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Green's function method is used for hexagonal crystals according to Lifshitz-Rosenzweig and Kroner. Analytical
expressions have been derived for the energy of elastic interaction of radiation point defects with dislocation edge

loops of two types: C-loop (in the basal plane; the Burger’s vector b°® =1/ 2<0001>) and a -loop (in the plane

{11?0} , the Burger’s vector b® =1/ 3<11§0> ). In the case of the basal loop an analogous expression is obtained

by the independent solution of the equilibrium equations by the Eliot’s method. Numerical comparison of the
expressions for zirconium showed complete identity of these approaches.

PACS: 62.20.Dc; 62.20.Fe

1. INTRODUTION AND THE BASIC

Irradiation by high-energy particles of the
constructions of nuclear facilities significantly change
their physical properties and entails a number of
phenomena that limit the duration of their operation [1]
(radiation embrittlement, radiation growth and creep,
radiation swelling). They adversely affect on the
performance of the elements of the reactors designs,
disabling them in unscheduled time. The physical
mechanisms underlying these phenomena are connected
with the evolution of the defect structure of the original
material, which is caused by diffusion fluxes of
radiation point defects (PD) (SIAs, vacancies) for
specific components of this structure. Density of flow of

PD to internal sinks S, which are the elements of the
defect structure of the material, contains two terms at a
constant temperature T and an isotropic coefficient of
diffusion D :

M)

i*(r)=-=vem- D(;(r) v Eiln(tT(r) .

The first (stochastic) connected with the gradient of
the concentration C(r) of PD in the material volume

and at the sink boundary, the second (drift current) —
connected with the interaction of PD with the sink

elastic field E; (r). Therefore, the theoretical
description of the sinks system evolution implies the
ability to calculate the value E> (r). The most

important element of the defect structure of any metal is
a system of dislocations in the form of single loops or
clusters (network in cubic and rows or layers in
hexagonal close-packed crystals). With regard to
clusters, it is the task of the future, but the version of a
single loops is quite observable today. We are
interested, first of all zirconium, so the proposed
material is focused on hcp crystals. Thus, the purpose of
the article is to show how we can analytically calculate
the energy of the elastic interaction of PD with the
specific dislocation loops in real hexagonal crystal. As

an example, we considered the edge dislocation loops of
two types: C-loop (in the basal plane, the Burger’s

vector b® =1/ 2(0001)) and — a-loop (in the plane
{1120}, the Burger’s vector bP° :1/3<11§0>). In

addition, for C-loop required energy directly calculated
by solution of the equilibrium equations.

In the theory of elasticity PD is described by the
volume distribution of dipole forces without moments,
i. e. by the expression of the form:

fi(r):_ejvjé(r)n Pij:Pji' 2

According Eshelby [2], the energy of interaction of such
s

an object with a source of stress S (uS Uj ,O'i? )inan

elastic medium is given by
s
Eine (1) =—R;u; (r) ®3)

where I is coordinate of PD. If P. =PJ..,i.e. PD is

ij ij ?
modeled by the dilation center, and source of stress S
is dislocation loop, for the energy of their interaction
finally we have:

Ee(r)/ P ==Spu? (r) @)

where P is the power of dilatation center; and the
coordinate system is associated with dislocation. Our

task is the calculation of the value Spuijp for a
particular dislocation loop.

There are two methods for calculating the elastic
field of the loops UijD. The first method is the solution

of the quilibrium equations in the terms of
displacements with appropriate boundary conditions.
The second method is the Green's function method
allowing to calculate the displacement caused by the
dislocation of any form in an arbitrary anisotropic
elastic medium, according to the classical formula [3, 4]
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)=Cjamb> j n )dS’ (5)
where C,, is the tensor of the elastic moduli of the

medium simulating the crystal; bn'? is mth component of

the Burger’s vector of the dislocation; n,D is | th

component of the normal vector to any surface S,

lying on the dislocation line; I’ is the coordinate of the
point on the surface S, ; I is the coordinate of the point

of observation and G, j Is the tensor Green's function

(TFG) of the elastic medium. According Elliott [5], the
equilibrium equations are solved in terms of two stress
functions. As for the TFG, two approaches are cited in
the literature: Lifshitz-Rosenzweig (1947) [6] and
Kroner (1953) [7] with a modified coefficient [8]. The
first approach is valid for any unlimited elastic
anisotropic medium, and the second is valid seemingly
only for the hexagonal system.

