- 11. Исследование процесса синтеза ультрадисперсных алмазов методом меченых атомов / Н. В. Козырев, Г. В. Сакович, Сен Чел Су, М. С. Штейн // V Всесоюзн. совещ. по детонации, Красноярск, 5–12 авг. 1991 г.: Сб. докл. Черноголовка: ИМТЕХ. 1991. Т. 1. С. 176–179.
- 12. Синтез алмазных кластеров взрывом / Г. В. Сакович, В. М. Титов, Е. А. Петров, Н. В. Козырев // X Междунар. конф. «HERF», Любляна, Югославия. 1989. С. 179–188.
- 13. Новый тип искусственных алмазов и физико-химические основы их получения / Г. В. Сакович, Е. А. Петров, В. Ф. Комаров, Н. В. Козырев // XXIV Междунар. симпозиум «Ceramies-2000». S. А. 1992. С. 37–58.
- 14. New type of artificial and physical-chemical fundamentals of their creation / G. V. Sacovich, E. A. Petrov, V. F. Komarov, N. V. Kozyrev // Proceeding of the NATO advanced research workshop on conversion concerts for commercial applications and disposal technologies of energetic systems. Moscow, May 1994; Kluwer acadimic publishers. 1997. Sreies 1, Vol. 14. P. 55–72.
- 15. Сакович Г. В., Брыляков П. М. Синтез алмазных кластеров взрывом // Сб. тез. докл. 10 междунар. конф. «High energy rate fabrication», Любляна, Югославия. 1989. C. 179-188.
- 16. Петров Е. А. Исследование физико-химических процессов детонационного синтеза наноалмазов // Междунар. науч.-техн. и метод. конф., 22–24 дек. 2004 г., Казань: Сб. докл. 2004. С. 881–888.

Поступила 27.04.12

УДК 57.08

А.П. Возняковский 1 , д-р хим. наук, **Г.П. Богатырева** 2 , д-р техн. наук

¹Федеральное унитарное государственное предприятие «НИИ синтетического каучука им. акад. С. В. Лебедева», г. Санкт-Петербург, Россия

²Институт сверхтвердых материалов им. В.Н. Бакуля НАН Украины, г. Киев

ДЕТОНАЦИОННЫЕ НАНОАЛМАЗЫ: ГИДРОФИЛЬНЫЕ? ГИДРОФОБНЫЕ?

Эксперименты по криогенной очистке поверхности детонационных наноалмазов от молекул воды подтверждают гидрофобные свойства поверхности наноалмаза. Часто наблюдаемые гидрофильные свойства поверхности наноалмазов в большей степени являются результатом адсорбирования воды.

Ключевые слова: детонационный наноалмаз, поверхностная характеристика детонационного наноалмаза, криогенная сушка.

Experiments on cryogenic purification of detonation nanodiamonds surface from water molecules makes us confidence in manly hydrophobic character of their surface. Frequently observed hydrophilic character of detonation nanodiamonds surface, in a large degree, is due to the adsorption water.

Key words: detonation nanodiamond, surface characteristics of detonation nanodiamond, cryogenic purification.

Возможности практического применения детонационных наноалмазов (ДНА) обусловлены чистотой продукта и физико-химическими характеристиками их поверхности

[1–5]. Направленно регулируя химию поверхности, можно получать специфические свойства в соответствии с функциональными требованиями и при конечном применении ДНА. Характеризуя поверхность, следует учитывать, что ДНА получают из продуктов подрыва смесевых взрывчатых веществ. Формирование ДНА является процессом последовательного ассоциирования наночастиц - квантовых частиц. Возникая в валентно- и координационноненасыщенном состоянии, первичные кристаллы ДНА агрегируют с образованием надмолекулярных комплексов, преимущественно фрактальных кластеров. Взаимодействуя со средой, формирующиеся кластеры ДНА координируют на своей поверхности вещество окружающей среды – аллотропии sp²-углерода. Технология очищения ДНА от продуктов подрыва предусматривает обработку мощными окислительными ИХ Предсказуемым результатом воздействия сильных окислителей является наличие на поверхности ДНА функциональных групп с лабильным протоном. Результаты анализа большого количества научных работ по рассматриваемой тематике показывают, что изучение поверхности ДНА остается актуальным.

