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The possibility to create the stand for tests of electronic equipment on electromagnetic compatibility based on 

TEM cell and high voltage nanosecond pulse source with a complex spectral composition has been considered. The 

pulse formation occurs in a nonlinear transmission line with saturated ferrite. In comparison with high voltage 

source using spark switches, this device has several advantages: the possibility to vary spectral composition of the 

test impulse, the design simplicity, and the output signal stability. The matching element between the coaxial feeder 

and TEM cell, which provides high efficiency of power transfer in a wide frequency range: from zero to about 

1.6 GHz, has been developed and numerically analyzed. 

PACS: 84.70.+p, 81.70.Ex 
 

INTRODUCTION 

The modern electromagnetic environment (EME) is 

determined by a number of interfering external factors 

(IEF) dangerous for electronic and digital facilities 

(EDF). In many cases, the IEF level is sufficient for 

functional upset or total disruption of their operation 

[1]. The object operation stability checks to certain IEF 

can be carried out either within the manufacture process 

or by periodic tests. The tests of EDF on electromagnet-

ic compatibility and resistance (EMC&R) are realized 

with the use of test equipment that simulates the IEF 

with a set of parameters. In the case of EMC&R tests 

for impact of electromagnetic short- and ultrashort puls-

es (USP), great complexity and high cost of high-

voltage pulse-formers, measurement equipment, and 

preparation and protection means of the test area makes 

each of the IEF simulators unique [2]. 

Usually, the test area of the USP IEF simulator is 

created on the base of the TEM cell (indoor tests) or the 

antenna system specially prepared in the testing ground 

(outdoor tests). An object under test (OUT) when locat-

ed in the TEM cell is exposed to the IEF created by the 

former of the pulse of a certain shape. Thus, the pulse 

former and TEM cell provide a set of certain IEF pa-

rameters. In regard with the investigating affect of the 

USP IEF with ultra-wide or narrow frequency spectrum 

the generators of nano/subnanosecond, the video- or mw 

signals of separate waveform can be used. In cases 

when critical EMC&R characteristics of an OUT are 

required, the USP IEF simulators use high-voltage im-

pulse formers with the voltages up to hundreds of kilo-

volts or high-power mw facilities with the impulse pow-

er up to hundreds of megawatts  relativistic magne-

trons, klystrons, vircators [3]. 

Investigations of recent years in the field of pulse-

power electronics have been associated with creation of 

unique devices capable to provide direct conversion of 

the energy of impulse signals into mw oscillations. It 

have been shown that the electric pulse with a sharp 

rise-time traveling down the transmission line, which is 

made of lumped nonlinear elements or is filled with a 

dielectric medium having nonlinear properties, can 

produce at the line output a shock wave with or without 

HF oscillations of the type of a damped sinusoid [4, 5]. 

The pulse parameters at the nonlinear transmission line 

(NLTL) output are strongly dependent on the properties 

of the line elements and the parameters of the initial 

pulse. In the experiments with NLTL based on lumped 

nonlinear reactive elements (capacitances and induct-

ances), the output USP signals with the amplitude up to 

hundreds of kilovolts, pulse rise-time of hundreds of 

picoseconds, and frequency of mw component of hun-

dreds of MHz have been obtained [6, 7]. The use of 

microstrip line technology made it possible to achieve 

the pulse rise-time of tens of picoseconds and to obtain 

HF oscillations with the frequency up to hundreds of 

GHz [8]. Relatively small impulse power of experi-

ments [8] corresponded to the limiting electrical charac-

teristics of the lumped elements and heterostructures. A 

significantly larger output impulse power (up to hun-

dreds of megawatts) was demonstrated in the experi-

ments with the NLTL, where a ferromagnetic medium 

and high-voltage insulation were used. In NLTL of this 

type, which had a coaxial design and used a NiZn based 

ferroceramic and liquid high-voltage dielectric, the 

formation of shock waves and high-frequency oscilla-

tions with the amplitude up to hundreds of kilovolts was 

demonstrated. In this case, the oscillation frequency 

varied from 0.6 to 5 GHz [9]. 

In a number of our experiments, it was demonstrated 

the possibility to combine a NLTL and impulse antenna 

with a large electrodynamic potential for radiating high-

power impulse quasiharmonic HF signals of the type of 

a decaying sinusoid within the frequency range of 

0.8…2.5 GHz [10]. In the present work, we investigate 

the possibility to use the NLTL as a source of the high-

power USP signal with a wide-ranged spectral composi-

tion for feeding a test TEM cell, which can be used in 

the EMC&R test stand TS-6 [11]. 