2. EDGE LOOP IN THE BASAL PLANE
OF THE HEXAGONAL CRYSTAL

We consider a circular vacancy loop of radius R
lying in the plane Z =0 (basal plane) of the cylindrical
coordinate system (I, @, Z ), the Burger’s vector which
is perpendicular to the plane of the loop and has the
only Z-component b®=1(0,0,b"). The normal
vector to the plane of the loop N=(0,0,1) coincides

with the positive direction of the axis “Zz ”, which is
also the axis of symmetry of the crystal. An example of
such an object can serve, according to [9], the so-called

C -loop b=1/2[0001] in zirconium under electron
irradiation at the temperature T =715 K.

2.1. SOLUTION OF THE EQUILIBRIUM
EQUATIONS (ELLIOTT’S APPROACH)

Since the problem is axially symmetric, the angular
dependence is absent, and the stress state is uniquely
determined by four components of the stress tensor:

o,.,0, ,0,,0,, Which satisfy the equations of

T ep Tz Tz
equilibrium
aO-rr + aO-rz + On _O-(W =0: (6)
or 0z r
oo, N oo, +& ey o
or 0z r
In terms of displacement, taking into account the
_— od od
substitution U, =—7; U, =K — they take the form
or oz
a V2D 4+ Cyu +K(C;3+Cyy) '@ —0
or Cy oz’ ’

2
9 VO + Cyk a? =0, (8
oz Cuk+(C;+C,,) 0z
2
where V’ = %Jng and C,;,C,,C,,Cy,

C,, =C,; is the minimum number of non-zero elastic

moduli of hexagonal crystal. Equations (8) have a
solution under the condition

Cu +k(C;3+Cy,)
Cy

This condition reduces (8) in the form

Ck
T Cuk+ (Cu+ C44)

2
(vz +v, %}Da(r,z):o, a=12, (9

where coefficients v, are the roots of a quadratic

equation
CuCppv’* + ((:132 +2C,Cp5— C33C11) v+ (10)
+C,,C,; =0.

Meanwhile,

2 2
u, _9 D, U :QZkaCDa ;
or 01~
K = Cuv, —Cy _Va (Cis+Cyy) (11)
© Cu+Cy Css —Cuv,

and the desired quantity SpuijD in terms of the

functions @ , is given by the expression

(12)

b 2 82
Spulj = Z_l(ka _Va)?q)

Hankel’s transform [10] reduces (9) to ordinary
differential equations

(13)

1% —dz ~£2 |G, (&£,2)=0
“ dz? o’ ’
whose solution is trivial

G,(&,2)= A, (&)exp(=¢2/ \[v, ) +
+B, (&)exp(&z/ \v,).

In our case we consider the solutions when all
components of the displacement and stress converges to

zero, when Z —> 0. Then we have B, =0, and the
coefficients A, are determined from the boundary

conditions of the problem in the plane Z=0. They are
as follows [11]:



1, It is convenient to use dimensionless variables
u,(r,0)= _Eb ,0<r<R; t=£R; p=r/R. Then the first boundary condition
(14) gives two integral equations

u,(r,00=0, r>R, o,(r,00=0. (14) w
jo t2A (t/ R)J, (tp)dt =

Using Hankel’s inversion theorem [10], we obtain

for shear stress: 1+ k bD R’ .
ou(r2) = R 0Pt
2 -
=C.. éZ \/_aA(«:)exp( g2l Jv,) L, (rode, Jit ’*‘“R)Jo(‘p)dt—o' p>1.
(15) which  are  satisfied under the  condition
1+k b°R®
where J,, J; are Bessel functions of the first kind. CA(t/R)= ( 2 Jy(t) - As a result, the

