PHOTONUCLEAR PRODUCTION OF Yb-175 N.P. Dikiy¹, A.N. Dovbnya¹, N.V. Krasnoselsky², Yu.V. Lyashko¹, E.P. Medvedeva¹, D.V. Medvedev¹, V.L. Uvarov¹, I.D. Fedorets³ ¹National Science Center "Kharkov Institute of Physics and Technology", Kharkov, Ukraine; ²S.P. Grigorev Institute of Medical Radiology, Kharkov, Ukraine; ³V.N. Karazin Kharkov National University, Kharkov, Ukraine E-mail: ndikiy@kipt.kharkov.ua The use of photonuclear nanotechnology makes it possible to obtain the 175 Yb isotope with acceptable characteristics without the content of impurities of other isotopes. Irradiation of Yb₂O₃ nanoparticles of a natural isotope composition weight's 123.5 mg in a mixture with clinoptilolite nanoparticles by bremsstrahlung with an E_{max} =13.5 MeV was carried out. The prevalence of 176 Yb isotopes is 12.6%. The reaction cross section of 176 Yb(γ ,n) 175 Yb ($T_{1/2}$ =100.8 hours) have two maximums at 12.5 and 16 MeV about 350 mbn. After separation of the clinoptilolite particles, the activity of 175 Yb in the theirs was 3.2% of the total activity of the sample for the size of Yb₂O₃ nanoparticles of the 180 nm. ## PACS: 28.60.+s; 87.53.Jw INTRODUCTION Metastatic bone damage is the most common manifestation of progression in many cancers. The frequency of bone metastases in breast cancer varies from 47 to 85% according to different authors, from 33 to 85% in prostate cancer, from 28 to 60% in the thyroid gland, from 33 to 40% in the kidneys, from 30 to 55%. In many cases, pain syndrome is the dominant factor that worsens the patient's quality of life. Sometimes this is the only complaint of the patient [1]. Isotopes ¹⁵³Sm and ¹⁷⁷Lu are successfully used for carrying out of palliative therapy of patients with metastasises in a bone and a painful syndrome. These isotopes are produced in reactors upon irradiation of ¹⁵²Sm and ¹⁷⁶Lu isotopes. Despite the large thermal neutron capture cross sections (206 bn for ¹⁵²Sm and 2097 bn for ¹⁷⁶Lu), each isotope ¹⁵³Sm and ¹⁷⁷Lu account for a significant number of impurity atoms that affect the kinetics of their uptake by a tumor. Also in the production of ¹⁷⁷Lu, an impurity of ^{177m}Lu forms on the reactors. More preferably, the ¹⁷⁶Yb(n, γ) ¹⁷⁷Yb \rightarrow ¹⁷⁷Lu reaction is, but it has a low cross section (about 1 bn). At present, no producer of high specific activity ¹⁷⁷Lu exists in Europe and clinics are dependent on the supplies from the U.S.A., Canada and Russia. Unfortunately, the quality of ¹⁷⁷Lu preparations decreases with the time needed for delivery and the price increases [1]. More acceptable nuclear characteristics of 175 Yb (Table) allow reducing the influence of β -particles on the bone marrow. Therefore, intensive research is being conducted on the production of this isotope [2 - 5]. The use of photonuclear nanotechnology makes it possible to obtain the 175 Yb isotope with better characteristics (Table) without the content of impurities of other isotopes. With used of reactors highly enriched $^{174}\mathrm{Yb}$ targets are needed for the production $^{175}\mathrm{Yb}$ in order to obtain high radio-nuclidic purity. If natural ytterbium is used as target, $^{169}\mathrm{Yb}$ and $^{177}\mathrm{Yb}$ will also be produced. The cross-section of $^{168}\mathrm{Yb}(n,\gamma)^{169}\mathrm{Yb}$ is very large (2300 barns) but the percent abundance is small (0.13%); and being a long-lived isotope the amount formed will be relatively low at short irradiation times. $^{169}\mathrm{Yb}$ ($T_{1/2}=32.018$ days) decays by electron capture process (100% K electron capture) followed by the emission of Auger electrons of low yield and the principle γ photons are of reasonably low energy (177 keV (22.5%), 197 keV (35.9%)). Though considered as a radionuclidic impurity, the presence of small amounts of ¹⁶⁹Yb