1. DESCRIPTION OF THE TEST STAND 

As a prototype for creating the EMC&R simulator, 

the structural design of the TS-6 described in [11] was 

taken, Fig. 1. As before, new stand uses a strip line with 

grounded bottom electrode, where the traveling TEM 

wave with ultra-wide spectral composition can be formed 

with the help of a high-voltage USP source. The general 

view of the test stand TS-6 is shown in Fig. 2. The opera-

tion area used for disposing the OUT is located in the 
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homogeneous part of the strip line  in the TEM cell 

with the dimensions L×H×W = 1.1×0.7×1.0 m. 

In the alternative construction of the TS-6 the high-

voltage impulse former (HVIF) based on the double 

forming line creating the unipolar USP is substituted for 

the HVIF based on the NLTL [10] creating the com-

bined USP  the unipolar pulse with quasiharmonic HF 

component, Fig. 3. Since the NLTL with saturated fer-

romagnetic makes it possible to form a shock wave with 

adjustable rise time, there is no need for a spark switch. 

Thus, this ensures the simplicity of design, and increas-

es the reliability and durability of the HVIF. Under 

certain conditions [10], the shock wave traveling down 

the NLTL generates damped HF oscillations. Variation 

of the bias magnetic field H0, which saturates the ferro-

magnetic medium of the NLTL, tunes the frequency and 

amplitude of the oscillations (Fig. 4), and therethrough 

the spectral composition of the signal at the line output. 

Thus, it is possible to test the equipment with the use, 

both the unipolar pulse and the quasi-harmonic signal. 

 

Fig. 1. Structural diagram of TS-6: 1  starting unit;  

2  HVIF; 3  transmission strip-line; 4  test TEM cell; 

5  shielded room with measuring equipment;  

6  shielded equipment box 

 
Fig. 2. General view of the stand TS-6: 1  strip-line 

with homogeneous operation area; 2  OUT;  

3  shielded equipment box; 4  USP forming system 
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Fig. 3. Pulse waveforms at the NLTL input (left) 

and output (right) 
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Fig. 4. Dependence of the HF oscillation frequency  

and relative amplitude on the bias magnetic field 

2. SIMULATING THE USP TEST SIGNAL 

DYNAMICS IN THE TEM CELL 

Calculation of electromagnetic properties of the 

stand test cell was carried out with the help of CST 

software Microwave Studio Suite [12]. It was assumed 

that the power supply of the TEM cell was performed 

with the use of the coaxial feeder (Z = 75 ) filled with 

transformer oil, and the electrode diameters of 8 and 

51 mm. The TEM cell (general view of the model and 

its dimensions are shown in Fig. 5) was tested by a 

signal generated by the HVIF based on the NLTL. The 

signal had combined structure: the triangular unipolar 

pulse with the amplitude of 100 kV, width of 10 ns, 

rise-time of ~ 0.5 ns, and the damped sinusoid with the 

amplitude of 55 kV, frequency f0 = 0.5…2.2 GHz [10]. 
 

 
Fig. 5. The TEM cell model and its dimensions: 1 and  

2  upper and lower electrodes of the transmission line;  

3  coaxial feeder; 4  resistive load. W1 = 1.6 m; W2 = 

1 m; L1 = 0.94 m; L2 = 1 m; L3 = 0.94 m; H = 0.7 m 

 
Fig. 6. Matching interface between the TEM cell  

and vertically disposed feeder: 1 and 2  upper  

and lower electrodes of the transmission strip-line;  

3  coaxial feeder 

First, the matching conditions between the TEM cell 

and the coaxial feeder located vertically (Fig. 6) was 

investigated. This configuration is similar to the TS-6 

stand [11]. As it developed (Fig. 7), this design has low 

efficiency due to high-level reflections in the area of 

signal input of the TEM cell. For example, at f0 = 
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1.5 GHz, more than half of the signal energy reflects 

back into the fiber, while the voltage amplitude in the 

center of the TEM cell hardly exceeds half the voltage 

created by the HVIF. 
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Fig. 7. Matching conditions for the case of vertically 

disposed feeder. The input (black), and reflected (red) 

signals, and the signal at the center of the TEM cell 

(blue), f0 = 1.5 GHz 

In this regard, another matching configuration was 

proposed  a variant with horizontal disposition of the 

coaxial feeder. In this case, to improve the matching, it 

was envisaged also to change the dimensions of the 

potential electrode at the input. In addition, to increase 

the electrical strength, the input section of the potential 

electrode was protected by the oil envelope (Fig. 8). 