And then the second boundary condition (14) gives the function @, takes the form.

relationship A, (&) =— Ai(g)i_k:i \F Acting ina  ®,(r,z) =

1+Kk, b R
similar way for z -component of the displacement we — =+/V; . - b J (ER)I (ré)exp(—=Ez 1 v, )dE;
receive the following expression k1 5

17)
u,(r,z)= D,(r,z) =
1+k, b R

=—J.:§ZZZ;L7;‘_Aa(cf)exp(—fz/E)}Jo(rg)dg. =—Jv, k2 b gJ (ER)I (ré)exp(=¢2/ |Jv,)dé.

(16)  Accordingly, for the desired quantity SpuijD from (12)
we obtain:

D
SpuinD_b Lok, k= | {r’ Z ] Lk k—vy | {r’ z JE b |(L,£J, as)
2R k=K, vy "(R'RP, ) k=K, J, "(R'R{y, )| 47R (R'R

where |“( j [, ( jJ(t)exp( téjdt

and thus, the problem is solved.

2.2. THE GREEN’S FUNCTIONS METHOD: LIFSHITZ-ROSENZWEIG’S APPROACH
From formula (5) we have:

2
! ! ] a
SpuijD(r) =bD d2r ClSZGia,ai(r_r )+C3SGi3,3i(r -r ) ' Gij,k = Gij ’ (19)
Sp a=1 8Xk

where the index “i” is summation from 1 to 3. Analytical universal expressions for the component of TFG of
hexagonal crystal are given in [12]

, 1 ) X, — X,
Gsk(r—r)Zm[q)(Ta)Ts 5 ﬁk+F(TS)53k:|' = |;—I’l'(| '
G p— 2Y6, —M(22)7,7,0 4 + D(22)7, 7,0,
r =) = [N ~ME)re ) + Ol ] 20)

As a result,

Spui?(r)z_ﬂ.[ rdz::' 1- 373)Q(73)+273(1 T3 SS}

A7 g fr—r ;



Q(7;) =CyK(73) + CoW (75) +(Cps + C )V (73):

dd dF
V(z‘s) Q- 32'3 )d)(z'3)+22'3 @a- 2'3) = W(rs) F(z‘s) 2(1- 2'3) 2'2 :
3 3
K(z2)=-N(¢2) -2t — dN —-3IM(e}) + 202 (1-12) — aM : (21)
d2'3 drs

Functions ®(z2), F(z2),N(z}), and M(z?) are quite cumbersom and carried to appendix.

2.3. THE GREEN’S FUNCTIONS METHOD: KRONER’S APPROACH

Original formula is (19), but the components of TFG are other here. According to Kréner we have:

3 2,2 \2 2, 2
Gu=Y, 1 {Akxz y(:/kr +Z)+Bk},r2:x2+y2;

1/2
= [vkr2+22] r
S 1 y?z? —x* (v, r* + %) S D
— Kk _ k

Gp=D ——— N{Ak : B |: Gu=2——

Ay’ +z r Ay’ +2’ ]

xy & vl +27 X2 & C, Yz & ’
Gy, _42 5 , W2 31__22 9 S W2 Gsz__z , - (22)

= [vkr +z r k=1[vkr +z] r k:l[vkr +z]

Performing the appropriate summation in (19), we obtain

Spuu (rN=— J. dr [ClST (73)+Cqs T, (75) + (Cy +Cia) To (75 )]

