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Designs and process flow sheets for production of nuclear fuel rod elements and assemblies TVS-ХD with disper-

sion composition UO2+Al are presented. The results of fuel rod thermal calculation applied to Kharkiv subcritical 

assembly and Kyiv research reactor VVR-M, comparative characteristics of these fuel elements, the results of metal-

lographic analyses and corrosion tests of fuel pellets are given in this paper. 

 

INTRODUCTION 

Developed fuel assemblies TVS-XD with fuel rod 

elements and UO2+Al fuel element kernel can be uti-

lised within a nuclear facilites «Neutron source based on 

subcritical assembly (SCA) controlled by an electron 

accelerator» and research swimming pool reactor    

VVR-M [13]. Fuel assemblies have been designed as 

compatible and replaceable ones with currently utilised 

FA VVR-M2 for possibility of their complete or partial 

replacement in the active core of nuclear facilites.  

While developing fuel element and fuel assembly 

designs evaluation of their temperatures with the aid of 

thermomechanical code TRANSURANUS has been 

performed [4]. 

The purpose of this paper is to develop fuel assem-

bly designs, fuel element model and fuel pellet produc-

tion operations, execution of their metallographic anal-

yses and corrosion testing, calculation of temperature 

fields in fuel elements. 
 

1. DESIGNS OF FUEL ROD ASSEMBLIES 

Fuel rod assemblies (FRA) TVS-XD are similar in 

their dimensions and isotope U
235

 content to FRA   VVR-

M2 [57]. Their design features are presence of a rigid 

welded framework and providing possibilities for con-

venient assembly and bonding fuel elements within it. 

TVS-XD1 and TVS-XD2 comprised of 6 and 18 fuel 

elements, respectively, with claddings of E110 or E-635 

alloys and pellets of dispersion compositions of uranium 

dioxide in the form of kernels or spheres dispersed in the 

matrix of aluminium alloy.  

The process of fuel element model production in-

cludes the following process stages: encapsulation of the 

lower blind joint with cladding by electric-arc welding, 

filling the cladding with pellets, setting-up the holder, 

filling the cladding with helium and its encapsulation 

with the upper blind joint.  

The design of fuel element of linked type, in which 

dispersion core piece metallurgic ally coupled with its 

cladding offers promise for the industry. As materials for 

cladding both zirconium-base alloys (E110, E-635) and 

aluminium alloys like CAB-1, CAB-6, AMCH-2, AМg2, 

6061 etc. can be applied [8].  

The structure of TVS-XD1 (Fig. 1) is comprised of 

the following: upper and lower spacer grids, central tube, 

connection unit, upper end piece, muft, bottom nozzle 

and fuel elements. 

 

Fig. 1. Design of TVS-ХD1 [1]: 1  head; 2  upper 

grid; 3  connector adapter; 4  central tube;  

5  dispersion nuclear fuel element; 6  lower grid;  

7  muft; 8  bottom nozzle 
 

In the structure of TVS-XD2 (Fig. 2) the outer diame-

ter of fuel elements was decreased and their number was 

increased from 6 up to 18 [2]. Their cladding was made 

of E110 alloy, and dispersion fuel composition is in the 

form of pellets containing UO2+Al.  
 

 

Fig. 2. Design of TVS-XD2 [2]: 1  head; 2  upper 

grid; 3  connector adapter; 4  central tube;  

5  dispersion nuclear fuel element; 6  lower grid;  

7  muft; 8  connection unit; 9  bottom nozzle 
 

The appearance of manufactured models of TVS-

XD1, fuel elements and fuel pellets are given on Fig. 3, 

and specific design features of spacer grids are given on 

Fig. 4. 
 