При поиске подходов к характеристике поверхности необходимо предложить модель, с помощью которой можно адекватно оценивать две проблемы: природу сил, стабилизирующих агрегаты частиц ДНА, и функциональные группы, определяющие физику и химию их поверхности. Из известных моделей структуры частиц ДНА чаще других цитируют модель, предложенную в [6]. Известные модели предлагают в основном структуры поверхности частицы ДНА, но не уделяют внимания механизмам их агрегации.

Хотя с помощью методики химической функционализации поверхности ДНА можно получить устойчивые суспензии ДНА в жидких средах различной полярности, однако при этом следует применять дополнительные технологические операции. Кроме того, необходимо учитывать, что наличие новых радикалов на поверхности ДНА может оказаться нежелательным. Таким образом, естественно возникает потребность в разработке метода функционализации поверхности, основанной только на физических принципах.

Цель настоящей работы – определить влияние процесса высушивания на физикохимические параметры поверхности ДНА.

Методика эксперимента

Детонационные наноалмазы

Исследовали ДНА различных марок, полученные в ИСМ им. В.Н. Бакуля НАН Украины (группой ученных под руководством Γ .П. Богатыревой). Некоторые параметры изученных ДНА приведены в табл. 1.

Таблица 1. Физико-химические показатели марок ДНА

	Марка			
Показатель ДНА	АСУД-75	АСУД-95	АСУД-99	
Соотношение алмазной фазы и переходных форм (неалмазного углерода)	2:1	_	_	
Пикнометрическая плотность, г/см ³	3,0	3,4	3,42	
Доля примесей в виде несгораемого остатка, % масс.	0,9	1,7	0,45	
Суммарное содержание металлических примесей, % атом.	0,436	0,624	0,283	
Удельная магнитная восприимчивость χ , $\times 10^{-8}$ м ³ /кг	_	18,0	1,0	
Удельное электросопротивление, Ом м	I	$1,2\cdot10^6$	$3,7\cdot10^{9}$	
Доля влаги, % масс.	1,5	2,65	0,9	
Площадь удельной поверхности, м ² /г	219	167	178	

Определение групп с лабильным протоном методом Чугаева-Церевитинова

Метод Чугаева-Церевитинова основан на измерении объема выделяющегося метана при реакции алкилмагнийгалогенида с гидроксильными группами исследуемого вещества. В основе метода лежит реакция

$$CH_3MgI + R'OH \rightarrow CH_4 + R'OMgI$$

Реакция по каждой гидроксильной группе приводит к образованию одной молекулы метана. Процентное содержание гидроксильных групп рассчитывают по формуле

$$\% \, \text{OH} = \frac{0,000719 \cdot V \cdot 17 \cdot 100}{16 \cdot S} = 0,0764 \cdot \frac{V}{S} \,,$$

где 0,000719 — масса 1 моля CH_4 при нормальных условиях; V — приведенный объем, мл; 17 — эквивалентная масса гидроксила; 16 — молекулярная масса CH_4 ; S — масса исследуемого вещества, г.

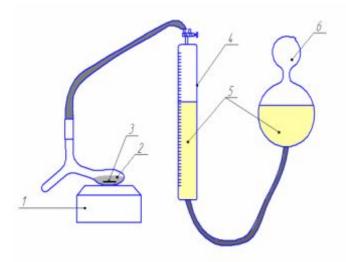


Схема установки для определения количества гидроксилов: 1 — магнитная мешалка; 2 — смесь ДНА и реактива Гриньяра; 3 — магнит; 4 — трубка со шкалой; 5 — гидравлический затвор (фторолигомер); 6 — воронка

Для определения количества гидроксилов на поверхности порошков ДНА стандартную установку модифицировали. Изменили конструкцию сосуда: реакционного использовали плоскодонную колбу, в которой онжом перемешивать реакционную смесь магнитной мешалкой. Постоянное перемешивание исключало выпадение ДНА в осадок. Кроме того, реакцию проводили в среде аргона. Схема установки определения количества гидроксилов по методу Чугаева-Церивитинова показана рисунке. Обычно при расчете определяют количество молей гидроксильных групп (в общем случае групп лабильным протоном), содержащихся моле исследуемого В вещества. Однако случае ДНА невозможно определить массу моля. В

этой связи расчет проводили исходя из количества молей гидроксила на 1 г ДНА.