2 2 2 2 2 2 2 2 272? v, (1 73?)
lezAaVa Fa(TS); TZZZDaFa(T?:); T3:ZCavaFa(T3); Fa(TB)E 2 5/2 ’(23)
o ] a1 [13 +v, (172 }
where v are the roots of the same quadratic equation (10), and the coefficients in (22) and (23) have the form
A, = [(Cee - Cll) (C33 —v,Cu ) + (C13 +Cy )2] IE,, Ce= (Cn -Cp, ) 12;
D, = (C44 - VaCll)(C44 —,Ces ) lE,; C, = (C13 +Cy ) (C44 —v,Ces ) lE,;
E; =CuCuCes (i —v3) (v —v2) ; E, =CiiCuCes (v2 —v3) (v, —W1)- (24)

Thus, the problem reduces to the integration of (19)  (Mbar): C,=1554; C,=0672; C,;=0.646;

and (23) in a plane of the circular loop of radius R _ ) . . .
(recall that 2" =0 since the loop lies in the basal plane Coo =1725; Cg5 =C,y =0.363. The comparison
of the crystal).

So, we have three independent variants for solving
the same problem. Their numerical comparison was
carried out with respect to zirconium. The experimental
values of its modulus of elasticity are following [12]

results are presented in Figs. 1, 2 in dimensionless
cylindrical coordinates; p=r/R; {=z/R.
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Functions [E, T, ILE

_5 I I I I
0 1 2 3 4 5

relative distance R
Fig. 1. Dependence of the functions 1 (,0,¢) (solid

line), 1" (,0,¢) (dotted line) 1" (p,&) (points)
according (18), (21), and (23) on the relative
distance p =1/ R in the plane £ =0.1 of zirconium

Formulas (18), (21), (23) are reduced to a united

form Spui?z in Figs. 1,2 the

function 1%(p,¢) (solid line) corresponds to the

formula (18), 1'%(p,¢) (dotted line) corresponds to the

formula (21) (Lifshitz-Rosenzweig), 1°(p,¢) (points)
corresponds to the formula (23) (Kroner). They show
the dependence of the functions 15, 15, 1 on the
relative distance o for the two planes ¢ =0.1 and
¢ =0.5 above the plane of the loop ¢ =0. We see the

perfect agreement of all three approaches. The
qualitative nature of the interaction does not change

(vacancy loop, the formula (4)): vacancy (P <0) is
pushed out from the inside of the loop p <1, and
attracted in the external region p>1 (SIA — on the
contrary). However, if on a sufficiently large distances
from the plane of the loop (¢ =0.5) interaction
smoothly changes its sign at the boundary of the loop
p ~1, then with the approaching to the plane of loop
(£ =0.1) the interaction varies substantially step-wise
on its boundary.

3. EDGE LOOP IN PRISMATIC PLANE
OF THE HEXAGONAL CRYSTAL

Consider a circular vacancy loop of radius R lying
in the plane x=0 of the Cartesian coordinate system
(prismatic plane of hexagonal crystal). The Burger's

[ d°r
SpuijD (I’) =T J-

47Z'SD| -

Q()

"3

Functions IE, TE,, ILE.
L

1 I 1 I I
0 1 2 3 4 5

relative distance nR

Fig. 2. Dependence of the functions | % (p,¢) (solid

line), 1R (,0,<) (dotted line) 1 (0,<) (points)
according (18), (21), and (23) on the relative
distance p =1/ R in the plane £ =0.5 of zirconium

vector is perpendicular to the plane of loop and has only
X -component b° = (b°,0,0) . The vector of normal

to the plane of the loop N=(1,0,0) coincides with

the positive direction of the axis “x”. An example of
such an object may be, according to [9], the so-called

a -loops bD:1/3<11§O> in zirconium. It is the

dominant form of loops under neutron irradiation as the
vacancy as and the interstitial in nature. The axial
symmetry in this case is absent so well-developed
methods for solving equilibrium equations are not

applicable. It remains TFG’s method. From (5) we
again have:
2
Spu (r)= bDJ.|:C122Gia,ai+C13Gi3,3i:|d2r +
Sp a=l (25)

+b® (Cy _Clz)j Gy (r—rid ’r
S

where the repeated suffix “i”, as previously, is summed
over the values 1-3. Note that the first term in (25)
coincides up to the coefficient with the expression (19),
for which the result is already known both Lifshitz-
Rosenzweig (21), and by Kréner (23). Therefore, only

the sum G;,; to be calculated. The result of
calculations by Lifshitz-Rosenzweig is following:

d?r dy
-Cp,) _[ 30 {3Y( )+ 273 } ; (26)
| dz}



Q(z3) = (1-323)| C,.Y (3) + Co¥(23) |+ 272 (1-73)

Y(2) =K(2)+V ().