 

Fig. 3. Fuel element and TVS-XD1 models 
 

Operating conditions of FRA VVR-M2 and TVS-

XD in the active cores of SCA and VVR-M are given in 

Tabl. 1, and their design, estimated and comparative 

characteristics are given in Tables 2, 3, and 4, respec-

tively. 
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Fig. 4. Designs of spacer grids of TVS-XD1 (a  the upper one, b  the lower one)  

and TVS-XD2 (c  the upper one, d  the lower one) 

 

Table 1 

Operating conditions of FRA VVR-M2 and TVS-XD in the active cores of SCA and VVR-M 

Characteristics  SCA VVR-M 

Thermal power, MW 0.26 10 

Number of fuel assemblies/fuel elements in the active core 

(XD1/XD2) 
36/(216/648) 

262/(1572/471

6) 

Coolant temperature at the outlet of active core, 
о
C ≤40 50...65 

Upper design temperature of fuel element cladding, 
о
C ≤99 ≤99 

Coolant saturation temperature, 
о
C 103 102…103 

Onset temperature of surface boiling on the cladding, 
о
C  115 115 

 

Table 2 

Design characteristics of TVS-XD 

Characteristics TVS-XD1  TVS-XD2 

“Turn key” fuel assembly dimension, mm 35 35 

Number of fuel elements in fuel assembly 6 18 

Outer diameter of fuel-element cladding, mm 9.1 5.85 

Inner diameter of fuel-element cladding, mm 7.72 4.75 

Fuel pellet diameter, mm 7.57 4.6 

Thermal column height, mm 500 500 

Fuel element grid spacing in fuel assembly, mm 12.75 7.90 

Isotope 
235

U enrichment, % 19.75 19.75 

Weight of 
235

U, g 50 50 

Weight of uranium (
235

U + 
238

U), g   250 250 

Volumetric fraction of UO2 particles in the matrix, % 20.5 20.5 
 

Table 3 

Some of calculated characteristics of TVS-XD of various designs with UO2+Al composition 

Characteristics TVS-XD1 TVS-XD2 

Heat-transfer surface area, cm
2
 857.66 1654.05 

Fuel assembly clear area, cm
2
 6.68 5.75 

Hydraulic diameter, mm 15.58 6.95 

Specific surface area per unit volume of the active core, 

cm
2
/cm

3
 

1.62 3.12 

UO2+Al fuel composition volume, cm
3
 135.02 149.57 

UO2+Al fuel composition weight, g 283.7 283.7 

Fuel composition density, g/cm
3
 4.26 4.10 

 

Table 4 

Comparative characteristics of basic FRA VVR-M2 and engineered TVS-XD 

Characteristics FA VVR-M2 TVS-XD1 TVS-XD2 

Fuel composition volume, cm
3
 95.08 135.02 149.57 

Energy conduction surface, m
2
 0.190 0.086 0.165 

Specific surface area per unit volume of the ac-

tive core, cm
2
/cm

3
 

3.585 1.617 3.120 

Clear area, cm
2
 5.85 6.68 5.75 

Hydraulic diameter, mm 5.00 15.60 6.92 

Fuel-water ratio 0.325 0.404 0.797 

  



 

 

2. TEMPERATURE EVALUATION  

IN FUEL ELEMENTS  

In order to determine operability of fuel elements an 

evaluation of their temperatures and thermal stresses is 

required. The group of thermophysical criteria limits 

maximum temperatures of fuel composition, the clad-

ding of fuel element and its maximum linear heat gener-

ation rate [7].  

In the first option, temperature in the fuel elements 

were evaluated using the known numerical dependen-

cies, and in the second option, the calculation was per-

formed using a modified TRANSURANUS code model 

for dispersion fuel. After the calculations their results 

were compared and determined calculation errors. 

To determine the operating temperature of the fuel 

core piece with conservative approach thermal gradients 

within the cladding, the gap and along the pellet radius 

were calculated, and made allowance for thermal con-

ductivity coefficients of the dispersion composition and 

the matrix (Fig. 5). 

Variation in thermal conductivity of helium filling 

the internal volume of fuel element depending on fuel 

burn-up has been taken into consideration since due to 

generation of gaseous fission products within the gap 

helium thermal conductivity decreases that increases 

temperature gradient between the cladding and fuel core 

piece.  

The thermal conductivity coefficient of dispersion 

fuel compositions is determined with some level of ap-

proximation according to Odelevskiy’s formula [8]: 
 

М M Т Т

M M Т Т M T

compλ [(3V 1) λ (3V 1) λ ]/4

2[(3V 1) λ (3V 1) λ ] /16 (λ λ )/2 ,

      

       

          
(1)

 

 

where λм is the thermal conductivity coefficient of ma-

trix material; λт is the thermal conductivity coefficient 

of fuel material; Vт is the volumetric fraction of fuel 

material; Vм is the volumetric volume of matrix materi-

al. 