Метод динамического светорассеяния

Дисперсность ДНА в суспензиях определяли методом динамического светорассеяния. С помощью этого метода можно изучать характер распределения частиц по размерам в невозмущенных внешними воздействиями структурах, что позволяет получать более информативную и достоверную информацию о дисперсных системах в сравнении с традиционными методиками.

Высушивание порошков ДНА.

Вариант 1. Вакуумное высушивание. Порошки ДНА высушивали при температуре 150 °С и остаточном давлении 0,5 мм рт. ст. Продолжительность высушивания -3 ч. Для исключения вторичной сорбции влаги воздуха ДНА после высушивания хранили в атмосфере аргона.

Вариант 2. Сублимационное высушивание. Позволяет удалить сорбированную воду переводом из кристаллической фазы в газовую фазу, минуя стадию жидкости. Порошки высушивали в течение -3 ч при температуре 30–40 °C. После этого колбу продували аргоном.

Вариант 3 «Т-» + «Т+». Порошки ДНА высушенные по варианту 2, дополнительно досушивали при температуре 150 °C в течение 3 ч. После этого колбу продували аргоном.

Степень высушивания ДНА по всем вариантам контролировали с помощью метода Чугаева-Церевитинова.

Результаты исследований и их обсуждение

Часто для увеличения дисперсности частиц ДНА используют наложение поля УЗ на их суспензии. Однако, как показано ранее, использование поля УЗ может приводить к неоднозначным результатам и в этой связи не всегда эффективно.

Ранее были приведены некоторые экспериментальные доказательства стабилизации агрегатов ДНА водородными связями. Если принять справедливость этой модели, непротиворечиво можно предположить, что существенный вклад в их формирование могут вносить (кроме поверхностных функциональных групп) молекулы воды, находящиеся как в адсорбционных слоях, так и в капиллярных каналах агрегатов. Естественным путем разрушения агрегатов ДНА в этом случае будет удаление воды, физически связанной с поверхностью ДНА – высушивание ДНА.

При выборе метода высушивания следует учитывать, что для удаления адсорбционной воды необходимо, как правило, применять высокую температуру. Однако этот вариант в случае ДНА может привести к деструкции поверхностных функциональных групп и частичной карбонизации поверхности. В этой связи целесообразно использовать варианты высушивания при относительно невысокой температуре. В таком случае чаще всего используют вакуумное высушивания. В настоящей работе кроме традиционного вакуумного высушивания использовали также (1) сублимационное высушивание и (2) сублимационное высушивание (1 ч) с досушиванием при температуре 200 °C (2 ч). Количественно результаты высушивания оценивали методом Чугуева—Церевитинова (табл. 2).

Таблица 2. Сравнительная таблица влияния методов высушивания на количество гидроксилов на поверхности ДНА марки АСУД

	Метод высушивания			
Марка ДНА	исходный	вакуумный	(-T) + вакуумный + (30 °C)	(-T) + вакуумный + (30 °C) + (200 °C)
Концентрация гидроксилсодержащих групп, ×10 ⁻³ мо.				, ×10 ⁻³ моль/г
ACUD-99	2,78	0,43	1,80	2,94
ACUD-95	6,68	0,83	0,76	2,34
ACUD-75	5,29	0,16	1,70	2,36

Как и следовало ожидать, после вакуумного высушивания резко снижается концентрация гидроксилов в 1 г ДНА. Второй вариант предусматривал изменение механизма удаления воды: использовали механизм сублимационного высушивания.