W(cl) =V (2)+W () ,

d
T2 CaY (£)+Cu¥(5) |- (Cu—Co)¥ (=0);
3

The functions K(T;) W (r§) Vv (r,f) are the same as in (21). A similar result for Kroner is:

Spu(r) =— j

d2r¢
(Cn Cy) j

-

C12T (73 )+CT, (73 )+(C, +C3) T, (Ts ):I +

(27)

T(73);

T 11%3 3/12
() = Z—; [va(l—r32)+732]

All functions and constants are as defined above
(23), (24). Here we must remember that the loop lies in
the plane «yz» of Cartesian coordinate system, i.e.

r,=x/r-r], (X=0), and 7, =(z—z’)/|r—r'|.
Therefore the dimensionless cylindrical coordinates
used for the numerical comparison of formulas (26) and
(27) are following: ¢ =Xx/R, p=r/R
(r’=y*+2*, y=rcose, z=rsing, and @is
an azimuth angle, but in the plane of the loop “yz”). As

earlier, formulas (26), (27) are reduced to the standard
D

form Spu;’ = b I(p,<, @), however, in order not
4zR

to overload the article by the pictures, we give them a

qualitative description. Firstly, we emphasize again full

coincidence of Lifshitz-Rosenzweig’s and Kroner’s

approaches. Secondly, we note that, unlike the base loop

the functions | (26) and 1* (27) include a weak
dependence on the azimuthal angle ¢ in the plane of the

loop, but the character of interaction (their sign on both
sides of the conditional boundary loop) from ¢ is
independent. Moreover, the dependence of the functions
I'*, 1% on the relative distance p for different

planes £ =const almost coincides with a similar for

the base loop (see Figs. 1, 2). It is quite natural in view
of the weak sensitivity of these functions to the angle

Q.
4. DISCUSSION OF RESULTS

So, the different methods are used to derive
analytical expressions for the energy of elastic
interaction of PD with the specific dislocation loops in
real hexagonal crystal. As an example, we were taken
vacancy edge loops of two types: C- and a-loop in
zirconium. Simplifies circumstance in cases considered
above is that the normal vector to the plane of the loop
and its Burgers vector has only one component in a
Cartesian coordinate system. In general, it is not. And
the initial formula (5) then become much more

[Av,+(C,-B,)v, ]{1_

3z,
v, (1-77)+7,° |

complicated. However, the method of -calculation
remains the same and does not contain principal
mathematical difficulties.

Knowing the energy of elastic interaction PD with a
loop allows one to calculate the diffusion fluxes of
radiation PD on it [13, 14], as well as its bias factor to a
specific type of PD. The bias is the most important
characteristic of dislocations which made possible to
explane such phenomena as swelling, radiation creep,
radiation hardening structural materials of nuclear
reactors [15-17], etc. Here, however, we should note
the following. In all theories bias factor of dislocation
was calculated assuming an elastically isotropic crystal
when the energy of interaction of PD with a straight
dislocation or a loop is harmonic function. For a
hexagonal crystal it is not. This follows, for example,
from the expression (18) for the base prismatic loop.
Therefore, the corresponding diffusion problem [13, 14]
is complicated by the presence of the additional term,
and the authors' conclusions regarding of the depending
of the bias factor from the radius of the loop, the type
and ratio of dilatation volume of TD, can change.
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APPENDIX
"I RGO G| e )
N()= (2121 Z,) bR,iT(izz)_ngp)(l_rg) ;
M(2) = —2 S(z7) P(?) +be?