The calculation results show that presence of gas 

gap significantly increases the temperature of dispersion 

fuel composition while the coupled version of the fuel 

element is operable at higher thermal loads.  
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Fig. 5. Fuel element radial temperature distribution at a designed capacity of SCA (260 kW)  

and VVR-M (10000 kW): a  TVS-XD1 (fuel elements Ø 9.1 mm); b  TVS-XD2 (fuel elements Ø 5.85 mm) 

 

In the first option, the maximum temperatures of the 

kernels of fuel elements TVS-XD1 and TVS-XD2 con-

stituted for SCA ~ 95 and ~ 70 °С, and for VVR-M 

~ 315 and ~ 155 °С, respectively. 

The calculation of fuel element temperatures for dif-

ferent heat flow with the aid of TRANSURANUS code 

showed that temperatures in the centre of the fuel kernel 

in the fuel element of container type TVS-XD1 amount-

ed for SCA ~ 85 °C, and for VVR-M reactor ~ 250 °C. 

For fuel element of coupled type temperature for SCA 

amounted to ~ 50 °C, and for VVR-M reactor ~ 65 °C. 

Also, in temperature calculations the volume of fuel 

reacted with a matrix, which degrade the thermal con-

ductivity of the fuel composition and increase tempera-

ture in the particles of uranium dioxide, should be taken 

into account [8]. Thus, the temperature of dispersion 

composition of uranium dioxide in aluminium matrix is 

within acceptable limits (taking into account the error of 

calculation of ±(5...7)%). 

 

3. DISPERSION COMPOSITIONS OF UO2+Al 

3.1. A MATRIX OF ALUMINIUM ALLOY 

Applied aluminum alloy powders (Tabl. 5) had 

shapes close to plate-like one. Determination of their 

physico-technological properties were performed in 

compliance with the following methods: particle size 

distribution according to GOST 18318-94, particle 

shape according to GOST 25849-83, bulk density ac-

cording to GOST 19440-94 and compactibility accord-

ing to GOST 25280-90. 

The study of compactibility of aluminium alloy 

powders were carried out on fractions of: 50...112; 

112...315; 500...700, and 800...1000 µm. Mechanical 

classification was conducted by dry powder sieve analy-

sis. The powder molding (Fig. 6) in the work-pieces 

were executed in a steel cylindrical mold with two 

punches changing compression compacting pressure in 

the range of 300...800 MPa. Polyethylene glycol was 

used as a binder. 

°C
 

°C
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Fig. 6. Appearances of aluminium alloy powder fractions: a  50…112; b  112…315;  

c  500…700; d  800…1000 µm 

Table 5 
Chemical composition (% weight) of aluminium powders employed 

Alloying addition → Мg Si Cu Cr Fe The basis 

AP (GOST 6058-73)  0.4 0.02  0.5…0.8 Al 

Aluminium alloy 0.8…1.2 0.4…0.8 0.35…0.65 0.03…0.1  Al 

 

Production of pellets of aluminum alloy powders 

was carried out according to a two-stage cold compres-

sion, which included basic operations: dosing of pow-

ders, mixing with the binder, cold compression of 

workpieces, vacuum annealing, cold deformation in the 

mold of larger diameter, sintering in vacuum at the 

temperature range of 450...640 °C. 

As can be seen from Fig. 7, in the pressure range of 

300...600 MPa the relative density of work pieces in-

creased linearly, and with further increase in pressure 

the values of relative density varied slightly. 

 

 

Fig. 7. Relative density of work pieces depending on 

specific moulding pressure and particle grain size of 

aluminium alloy powder 
 

Relative density of pellets was determined at differ-

ent stages of production by the methods of hydrostatic 

weighing and measuring in the air. 

With increase in size of the powders a tendency to 

an increase in the values of relative density of work-

pieces was traced. On the straight-line portion work-

piece compacting was pretty exactly governed by 

M.Yu. Balshin’s equation 9: 

maxlglglg PmP   ,                    (2) 

where  is the relative density of work-piece, %; P is 

the specific strength moulding, MPa; Рmax is the specif-

ic strength moulding, which required for obtaining a 

work-piece of 100% solidness; m is a moulding factor.  