will not cause any serious problem in the in vivo application of ¹⁷⁵Yb. ¹⁷⁶Yb present in the natural target (natural abundance 12.62%) will get activated to ¹⁷⁷Yb which decays with a T_{1/2} of 1.5 hours to ¹⁷⁷Lu. The specific activity of ¹⁷⁵Yb produced by direct (n, γ) reaction is adequate for therapeutic applications such as bone pain palliation and small joint synovectomy, however, is not adequate for radiolabeling peptides and antibodies [2]. Decay Data for the ¹⁵³Sm, ¹⁷⁷Lu and ^{175,169}Yb | | Decay | Energy β-particles | Energy γ- | |-------------------|---------|---------------------|-----------------| | Isotope | period, | (intensity), keV | radiation, keV, | | | hours | (%) | (intensity, %) | | ¹⁵³ Sm | 46.44 | 640 (32); 710 (49); | 103.2 (29.2) | | | | 810 (19) | | | ¹⁷⁷ Lu | 160.8 | 177 (11.6); | 55.8 (2.77); | | | | 385.3 (9); 498.3 | 112.9 (6.17); | | | | (79.4) | 208.4 (10.36) | | ¹⁷⁵ Yb | 100.8 | 73.8 (20.4); | 54.1 (3.74); | | | | 356.3 (6.7); | 113.8 (3.87); | | | | 470.1 (72.9) | 282.5 (6.13); | | | | | 396.3 (13.2) | | ¹⁶⁹ Yb | 768.4 | 50.4 (34.3); 71.1 | 63.1 (43.6); | | | | (6.2); 99.7 (5.5); | 109.8 (17.4); | | | | 117.8 (10.9); | 130.5 (11.4); | | | | 120.4 (5.2); | 177.2 (22.3); | | | | 138.6 (12.9); | 197.8 (35.9); | | | | 187.8 (2.1) | 307.7 (10) | Depending on the production route, either nocarrier-added (nca) or carrier-added (ca) radionuclides are obtained. High specific activity is necessary for systemic radionuclide therapy [6], especially when using peptides with pharmacological side effects [7]. The essential issue at the palliative treatment of disseminated bone metastases is action of radiation of isotopes by a marrow. Therefore, for therapy of osteal metastases the best properties possess of ¹⁶⁹Er isotopes. However, absence of the gamma radiation impedes diagnostic of deposition of ¹⁶⁹Er in a tumor and in normal tissue during treatment. The aim of this paper is realize of technology of carrier free ¹⁷⁵Yb by means of photonuclear reaction. The characteristics of ¹⁷⁵Yb is practically coincide with parameters of ¹⁵³Sm and ¹⁷⁷Lu (Table). ### RESULTS AND DISCUSSION Irradiation of Yb_2O_3 nanoparticles of a natural isotope composition weight's 123.5 mg in a mixture with clinoptilolite nanoparticles (265.4 mg) by bremsstrahlung with an E_{max} =13.5 MeV was carried out. The prevalence of ^{176}Yb isotope is 12.6%. The reaction cross section of $^{176}Yb(\gamma,n)^{175}Yb$ ($T_{1/2}$ =100.8 hours) have two maximums at 12.5 and 16 MeV about 350 mbn (Fig. 1). Also, nuclear reactions take place on the isotopes $^{170,168}Yb$ during the irradiation by bremsstrahlung of ytterbium with natural isotopic composition. The prevalence of $^{170,168}Yb$ isotopes are 3.14% and 0.135%, respectively. The reaction cross section of $^{170}Yb(\gamma,n)^{169}Yb$ ($T_{1/2}$ =32.018 days) also has two maximums at 12.5 and 16 MeV about 350 mbn (Fig. 2). Therefore, the ^{169}Yb impurity, when using ytterbium with a natural isotopic composition, may amount to about 3% of the activity. And as mentioned above, the presence of small amounts of ^{169}Yb will not cause any serious problem in the "in vivo" application of ^{175}Yb . The use of the enriched ^{176}Yb allows a significant reduction in the ^{169}Yb impurity. Fig. 1. Cross section of reaction 176 Yb $(\gamma,n)^{175}$ Yb [8] Also, nuclear reactions take place on the isotopes $^{170,168}{\rm Yb}$ during of the irradiation by bremsstrahlung of ytterbium of a natural isotopic composition. The prevalence of $^{170,168}{\rm Yb}$ isotopes are 3.14% and 0.135%, respectively. The reaction cross section of $^{170}{\rm Yb}(\gamma,n)^{169}{\rm Yb}$ (T $_{1/2}$ =32.018 days) also has two maximums at 12.5 and 16 MeV about 350 mbn (Fig. 2). Therefore, the $^{169}{\rm Yb}$ impurity, when using