 
Fig. 8. Matching interface between the TEM cell and 

horizontally disposed feeder: 1  potential upper elec-

trode; 2  grounded lower electrode; 3  coaxial feed-

er; 4  input section of the potential electrode; 

5  transformer oil envelope 
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Fig. 9. Matching conditions for the case of horizontally 

disposed feeder. The input (black), and reflected (red) 

signals, and the signal at the center of the TEM cell 

(blue), f0 = 1.5 GHz 

As one would expect, the maximum electric field 

strength corresponds to the edges of the electrodes, 

while the electric field strength is close to homogeneous 

in the center of the TEM cell (Figs. 9 and 10). 
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Fig. 10. Module of the electric field strength  

in the center of the TEM cell in (a) longitudinal 

and (b) transverse cross-sections 

The simulation results obtained for the TEM cell fed 

by the video pulse, which correspond to the HVIF oper-

ation mode without generating the quasiharmonic oscil-

lations, are shown in Figs. 11 and 12.  
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Fig. 11. The simulation results for the case of horizon-

tally disposed feeder when tested by a video pulse:  

the input signal (black), the reflected signal (red),  

and the signal in the center of the TEM cell (blue) 
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Fig. 12. Module of the electric field strength in the TEM 

cell fed by a video pulse in (a) longitudinal  

and (b) transverse cross-sections 
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efficient: the reflected signal amplitude is at a 25% level 

of the original signal, while the amplitude of the signal 

propagating in the TEM cell is almost constant. Small 

voltage excess above the level of the original signal in 

the center of the TEM cell can be explained by slight 

increase of the TEM cell impedance over the feeder 

impedance. 

More detailed study of the TEM cell electrodynamic 

properties was carried out with the use of a monochro-

matic test signal (Fig. 13) with different frequencies f0. 

From Fig. 14 it can be seen that part of the signal 

energy (f0 = 1.3 GHz) radiates from the feeder  TEM 

cell interface and from the TEM cell in side directions. 

The radiation losses of the signal at high frequencies are 

accompanied by the reflection losses due to the imped-

ance mismatch between the feeder and the TEM cell. 
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Fig. 13. The simulation results for the horizontally 

disposed feeder when tested by a harmonic signal  

with the frequency of 1.3 GHz: the input signal (black), 

the reflected signal (red), and the signal in the center  

of the TEM cell (blue) 
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Fig. 14. Module of the electric field strength in the TEM 

cell fed by a harmonic signal at f0 = 1.3 GHz  

in (a) longitudinal and (b) transverse cross-sections 

The efficiency of the monochromatic signal trans-

mission from the feeder to the TEM cell is illustrated in 

Table. It can be seen that the level of the reflected signal 

with respect to the signal at the cell input does not ex-

ceed 25% in the whole range of the investigated fre-

quencies. At the same time, as the frequency increases, 

the signal level at the center of the TEM cell decreases 

due to growing radiation losses. In the frequency range 

up to 1.6 GHz, the energy transfer efficiency from the 

feeder to the TEM cell is quite high  the wave ampli-

tude decrease in the center of the cell does not exceed 

25%. 

The values of the reflected and transmitted monochro-

matic signals compared with the input signal  

at different frequencies 

Frequency, 

GHz 

Reflected  

signal, % 

Signal in the 

center of the 

TEM cell, % 

0.5 15 106 

0.7 25 111 

1 22 98 

1.3 15 89 

1.6 16 78 

1.9 18 64 

2.2 15 50 
 

In order to minimize the reflection and radiation 

losses, the cell model geometry was optimized. In par-

ticular, it was determined that the optimum pitch angle 

of the upper and lower electrodes is 20, and the optimal 

pitch angle of the input section of the potential electrode 

of the strip-line with horizontally disposed feeder (see 

Fig. 8) is 12. 