(z,+2,) A-75)b A(Te?)_afb P(z2) (b+ p)A—172)? |

R(r2) = @b +0) | Al) P() (Zl 1 J;
2, 2(b+p)1-73) P(z3)

2y _ 1 L A(z;) P(z3) _R 2,2 B 2B 2.
S(r3)—(a+b)(b+,o){Zl 22+13} 2(b+p)(1—r§)KZl z, Pj+(zlzz+|:)[z1 z, A:DT3:|,

A(z?) = 2[k +l(1-72) - m(1—r§)2] . B(t})=2k+1(1-72) P(z2)=b+pl-72);

k=(a+2b)(b+p); m:(a+b—p)7/—(;(+2p)2; I =(a+2b)y+(2b—x)(x+2p);

1
a=Cp,; bZE(Cn_Clz):Cea; x=C;—Cp;

1
p=C, _E(Cn_clz)? y=C,+Cy;3—4C,, -2C,;;
(2 (2, B() N
L L == 2y Zl+22:i‘/§ T T32 :
A(Z'3 ) A(Ts ) A(T3 )
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Meronom ¢yHKIMH ['prHa Ui TeKcaroHaJIbHBIX KPHUCTAIOB B noaxoxax Jludmmua-Posenuseiira u Kpenepa
MOJTy4eHbI aHATMTHYECKUE BBIPAXKECHUS SJHEPTUU yIIPYroro B3aMMOAEHCTBUS PAMAlMOHHBIX TOUCUHBIX Je(eKTOoB ¢
JIUCITOKAIIMOHHBIMY KPAaeBBIMH METISAMH IBYX BUIOB: C -meTineii (6a3mcHas IIOCKOCTh 3ajeraHust, BekTop bioprepca

b®=1/2[0001]) u a-nemeii (mockocts 3aneranns {1120}, BekTop Broprepca bD:l/3<11§0>). B

ciydae 0a3WCHOW TMETIM aHAJOTMYHOE BBIPAKEHHE IOJMYYEHO HE3aBHCHMO pEIICHHEM ypaBHEHHWH DPaBHOBECHS
MeToAOoM OnuoTa. YnciieHHOe CpaBHEHHE MONYyYSHHBIX Pe3yIbTaTOB IS IIUPKOHHS MOKA3aJlo MOJHOE COBIAJCHHE
PacCMOTPEHHBIX ITOIXO0B.



METOJH PO3PAXYHKY MPYKHOI B3AEMO/IIi TOYKOBUX JIE®EKTIB
3 JUCJIOKANIMHUMMU ITETJIAMUA B TEKCAI'OHAJIBHUX KPUCTAJIAX

O.I'. Tpouyenxo, I1. M. Ocmanuyk

Meronom ¢ynkuii I'piHa Ui rekcaroHaidbHUX KpucTaiiB y miaxonax Jlipmmns-Poszenunseiira i Kpenepa
OTpHMaHi aHAJIITHYHI BHpa3W eHeprii mpyxHoi B3aeMonil pajialliiHUX TOYKOBHUX JAE(EKTIB 3 IHUCIOKAalidHHUMHU

KpailoBUMH MeTIAMU 1BOX BUiB: C -rieTneto (GasucHa miouna sansranss, sekrop Broprepca b® =1/ 2[0001])
i a-meTnero (IWIOIMMHA 3aNIATAHHS {11?0} , Bextop Broprepca b° =1/ 3<11§0> ). V pasi Gasucuoi merni

aHAJIOTIYHUI BHpa3 OTPHMAHO HE3AIEKHO PIIICHHSAM PIBHAHB piBHOBaru meronoMm Emiorta. YncensHe MOpiBHAHHS
OTPUMAHUX PE3YIbTATIB IS MUPKOHIIO TTOKA3aJI0 TIOBHUM 30ir PO3TIIAHYTHX ITiAXOIiB.