Результат сублимационного высушивания оказался несколько неожиданным. Содержание гидроксилов на поверхности ДНА марок АСУД-99 и АСУД-75 увеличилось по сравнению с их содержанием в исходных ДНА. Вторичная сорбция ДНА влаги воздуха была исключена используемой методикой перенесения ДНА из объема высушивания в установку для определения количества гидроксилов (все операции проводили в атмосфере аргона). Использование сублимационного высушивания с досушиванием при высокой температуре ($T = 200~^{\circ}$ C) привело к дальнейшему повышению регистрируемой удельной концентрации гидроксилов. Следует отметить малый разброс значений концентраций для разных марок

ДНА. Повышение регистрируемой удельной концентрации гидроксильных групп как результат процесса высушивания может быть связано с формированием новой поверхности. Латентные гидроксильные группы новой поверхности становятся доступными для реактива Гриньяра. Сам же факт формирования непротиворечиво обусловлен удалением молекул «цеолитной» воды и связанным с этим резким уменьшением водородных связей, стабилизирующих агрегаты с наиболее рыхлой структурой, и последующим их распадом.

Несомненный интерес представляла проверка влияния высушивания на дисперсность ДНА в суспензиях. Это осуществили на примере ДНА марки АСУД-99.

Данные метода динамического светорассеяния по влиянию вакуумного высушивания на среднечисловое и среднемассовое распределение в водной среде частиц АСУД-99 по размерам приведены в табл. 3.

Таблица 3. Влияние вакуумного высушивания на среднечисловое и среднемассовое распределение частиц АСУД-99 по размерам

	Исходные		Вакуумное высушивание	
Диаметр, нм	доля M_w , % масс.	относительное количество частиц M_n	доля M_w , % масс.	относительное количество частиц M_n
56	0,01	1,68	0,00	0,00
100	0,56	18,60	0,00	0,00
178	4,97	29,40	0,00	0,00
316	39,10	41,30	0,00	0,00
562	46,20	8,70	0,00	0,00
1000	9,03	0,30	0,06	2,28
1780	0,11	0,00	9,86	66,50
3160	0,00	0,00	21,20	25,50
5620	0,00	0,00	17,50	3,75
10000	0,00	0,00	51,40	1,95

Результаты анализа данных табл. 3 позволяют говорить об интуитивно трудно ожидаемых результатах высушивания. Так, в процессе вакуумного высушивания предполагается удаление молекул воды, даже наиболее прочно связанных с поверхностью алмаза (адсорбционной и/или капиллярной). Согласно принятой модели в общем случае это должно приводить к разрушению агрегатов ДНА и соответственно повышению дисперсности.

Однако данные табл. 3 демонстрируют, что если основная масса частиц исходных АСУД-99 сосредоточена в интервале 316–562 нм, то осушенных алмазов – в интервале 3160–10000 нм. Таким образом, в сопоставлении с исходными алмазами процесс высушивания приводит к снижению дисперсности частиц АСУД-99 в водной среде. Можно предположить, что это связано со смещением характера поверхности частиц ДНА в сторону гидрофобности. Следовательно, гидрофильный характер поверхности ДНА определяется не столько наличием на ней функциональных групп с лабильным протоном, сколько количеством молей адсорбционной воды. В общем случае следует признать, что этого и следовало ожидать для углеродного вещества.

Для проверки изменения характера поверхности наноалмазов получили дисперсию в среде этилацетата, полярность которого заметно ниже полярности воды. В этом случае проследили также влияние глубины осушки на структуру суспензий.

Полученные результаты проверки приведены в табл. 4.

Таблица 4. Влияние метода высушивания на дисперсность ДНА ACUD-99 в среде этилацетата

Диаметр,	Вариант 2		Вариант 3	
нм	доля M_w ,	относительное	доля M_w ,	относительное
	% масс.	количество частиц M_n	% масс.	количество частиц M_n
100	0,00	0,00	0,00	1,05
178	0,00	3,57	0,04	29,8
316	0,07	44,7	0,44	66,5
562	0,26	29,5	0,08	2,19
1000	1,00	20,20	0,00	0,00
1780	0,01	0,04	0,00	0,00
3160	0,00	0,00	0,00	0,00
5620	0,00	0,00	0,00	0,00
10000	98,70	1,99	99,40	0,47

Из анализа данных табл. 4 следует, что с углублением степени осушки (вариант 3) количество частиц в области наноразмеров 100–316 нм значительно увеличивается. Хотя следует отметить, что как в первом, так и во втором случае основная масса частиц ДНА находится в агрегатах диаметром до 10000 нм. Как отмечалось, осушка ДНА приводит к смещению характера поверхности в сторону увеличения гидрофобности их поверхности. Таким образом, появление нанодисперсных частиц ДНА в области наноразмеров при высушивании по варианту 3 можно отнести к выходу в суспензию частиц с увеличенной гидрофобностью, чему способствует более низкая полярность этилацетата в сравнении с водой.