It was studied also the dependence of the electro-

magnetic energy transfer efficiency to the TEM cell, 

depending on the transverse dimensions of the upper 

and lower TEM cell electrodes. Variation of the lower 

electrode width W1 within 800…2000 mm and the 

upper electrode width W2 within 400…1200 mm 

demonstrate that the signal amplitude at the center of 

the TEM cell changes no more than 5%. Therefore, the 

selection of the overall dimensions of the TEM cell is 

quite arbitrary and can be performed assuming only 

engineering considerations. 

The E-field distributions in the transverse direction 

of the lower electrode surface in the center of the TEM 

cell (where OUT is usually located) for the signals of 

various waveforms are shown in Fig. 15. It can be seen 

that for all signal waveforms the electric field strength 

within 200 mm of the TEM cell center is uniform with 

the accuracy of ~10%. 
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Fig. 15. The E-field distribution in the transverse direc-

tion in the center of the cell TEM for different signals:  

1  video pulse, and harmonic signal with the frequen-

cies; 2  0.7 GHz; 3  1.0 GHz; 4  1.3 GHz;  

5  1.6 GHz 
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CONCLUSIONS 

On the basis of numerical simulation of 3D model, 

which uses variety of the USP signal waveforms (and 

spectral composition, accordingly), a possibility of 

creation and studying the characteristics of the facility 

for electromagnetic compatibility tests of the electronic 

equipment, are considered. The source of the high-

voltage signal is the nonlinear transmission line, which 

uses a magnetized ferromagnetic. The discussed test 

facility has several advantages in comparison with tradi-

tional stands that use spark switches: 

• the ability to test equipment with the use either 

unipolar pulse or the quasi-harmonic signal; 

• the possibility of an instrumental control of the 

signal waveform (spectral composition); 

• the simplicity of design and stability of signal pa-

rameters, due to the absence of spark switches in the 

HVIF. 

Optimization of the feeder  TEM cell interface of 

the stand ensures high transmission efficiency of the 

USP signal with combined waveform in wide frequency 

range of 0…1.6 GHz. 
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СТЕНД ДЛЯ ТЕСТИРОВАНИЯ НА ЭЛЕКТРОМАГНИТНУЮ СОВМЕСТИМОСТЬ СИГНАЛОМ 

СВЕРХКОРОТКОЙ ДЛИТЕЛЬНОСТИ СО СЛОЖНЫМ СПЕКТРАЛЬНЫМ СОСТАВОМ 

С.Ю. Карелин, И.И. Магда, В.С. Мухин  

Рассмотрена возможность создания стенда для тестирования электронной аппаратуры на электромагнит-

ную совместимость на базе ТЕМ-ячейки и источника высоковольтных импульсов наносекундной длитель-

ности со сложным спектральным составом. Формирование импульсов происходит в нелинейной передаю-

щей линии с намагниченным ферритом. По сравнению с источником высоковольтных импульсов на основе 

искровых коммутаторов данное устройство имеет ряд преимуществ: возможность варьирования спектраль-

ного состава тестирующего импульса, простота конструкции, стабильность формируемого сигнала. Разрабо-

тан и численно исследован элемент сопряжения коаксиального фидера и ТЕМ-ячейки, обеспечивающий 

высокую эффективность передачи энергии в широком интервале частот: от нулевых до 1,6 ГГц. 

СТЕНД ДЛЯ ТЕСТУВАННЯ НА ЕЛЕКТРОМАГНІТНУ СУМІСНІСТЬ СИГНАЛОМ 

НАДКОРОТКОЇ ТРИВАЛОСТІ ЗІ СКЛАДНИМ СПЕКТРАЛЬНИМ ВМІСТОМ 

С.Ю. Карелін, І.І. Магда, В.С. Мухін  

Розглянута можливість створення стенда для тестування електронної апаратури на електромагнітну су-

місність на базі ТЕМ-комірки і джерела високовольтних імпульсів наносекундної довжини зі складним спе-

ктральним вмістом. Формування імпульсів відбувається в нелінійній передаючій лінії з насиченим феритом. 

У порівнянні з джерелом високовольтних імпульсів на основі іскрових комутаторів цей пристрій має ряд 

переваг: можливість варіювання спектрального складу тестового імпульсу, простота конструкції, стабіль-

ність сигналу, що формується. Розроблений і чисельно досліджений елемент сполучення коаксіального фі-

дера і ТЕМ-комірки, який забезпечує високу ефективність передачі енергії в широкому інтервалі частот: від 

нульових до частот біля 1,6 ГГц. 