Graph plotting in logarithmic coordinates allows 

determining the values of factor m and specific 

strength, Рmax, which is equal to the tangent of the an-

gle of inclination of straight line to axis lg and an in-

terval intercepted by this line on lgP axis, respectively. 

The values of factor m is constant and independent 

of the particle size distribution of the starting powders 

and their bulk density equal to the value of 4.10.1 for 

all cases. The values of Рmax depend on mentioned pa-

rameters and decrease with increasing particle size of 

the powder from 1047 to 816...860 MPa. 

After pressing the work-pieces of aluminium alloy 

powders, in order to relieve stress and to strip the bind-

er annealing in a vacuum furnace at 620 С was con-

ducted, which resulted in some increase in the specific 

gravity of work-pieces (up to 2%). 
 

 

Fig. 8. Relative density of work pieces of aluminium 

alloy powder depending on moulding pressure and 

their grain particle size after vacuum annealing at 

620 С, repeated cold deformation at 800 MPa  

and sintering at 620С in vacuum  
 

After repeated cold deformation and sintering in vac-

uum the pellets produced of aluminium alloy powders of 

fine fraction 50…112 µm have porosity between 5 and 

7%. Repeated deformation of work pieces in the cylin-

drical press mould of higher diameter (0.6 mm more) 

under the specific pressure of 800 MPa and the following 

annealing at 620 С in vacuum for 2 hours ensures rela-

tive density of pellets produced of three higher fractions 



 

 

of aluminium powder (except fraction 50…112 µm) 

about 99% of the theoretical value (Fig. 8). Powders of 

fraction 112…315 µm had good compactibility, the 

effect of pre-annealing temperature on final porosity of 

pellets from this fraction was insignificant, minimum 

porosity of samples was ~ 1%.  

The results of metallographic analyses of pellets 

formed from different fractions of aluminium alloy 

powder are shown in Fig. 9.  

In thin sections of pellets produced of the fine frac-

tion of 50...112 µm a layered structure of the matrix 

with the grain size of 5...7 µm and a shape preferably 

pulled in one direction were observed. Their pore size 

was 10…12 µm, pores of irregular shape were ob-

served, the nature of their distribution was uneven. 

These pores could form chains with size up to 

45...50 µm and were observed in the intergranular zone 

and on powder particle contact boundaries. Matrix mi-

crohardness was 432…525 MPa. 
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Fig. 9. Microstructure of matrix moulded of aluminium alloy powder: a  50…112; b  112…315;  

c  500…700; d  800…1000 µm 
 

3.2. PRODUCING FUEL PARTICLES OF UO2 

As the fuel component of dispersion composition 

UO2+Al uranium dioxide powder (TU 95.213-73) was 

used. It was utilized for production of sintered particles 

in the form of kernels and the microspheres of specified 

fractional composition (Tabl. 6) by the methods of 

powder metallurgy. 

Kernels was obtained by crushing pressed and sin-

tered pellets of UO2 powder. Kernels was irregular in its 

shape (comminuted). When obtaining microspheres the 

spheroidizing of semifinished cylindrical work-pieces 

was carried out with a spheronizer. The appearance of 

particles of uranium dioxide is shown in Fig. 10. 
 

  
a b 

Fig. 10. Appearance of UO2  fuel particles:  

a  kernels; b  spheres 

Table 6 

Characteristics of uranium dioxide particles  

Particle 

shape 
Size, µm 

Density,  

g/cm
3
 

Method for 

obtaining 

Spheres 
200…400 

9.0…9.8 

spheroidizing 

semi-finished 

work-pieces 

Kernels 10.4 pellet crushing 

 

3.3. PELLETIZING UO2+Al 

Process stages of producing pellets containing 

UO2+Al were brought into effect according to the flow 

diagram exhibited in Fig. 11 in the following sequence: 

preparing a mixture of aluminium alloy powder and 

granulated particles of UO2, adding a binder, mixing 

press charge, drying, press forming cylindrical work 

pieces, vacuum annealing, repeated cold deformation of 

work-pieces, pellet sintering in vacuum furnace. 
 