ytterbium with a natural isotopic composition, may amount to about 3% of the activity. Using enriched $^{176}{\rm Yb}$ allows to significantly reduce the impurity of $^{169}{\rm Yb}$. Procedure of deriving Yb_2O_3 in nanosize state was the following: the grinding of ytterbium oxide in an agate mortar for a long time, the precipitation of powder in the distilled water. The velocity of subsidence of of ytterbium oxide particles was being determined out of the equation: $$V = \frac{2(\rho - \rho)^2}{92}$$ where ρ , ρ_o – density of ytterbium oxide particles and water, accordingly; g – acceleration of free falling; r – particle radius; η – dynamic viscosity of water. The powder of yttrium oxide was placed in a cylinder with distilled water 12 cm high. A solution of ytterbium oxide particles was then precipitated for 735 hours. The supernatant of a solution of ytterbium oxide was then evaporated. This allowed obtaining nanoparticles of ytterbium oxide with an average size of 180 nm. Fig. 2. Cross section of reaction 170 Yb $(\gamma,n)^{169}$ Yb [8] Fig. 3. The spectrum of Yb_2O_3 +clinoptilolite after irradiated bremsstrahlung with $E_{max} = 13.5 \text{ MeV}$ The particles of clinoptilolite were obtained by the following method: grinding in an agate mortar, deposition in a cylinder with distilled water 10 cm high for 1 hour, reprecipitation of the supernatant in the cylinder (H = 10 cm) for 4.5 hours. After decantation, the precipitate was evaporated on a water bath. This made it possible to obtain clinoptilolite particles 2.5 μ m in size. After activation of samples and standards the activity of radioisotopes obtained in reactions $^{176}{\rm Yb}(\gamma,n)^{175}{\rm Yb}$ has been measured by Ge(Li)-detector with volume 50 cm³ and with energy resolution 3.2 keV in the area of 1332 keV. In Fig. 3 shows the spectrum of a mixture of ytterbium nanoparticles of natural isotopic composition (180 nm) and of clinoptilolite particles (2.5 μ m) (see Fig. 3) after irradiation with bremsstrahlung. The estimate of the average energy of neutrons for a gamma radiation with the energy of 13.5 MeV of reaction $^{176}{\rm Yb}(\gamma,n)^{175}{\rm Yb}$ is equal 980 keV [9, 10]. Therefore, the average energy of recoil nuclei of $^{175}{\rm Yb}$ is equal 5.6 keV. For this energy recoil nuclei, $^{175}{\rm Yb}$ can leave nanoparticles of ${\rm Yb}_2{\rm O}_3$ from a depth of 3.8 nm (Fig. 4). The procedure for the isolation of the particles clinoptilolite was the following: a mixture of ytterbium nanoparticles and clinoptilolite particles was mixed in of magnetic stirrer; the precipitation of powder in a cylinder with the distilled water 12 cm high for 4.5 hours; drying the sediment in a water bath. This procedure was carried out twice. The spectrum of the precipitate of clinoptilolite particles with implanted atoms ^{169,175}Yb is shown in Fig. 5. The yield of ¹⁷⁵Yb was 1.7% of the total activity of the mixture of ytterbium nanoparticles and clinoptilolite particles. The given value of an yield practically coincides with settlement value of 1.53%. Fig. 4. 175 Yb ranges in ytterbium oxide Fig. 5. The spectrum of separated clinoptilolite particles after irradiated bremsstrahlung with E_{max} =13.5 MeV On the linear accelerator of electrons of NSC KIPT with an energy of 36 MeV and a current 260 μA it is possible to produce 1.2 Ci 175 Yb during the day with using of ytterbium (30 g) with a natural isotopic composition [4]. In the targets of similar masses, but enriched in 176 Yb, the daily yield can attain 8 Ci for 175 Yb. ### **CONCLUSIONS** The possibility of photonuclear production of ^{175}Yb medical radioisotopes produced by reaction $^{176}\text{Yb}(\gamma,n)^{175}\text{Yb}$ ($T_{1/2}=100.8$ hours) was investigated. As a result there is preparation with high specific activity of ^{175}Yb which is necessary for systemic radionuclide therapy, especially when using peptides with pharmacological side effects. In NSC KIPT on the linear accelerator of electrons with E=36 MeV and a current 260 μ A it is possible to produce 1.2 Ci ¹⁷⁵Yb during the day by using of ytterbium (30 g) of natural isotope composition. #### **REFERENCES** - 1. A.F. Tsyb, B.Y. Drozdovskyi, V.V. Krylov, et al. Palliative therapy with samarimoxabibor ¹⁵³Sm with metastatic bone lesions // *Med. Radiol. Radiat. Safety.