Для получения дополнительной информации о влиянии глубины осушки на характер поверхности частиц ДНА были получены их суспензии в физрастворе (0,9%-ный раствор хлорида натрия), т. е. ионной системе. Данные о структуре суспензий приведены в табл. 5.

Таблица 5. Распределение массовой доли и относительного количества частиц в физиологическом растворе

Диаметр,	Вариант 2		Вариант 3	
НМ	доля M_w , % масс.	относительное количество частиц M_n	доля M_w , % масс.	относительное количество частиц M_n
10	0,04	32,20	0,00	0,00
18	0,35	47,20	0,00	0,00
32	0,72	17,50	0,00	0,00
56	0,64	2,76	0,01	26,90
100	0,35	0,27	0,09	49,90
178	0,15	0,02	0,11	10,40
316	0,32	0,01	0,50	8,26
562	0,30	0,00	1,30	3,85
1000	0,46	0,00	0,81	0,43
1780	10,70	0,00	2,64	0,25
3160	0,01	0,00	0,73	0,01
5620	0,00	0,00	0,01	0,00
10000	86,00	0,00	93,80	0,00

Результаты анализа данных табл. 5 показывают, что с увеличением глубины осушки дисперсность частиц ДНА в ионной среде снижается. Это хорошо коррелирует с полученными ранее данными о влиянии глубины осушки на увеличение гидрофобности поверхности алмазов.

Выводы

- 1. Предложена методика количественного определения групп с лабильным протоном на поверхности частиц ДНА.
- 2. Показано, что гидрофильность поверхности ДНА определяется адсорбированными молекулами воды; удаление молекул воды с поверхности частиц приводит к естественной гидрофобности.
- 3. Наличие групп с лабильным протоном на поверхности частиц ДНА является следствием особенностей детонационного синтеза; применение окислительных агентов при очистке поверхности ДНА от аморфного углерода на концентрацию групп с лабильным протоном не влияет.

Литература

- 1. Do Primary Particles of Detonation Nanodiamond Form a Secondary Structure? / M. V. Korobov, M. M. Batuk, N. V. Avramenko et all. // Fullerenes, Nanotubes and Carbon Nanostructures. 2010. 19. Issue 1-2. P. 58–62.
- 2. Строение частиц химически модифицированного наноалмаза детонационного синтеза / И. И. Кулакова, В. В. Корольков, Р. Ю. Яковлев и др. // Породоразрушающий и металлообрабатывающий инструмент техника и технология его изготовления и применения: Сб. науч. тр. К.: ИСМ им. В.Н. Бакуля НАН Украины. 2009. Вып. 9. С. 259—305.
- 3. Расчет поверхностных характеристик наноразмерных веществ (метод обращенной газовой хроматографии) / А. П. Возняковский, А. Ю. Качальников, В. В. Солодкий // Породоразрушающий и металлообрабатывающий инструмент техника и технология его изготовления и применения: Сб. науч. тр. К.: ИСМ им. В.Н. Бакуля НАН Украины, 2006. Вып. 9. С. 237–242.
- 4. Control of sp2/sp3 Carbon Ratio and Surface Chemistry of Nanodiamond Powders by Selective Oxidation in Air / S. Osswald, G. Yushin, V. Mochalin et all. // J. Am. chem. soc. 2006. **128**. P. 11635–116429.
- 5. Оптические свойства гидрозолей детонационных наноалмазов / А. Е. Алексенский, А. Я. Вуль, С. В. Коняхин и др. // Физика твердого тела. 2012. –54. № 3. С. 541–548.
- 6. Долматов В.Ю. Ультрадисперсные алмазы детонационного синтеза. СПб.: СПбГПУ, 2003. 344 с.

Поступила 18.06.2012