 

Fig. 11. Process flow sheet of UO2+Al fuel pellet  

production [3] 
 

3.4. METALLOGRAPHIC EXAMINATION 

As a result of analyses of dispersion of various com-

positions it was found the following. Density of 

UO2+Al composition with UO2 particles in the form of 

spheres was 3.83 g/cm
3
, and with particles in the form 

kernels was 3.94 g/cm
3
. The matrix had fine-grain struc-

ture with the grain size of ~ 25 µm, uneven pores were 

observed in the matrix (Fig. 12).  
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Fig. 12. Microstructure of UO2+Al:  

а  UO2 as kernels; b  UO2 as spheres 
 

Pellet density made 96…98% of maximum calculat-

ed value. 

3.5. CORROSION TESTING 

Corrosion tests were performed using comparative 

rapid test method. The samples with composition 

UO2+Al (ρpel  = 98.7% of FP) were tested in the form of 

pellets (7.6 mm, length of  8…10 mm) in autoclaves 

at the temperature of 50 С in high purity water (deaer-

ated water) under static condition. Test results are given 

in Fig. 13. 

 

 

Fig. 13. Weight gain – corrosion test duration relation-

ship of pellets containing UO2+Al at t =50 °С in high 

purity water under static conditions (SD ±5%) 
 

Also, testing of aluminium samples of different 

powder fractions and dispersion compositions with fuel 

particle simulators, which have demonstrated good cor-

rosion resistance of the aluminium matrix, was executed 

[10]. Following on from the results of autoclave testing 

depicted in Fig. 13 and results obtained before [10], cor-

rosion of samples occurs with weight gain. During the 

initial period of oxidation dramatic weight gain oc-

curred almost linearly, which illustrated the intensive 

process of aluminium matrix oxidation and free 

penetration of corrosive medium into the sample.  

With increasing time of exposure to static autoclaves 

corrosion rate decreased, meanwhile response of the 

curve of corrosion weight gain came close to the quad-

ratic dependence, which was intrinsic to the process of 

the oxide film formation on the matrix surface. When 

examining the samples after corrosion tests it was ob-

served that all samples retained integrity and initial ge-

ometry. 

 

 

 

CONCLUSIONS 
 

1. Designs of fuel assemblies TVS-XD with disper-

sion compositions based on uranium dioxide dispersed 

in aluminium matrix were developed. 

2. The process flow sheet of producing dispersion 

composition pellets, as well as fuel element and fuel rod 

assembly models are presented. 

3. The dependence of temperature distribution over 

the cross section of fuel elements and maximum tem-

perature values in pellet centres were determined. For 

TVS-XD1 и TVS-XD2 they are equal to ~ 95 and 

~ 70 °C for the SCA, and ~ 315 and ~ 155 °C for the 

VVR-M, respectively. 

4. In relation to reactor VVR-M, TVS-XD2 structure 

is more preferable since it has lower thermal load on 

fuel elements in comparison with TVS-XD1. 

5. The design of dispersion fuel elements TVS-XD 

ensures non-exceedance of the established criteria of 

safe operation in the SCA and VVR-M according to the 

temperature of fuel composition and the chosen design. 
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ТОПЛИВО ДИСПЕРСИОННОГО ТИПА ДЛЯ ИССЛЕДОВАТЕЛЬСКИХ  

ЯДЕРНЫХ УСТАНОВОК 

А.В. Куштым, Н.Н. Белаш, В.В. Зигунов, Е.А. Слабоспицкая, В.А. Зуек  

Представлены конструкции и схемы изготовления стержневых твэлов и сборок ТВС-ХД с дисперсион-

ной композицией UO2+Al. Приведены результаты теплового расчета твэлов применительно к харьковской 

подкритической установке и киевскому исследовательскому реактору ВВР-М, их сравнительные характери-

стики, результаты металлографических исследований и коррозионных испытаний топливных таблеток. 

 
ПАЛИВО ДИСПЕРСІЙНОГО ТИПУ ДЛЯ ДОСЛІДНИЦЬКИХ  

ЯДЕРНИХ УСТАНОВОК 

А.В. Куштим, М.М. Бєлаш, В.В. Зігунов, О.О. Слабоспицька, В.А. Зуйок  

Представлені конструкції і схеми виготовлення стрижневих твелів і складання ТВЗ-ХД з дисперсійною 

композицією UO2+Al. Наведено результати теплового розрахунку твелів стосовно харківської підкритичної 

установки та київського реактора ВВР-M, їхні порівняльні характеристики, результати металографічних до-

сліджень та корозійних випробувань паливних таблеток. 

 

 