* 2002, v. 49, p. 61-69. - 2. L. Nassan, B. Achkar, T. Yassine. Post-recoil thermal annealing study of ¹⁷⁷Lu, ¹⁶⁹Yb, ¹⁷⁵Yb, ¹⁶⁶Ho and ¹⁵³Sm in different organometallic compounds // *Nukleonika*. 2011, v. 56(2), p. 185-190 (in Russian). - 3. S. Chakraborty, P.R. Unni, M. Venkatesh, M.R.A. Pillai. Feasibility study for production of ¹⁷⁵Yb: a promising therapeutic radionuclide // *Appl. Radiat. Isot.* 2002, v. 57, p. 295-301. - 4. M.U. Khandaker, H. Haba, N. Otuka, A.R. Usman. Investigation of (d,x) nuclear reactions on natural ytterbium up to 24 MeV // *Nucl. Instr. Meth. Phys. Res.* 2014, v. B335, p. 8-18. - 5. N.P. Dikiy, A.N. Dovbnya, N.V. Krasnoselskiy, et al. Photonuclear method of production of free ¹⁵³Sm by use of nanoparticles of samarium oxide and clinotilolite // *Problems of Atomic Science and Technology. Series "NPI"*. 2016, № 3(66), p. 162-165. - 6. M.R.A. Pillai. *Metallic radionuclides and therapeutic radiopharmaceuticals*. Warszawa: "Institute of nuclear chemistry and technology", 2010, 252 p. - 7. F. Rosch F.E. Forssell-Aronsson. Radio-lanthanides in nuclear medicine // *Metal Ions and Their Complexes in Medication*. New York, NY: Marcel Dekker, Inc. 2004, p. 77-108. - 8. A.M. Goryachev, G.N. Zalesnyy. Photoneutron cross sections for Yb-170, 171, 172, 173, 174 and 176 in the region of giant resonance // Vopr. Teor. *Yad. Fiz.* 1976, v. 5, p. 42-48 (in Russian). - 9. V.V. Varlamov, B.S. Ishhanov, I.M. Kapitonov. *Photonuclear reactions. Modern status experimenttal data.* Moskow: "University book", 2008, 304 p. - 10. B.S. Ishkhanov, I.M. Kapitonov. *The interaction of electromagnetic radiation with atomic nuclei*. Moskow: "MGU", 1979, 216 p. Article received 04.10.2017 # ФОТОЯДЕРНЫЙ МЕТОД ПРОИЗВОДСТВА УЬ-175 Н.П. Дикий, А.Н. Дово́ня, Н.В. Красносельский, Ю.В. Ляшко, Е.П. Медведева, Д.В. Медведев, В.Л. Уваров, И.Д. Федорец Использование фотоядерных нанотехнологий позволяет получить изотоп 175 Yb с лучшими характеристиками без содержания примесей других изотопов. Проведено облучение наночастиц Yb₂O₃ с массой естественного изотопного состава 123,5 мг в смеси с наночастицами клиноптилолита с помощью тормозного излучения с E_{max} =13,5 MэВ. Распространенность изотопов 176 Yb составляет 12,6%. Сечение реакции 176 Yb(γ ,n) 175 Yb ($T_{1/2}$ =100,8 ч) имеет два максимума при 12,5 и 16 МэВ около 350 мбн. После отделения частиц клиноптилолита активность 175 Yb в них составляла 3,2% от общей активности образца для размеров наночастиц Yb₂O₃ 180 нм. ### ФОТОЯДЕРНИЙ МЕТОД ВИРОБНИЦТВА ҮЬ-175 М.П. Дикий, А.М. Довбня, М.В. Красносельський, Ю.В. Ляшко, О.П. Медведсва, Д.В. Медведсв, В.Л. Уваров, І.Д. Федорець Використання фотоядерних нанотехнологій дозволяє отримати ізотоп 175 Yb з кращими характеристиками без вмісту домішок інших ізотопів. Проведено опромінення наночастинок Yb₂O₃ з масою природного ізотопного складу 123,5 мг у суміші з наночастинками кліноптілоліта за допомогою гальмівного випромінювання з E_{max} =13,5 MeB. Поширеність ізотопів 176 Yb становить 12,6%. Перетин реакції 176 Yb(γ ,n) 175 Yb ($T_{1/2}$ =100,8 год.) має два максимуми при 12,5 і 16 MeB близько 350 мбн. Після відділення частинок кліноптілоліта активність 176 Yb у них становила 3,2% від загальної активності зразка для розмірів наночастинок Yb₂O₃ 180 нм.