPIMaHO MO30BXKHIHN KoediieHT qudy3ii. OOroBOPIOIOTECS YMOBH peai3allii iHTeH-
CHBHOTO CAMOYHHHOT'O ITOCUJICHHSI CTIOHTAHHOTO BUITPOMIHIOBaHHS B yJIbTPaKOpOTKOXBUIIbOBUX JIBE.
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